Move LRUCache structs to lru_cache.h header
Summary: ... so that I can include the header and create LRUCache specific tests for D61977 Test Plan: make check Reviewers: lightmark, IslamAbdelRahman, sdong Reviewed By: sdong Subscribers: andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D62145
This commit is contained in:
parent
2fc2fd92a9
commit
2a2ebb6f5e
@ -7,261 +7,92 @@
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
||||
|
||||
#include "util/lru_cache.h"
|
||||
|
||||
#include <assert.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
#include "port/port.h"
|
||||
#include "util/autovector.h"
|
||||
#include "util/mutexlock.h"
|
||||
#include "util/sharded_cache.h"
|
||||
|
||||
namespace rocksdb {
|
||||
|
||||
namespace {
|
||||
LRUHandleTable::LRUHandleTable() : length_(0), elems_(0), list_(nullptr) {
|
||||
Resize();
|
||||
}
|
||||
|
||||
// LRU cache implementation
|
||||
LRUHandleTable::~LRUHandleTable() {
|
||||
ApplyToAllCacheEntries([](LRUHandle* h) {
|
||||
if (h->refs == 1) {
|
||||
h->Free();
|
||||
}
|
||||
});
|
||||
delete[] list_;
|
||||
}
|
||||
|
||||
// An entry is a variable length heap-allocated structure.
|
||||
// Entries are referenced by cache and/or by any external entity.
|
||||
// The cache keeps all its entries in table. Some elements
|
||||
// are also stored on LRU list.
|
||||
//
|
||||
// LRUHandle can be in these states:
|
||||
// 1. Referenced externally AND in hash table.
|
||||
// In that case the entry is *not* in the LRU. (refs > 1 && in_cache == true)
|
||||
// 2. Not referenced externally and in hash table. In that case the entry is
|
||||
// in the LRU and can be freed. (refs == 1 && in_cache == true)
|
||||
// 3. Referenced externally and not in hash table. In that case the entry is
|
||||
// in not on LRU and not in table. (refs >= 1 && in_cache == false)
|
||||
//
|
||||
// All newly created LRUHandles are in state 1. If you call
|
||||
// LRUCacheShard::Release
|
||||
// on entry in state 1, it will go into state 2. To move from state 1 to
|
||||
// state 3, either call LRUCacheShard::Erase or LRUCacheShard::Insert with the
|
||||
// same key.
|
||||
// To move from state 2 to state 1, use LRUCacheShard::Lookup.
|
||||
// Before destruction, make sure that no handles are in state 1. This means
|
||||
// that any successful LRUCacheShard::Lookup/LRUCacheShard::Insert have a
|
||||
// matching
|
||||
// RUCache::Release (to move into state 2) or LRUCacheShard::Erase (for state 3)
|
||||
struct LRUHandle {
|
||||
void* value;
|
||||
void (*deleter)(const Slice&, void* value);
|
||||
LRUHandle* next_hash;
|
||||
LRUHandle* next;
|
||||
LRUHandle* prev;
|
||||
size_t charge; // TODO(opt): Only allow uint32_t?
|
||||
size_t key_length;
|
||||
uint32_t refs; // a number of refs to this entry
|
||||
// cache itself is counted as 1
|
||||
bool in_cache; // true, if this entry is referenced by the hash table
|
||||
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
|
||||
char key_data[1]; // Beginning of key
|
||||
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
|
||||
return *FindPointer(key, hash);
|
||||
}
|
||||
|
||||
Slice key() const {
|
||||
// For cheaper lookups, we allow a temporary Handle object
|
||||
// to store a pointer to a key in "value".
|
||||
if (next == this) {
|
||||
return *(reinterpret_cast<Slice*>(value));
|
||||
} else {
|
||||
return Slice(key_data, key_length);
|
||||
LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
|
||||
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
||||
LRUHandle* old = *ptr;
|
||||
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
||||
*ptr = h;
|
||||
if (old == nullptr) {
|
||||
++elems_;
|
||||
if (elems_ > length_) {
|
||||
// Since each cache entry is fairly large, we aim for a small
|
||||
// average linked list length (<= 1).
