Fix some implicit conversions in filter_bench (#5894)

Summary:
Fixed some spots where converting size_t or uint_fast32_t to
uint32_t. Wrapped mt19937 in a new Random32 class to avoid future
such traps.

NB: I tried using Random32::Uniform (std::uniform_int_distribution) in
filter_bench instead of fastrange, but that more than doubled the dry
run time! So I added fastrange as Random32::Uniformish. ;)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5894

Test Plan: USE_CLANG=1 build, and manual re-run filter_bench

Differential Revision: D17825131

Pulled By: pdillinger

fbshipit-source-id: 68feee333b5f8193c084ded760e3d6679b405