|
||||
Resize();
|
||||
}
|
||||
}
|
||||
return old;
|
||||
}
|
||||
|
||||
void Free() {
|
||||
assert((refs == 1 && in_cache) || (refs == 0 && !in_cache));
|
||||
(*deleter)(key(), value);
|
||||
delete[] reinterpret_cast<char*>(this);
|
||||
LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = FindPointer(key, hash);
|
||||
LRUHandle* result = *ptr;
|
||||
if (result != nullptr) {
|
||||
*ptr = result->next_hash;
|
||||
--elems_;
|
||||
}
|
||||
};
|
||||
return result;
|
||||
}
|
||||
|
||||
// We provide our own simple hash table since it removes a whole bunch
|
||||
// of porting hacks and is also faster than some of the built-in hash
|
||||
// table implementations in some of the compiler/runtime combinations
|
||||
// we have tested. E.g., readrandom speeds up by ~5% over the g++
|
||||
// 4.4.3's builtin hashtable.
|
||||
class HandleTable {
|
||||
public:
|
||||
HandleTable() : length_(0), elems_(0), list_(nullptr) { Resize(); }
|
||||
LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = &list_[hash & (length_ - 1)];
|
||||
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
||||
ptr = &(*ptr)->next_hash;
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ApplyToAllCacheEntries(T func) {
|
||||
for (uint32_t i = 0; i < length_; i++) {
|
||||
LRUHandle* h = list_[i];
|
||||
while (h != nullptr) {
|
||||
auto n = h->next_hash;
|
||||
assert(h->in_cache);
|
||||
func(h);
|
||||
h = n;
|
||||
}
|
||||
void LRUHandleTable::Resize() {
|
||||
uint32_t new_length = 16;
|
||||
while (new_length < elems_ * 1.5) {
|
||||
new_length *= 2;
|
||||
}
|
||||
LRUHandle** new_list = new LRUHandle*[new_length];
|
||||
memset(new_list, 0, sizeof(new_list[0]) * new_length);
|
||||
uint32_t count = 0;
|
||||
for (uint32_t i = 0; i < length_; i++) {
|
||||
LRUHandle* h = list_[i];
|
||||
while (h != nullptr) {
|
||||
LRUHandle* next = h->next_hash;
|
||||
uint32_t hash = h->hash;
|
||||
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
|
||||
h->next_hash = *ptr;
|
||||
*ptr = h;
|
||||
h = next;
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
~HandleTable() {
|
||||
ApplyToAllCacheEntries([](LRUHandle* h) {
|
||||
if (h->refs == 1) {
|
||||
h->Free();
|
||||
}
|
||||
});
|
||||
delete[] list_;
|
||||
}
|
||||
|
||||
LRUHandle* Lookup(const Slice& key, uint32_t hash) {
|
||||
return *FindPointer(key, hash);
|
||||
}
|
||||
|
||||
LRUHandle* Insert(LRUHandle* h) {
|
||||
LRUHandle** ptr = FindPointer(h->key(), h->hash);
|
||||
LRUHandle* old = *ptr;
|
||||
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
|
||||
*ptr = h;
|
||||
if (old == nullptr) {
|
||||
++elems_;
|
||||
if (elems_ > length_) {
|
||||
// Since each cache entry is fairly large, we aim for a small
|
||||
// average linked list length (<= 1).
|
||||
Resize();
|
||||
}
|
||||
}
|
||||
return old;
|
||||
}
|
||||
|
||||
LRUHandle* Remove(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = FindPointer(key, hash);
|
||||
LRUHandle* result = *ptr;
|
||||
if (result != nullptr) {
|
||||
*ptr = result->next_hash;
|
||||
--elems_;
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
// The table consists of an array of buckets where each bucket is
|
||||
// a linked list of cache entries that hash into the bucket.
|
||||
uint32_t length_;
|
||||
uint32_t elems_;
|
||||
LRUHandle** list_;
|
||||
|
||||
// Return a pointer to slot that points to a cache entry that
|
||||
// matches key/hash. If there is no such cache entry, return a
|
||||
// pointer to the trailing slot in the corresponding linked list.
|
||||
LRUHandle** FindPointer(const Slice& key, uint32_t hash) {
|
||||
LRUHandle** ptr = &list_[hash & (length_ - 1)];
|
||||
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
|
||||
ptr = &(*ptr)->next_hash;
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void Resize() {
|
||||
uint32_t new_length = 16;
|
||||
while (new_length < elems_ * 1.5) {
|
||||
new_length *= 2;
|
||||
}
|
||||
LRUHandle** new_list = new LRUHandle*[new_length];
|
||||
memset(new_list, 0, sizeof(new_list[0]) * new_length);
|
||||
uint32_t count = 0;
|
||||
for (uint32_t i = 0; i < length_; i++) {
|
||||
LRUHandle* h = list_[i];
|
||||
while (h != nullptr) {
|
||||
LRUHandle* next = h->next_hash;
|
||||
uint32_t hash = h->hash;
|
||||
LRUHandle** ptr = &new_list[hash & (new_length - 1)];
|
||||
h->next_hash = *ptr;
|
||||
*ptr = h;
|
||||
h = next;
|
||||
count++;
|
||||
}
|
||||
}
|
||||
assert(elems_ == count);
|
||||
delete[] list_;
|
||||
list_ = new_list;
|
||||
length_ = new_length;
|
||||
}
|
||||
};
|
||||
|
||||
// A single shard of sharded cache.
|
||||
class LRUCacheShard : public CacheShard {
|
||||
public:
|
||||
LRUCacheShard();
|
||||
virtual ~LRUCacheShard();
|
||||
|
||||
// Separate from constructor so caller can easily make an array of LRUCache
|
||||
// if current usage is more than new capacity, the function will attempt to
|
||||
// free the needed space
|
||||
virtual void SetCapacity(size_t capacity) override;
|
||||
|
||||
// Set the flag to reject insertion if cache if full.
|
||||
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) override;
|
||||
|
||||
// Like Cache methods, but with an extra "hash" parameter.
|
||||
virtual Status Insert(const Slice& key, uint32_t hash, void* value,
|
||||
size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value),
|
||||
Cache::Handle** handle) override;
|
||||
virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash) override;
|
||||
virtual void Release(Cache::Handle* handle) override;
|
||||
virtual void Erase(const Slice& key, uint32_t hash) override;
|
||||
|
||||
// Although in some platforms the update of size_t is atomic, to make sure
|
||||
// GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
|
||||
// protect them with mutex_.
|
||||
|
||||
virtual size_t GetUsage() const override {
|
||||
MutexLock l(&mutex_);
|
||||
return usage_;
|
||||
}
|
||||
|
||||
virtual size_t GetPinnedUsage() const override {
|
||||
MutexLock l(&mutex_);
|
||||
assert(usage_ >= lru_usage_);
|
||||
return usage_ - lru_usage_;
|
||||
}
|
||||
|
||||
virtual void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
|
||||
bool thread_safe) override;
|
||||
|
||||
virtual void EraseUnRefEntries() override;
|
||||
|
||||
private:
|
||||
void LRU_Remove(LRUHandle* e);
|
||||
void LRU_Append(LRUHandle* e);
|
||||
// Just reduce the reference count by 1.
|
||||
// Return true if last reference
|
||||
bool Unref(LRUHandle* e);
|
||||
|
||||
// Free some space following strict LRU policy until enough space
|
||||
// to hold (usage_ + charge) is freed or the lru list is empty
|
||||
// This function is not thread safe - it needs to be executed while
|
||||
// holding the mutex_
|
||||
void EvictFromLRU(size_t charge, autovector<LRUHandle*>* deleted);
|
||||
|
||||
// Initialized before use.
|
||||
size_t capacity_;
|
||||
|
||||
// Memory size for entries residing in the cache
|
||||
size_t usage_;
|
||||
|
||||
// Memory size for entries residing only in the LRU list
|
||||
size_t lru_usage_;
|
||||
|
||||
// Whether to reject insertion if cache reaches its full capacity.
|
||||
bool strict_capacity_limit_;
|
||||
|
||||
// mutex_ protects the following state.
|
||||
// We don't count mutex_ as the cache's internal state so semantically we
|
||||
// don't mind mutex_ invoking the non-const actions.
|
||||
mutable port::Mutex mutex_;
|
||||
|
||||
// Dummy head of LRU list.
|
||||
// lru.prev is newest entry, lru.next is oldest entry.
|
||||
// LRU contains items which can be evicted, ie reference only by cache
|
||||
LRUHandle lru_;
|
||||
|
||||
HandleTable table_;
|
||||
};
|
||||
assert(elems_ == count);
|
||||
delete[] list_;
|
||||
list_ = new_list;
|
||||
length_ = new_length;
|
||||
}
|
||||
|
||||
LRUCacheShard::LRUCacheShard() : usage_(0), lru_usage_(0) {
|
||||
// Make empty circular linked list
|
||||
@ -516,6 +347,17 @@ void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
|
||||
}
|
||||
}
|
||||
|
||||
size_t LRUCacheShard::GetUsage() const {
|
||||
MutexLock l(&mutex_);
|
||||
return usage_;
|
||||
}
|
||||
|
||||
size_t LRUCacheShard::GetPinnedUsage() const {
|
||||
MutexLock l(&mutex_);
|
||||
assert(usage_ >= lru_usage_);
|
||||
return usage_ - lru_usage_;
|
||||
}
|
||||
|
||||
class LRUCache : public ShardedCache {
|
||||
public:
|
||||
LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit)
|
||||
@ -555,8 +397,6 @@ class LRUCache : public ShardedCache {
|
||||
LRUCacheShard* shards_;
|
||||
};
|
||||
|
||||
} // end anonymous namespace
|
||||
|
||||
std::shared_ptr<Cache> NewLRUCache(size_t capacity, int num_shard_bits,
|
||||
bool strict_capacity_limit) {
|
||||
if (num_shard_bits >= 20) {
|
||||
|
190
util/lru_cache.h
Normal file
190
util/lru_cache.h
Normal file
@ -0,0 +1,190 @@
|
||||
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
||||
// This source code is licensed under the BSD-style license found in the
|
||||
// LICENSE file in the root directory of this source tree. An additional grant
|
||||
// of patent rights can be found in the PATENTS file in the same directory.
|
||||
//
|
||||
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
||||
// Use of this source code is governed by a BSD-style license that can be
|
||||
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
||||
#pragma once
|
||||
|
||||
#include "util/sharded_cache.h"
|
||||
|
||||
#include "port/port.h"
|
||||
#include "util/autovector.h"
|
||||
|
||||
namespace rocksdb {
|
||||
|
||||
// LRU cache implementation
|
||||
|
||||
// An entry is a variable length heap-allocated structure.
|
||||
// Entries are referenced by cache and/or by any external entity.
|
||||
// The cache keeps all its entries in table. Some elements
|
||||
// are also stored on LRU list.
|
||||
//
|
||||
// LRUHandle can be in these states:
|
||||
// 1. Referenced externally AND in hash table.
|
||||
// In that case the entry is *not* in the LRU. (refs > 1 && in_cache == true)
|
||||
// 2. Not referenced externally and in hash table. In that case the entry is
|
||||
// in the LRU and can be freed. (refs == 1 && in_cache == true)
|
||||
// 3. Referenced externally and not in hash table. In that case the entry is
|
||||
// in not on LRU and not in table. (refs >= 1 && in_cache == false)
|
||||
//
|
||||
// All newly created LRUHandles are in state 1. If you call
|
||||
// LRUCacheShard::Release
|
||||
// on entry in state 1, it will go into state 2. To move from state 1 to
|
||||
// state 3, either call LRUCacheShard::Erase or LRUCacheShard::Insert with the
|
||||
// same key.
|
||||
// To move from state 2 to state 1, use LRUCacheShard::Lookup.
|
||||
// Before destruction, make sure that no handles are in state 1. This means
|
||||
// that any successful LRUCacheShard::Lookup/LRUCacheShard::Insert have a
|
||||
// matching
|
||||
// RUCache::Release (to move into state 2) or LRUCacheShard::Erase (for state 3)
|
||||
|
||||
struct LRUHandle {
|
||||
void* value;
|
||||
void (*deleter)(const Slice&, void* value);
|
||||
LRUHandle* next_hash;
|
||||
LRUHandle* next;
|
||||
LRUHandle* prev;
|
||||
size_t charge; // TODO(opt): Only allow uint32_t?
|
||||
size_t key_length;
|
||||
uint32_t refs; // a number of refs to this entry
|
||||
// cache itself is counted as 1
|
||||
bool in_cache; // true, if this entry is referenced by the hash table
|
||||
uint32_t hash; // Hash of key(); used for fast sharding and comparisons
|
||||
char key_data[1]; // Beginning of key
|
||||
|
||||
Slice key() const {
|
||||
// For cheaper lookups, we allow a temporary Handle object
|
||||
// to store a pointer to a key in "value".
|
||||
if (next == this) {
|
||||
return *(reinterpret_cast<Slice*>(value));
|
||||
} else {
|
||||
return Slice(key_data, key_length);
|
||||
}
|
||||
}
|
||||
|
||||
void Free() {
|
||||
assert((refs == 1 && in_cache) || (refs == 0 && !in_cache));
|
||||
(*deleter)(key(), value);
|
||||
delete[] reinterpret_cast<char*>(this);
|
||||
}
|
||||
};
|
||||
|
||||
// We provide our own simple hash table since it removes a whole bunch
|
||||
// of porting hacks and is also faster than some of the built-in hash
|
||||
// table implementations in some of the compiler/runtime combinations
|
||||
// we have tested. E.g., readrandom speeds up by ~5% over the g++
|
||||
// 4.4.3's builtin hashtable.
|
||||
class LRUHandleTable {
|
||||
public:
|
||||
LRUHandleTable();
|
||||
~LRUHandleTable();
|
||||
|
||||
LRUHandle* Lookup(const Slice& key, uint32_t hash);
|
||||
LRUHandle* Insert(LRUHandle* h);
|
||||
LRUHandle* Remove(const Slice& key, uint32_t hash);
|
||||
|
||||
template <typename T>
|
||||
void ApplyToAllCacheEntries(T func) {
|
||||
for (uint32_t i = 0; i < length_; i++) {
|
||||
LRUHandle* h = list_[i];
|
||||
while (h != nullptr) {
|
||||
auto n = h->next_hash;
|
||||
assert(h->in_cache);
|
||||
func(h);
|
||||
h = n;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
// Return a pointer to slot that points to a cache entry that
|
||||
// matches key/hash. If there is no such cache entry, return a
|
||||
// pointer to the trailing slot in the corresponding linked list.
|
||||
LRUHandle** FindPointer(const Slice& key, uint32_t hash);
|
||||
|
||||
void Resize();
|
||||
|
||||
// The table consists of an array of buckets where each bucket is
|
||||
// a linked list of cache entries that hash into the bucket.
|
||||
uint32_t length_;
|
||||
uint32_t elems_;
|
||||
LRUHandle** list_;
|
||||
};
|
||||
|
||||
// A single shard of sharded cache.
|
||||
class LRUCacheShard : public CacheShard {
|
||||
public:
|
||||
LRUCacheShard();
|
||||
virtual ~LRUCacheShard();
|
||||
|
||||
// Separate from constructor so caller can easily make an array of LRUCache
|
||||
// if current usage is more than new capacity, the function will attempt to
|
||||
// free the needed space
|
||||
virtual void SetCapacity(size_t capacity) override;
|
||||
|
||||
// Set the flag to reject insertion if cache if full.
|
||||
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) override;
|
||||
|
||||
// Like Cache methods, but with an extra "hash" parameter.
|
||||
virtual Status Insert(const Slice& key, uint32_t hash, void* value,
|
||||
size_t charge,
|
||||
void (*deleter)(const Slice& key, void* value),
|
||||
Cache::Handle** handle) override;
|
||||
virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash) override;
|
||||
virtual void Release(Cache::Handle* handle) override;
|
||||
virtual void Erase(const Slice& key, uint32_t hash) override;
|
||||
|
||||
// Although in some platforms the update of size_t is atomic, to make sure
|
||||
// GetUsage() and GetPinnedUsage() work correctly under any platform, we'll
|
||||
// protect them with mutex_.
|
||||
|
||||
virtual size_t GetUsage() const override;
|
||||
virtual size_t GetPinnedUsage() const override;
|
||||
|
||||
virtual void ApplyToAllCacheEntries(void (*callback)(void*, size_t),
|
||||
bool thread_safe) override;
|
||||
|
||||
virtual void EraseUnRefEntries() override;
|
||||
|
||||
private:
|
||||
void LRU_Remove(LRUHandle* e);
|
||||
void LRU_Append(LRUHandle* e);
|
||||
// Just reduce the reference count by 1.
|
||||
// Return true if last reference
|
||||
bool Unref(LRUHandle* e);
|
||||
|
||||
// Free some space following strict LRU policy until enough space
|
||||
// to hold (usage_ + charge) is freed or the lru list is empty
|
||||
// This function is not thread safe - it needs to be executed while
|
||||
// holding the mutex_
|
||||
void EvictFromLRU(size_t charge, autovector<LRUHandle*>* deleted);
|
||||
|
||||
// Initialized before use.
|
||||
size_t capacity_;
|
||||
|
||||
// Memory size for entries residing in the cache
|
||||
size_t usage_;
|
||||
|
||||
// Memory size for entries residing only in the LRU list
|
||||
size_t lru_usage_;
|
||||
|
||||
// Whether to reject insertion if cache reaches its full capacity.
|
||||
bool strict_capacity_limit_;
|
||||
|
||||
// mutex_ protects the following state.
|
||||
// We don't count mutex_ as the cache's internal state so semantically we
|
||||
// don't mind mutex_ invoking the non-const actions.
|
||||
mutable port::Mutex mutex_;
|
||||
|
||||
// Dummy head of LRU list.
|
||||
// lru.prev is newest entry, lru.next is oldest entry.
|
||||
// LRU contains items which can be evicted, ie reference only by cache
|
||||
LRUHandle lru_;
|
||||
|
||||
LRUHandleTable table_;
|
||||
};
|
||||
|
||||
} // namespace rocksdb
|
Loading…
Reference in New Issue
Block a user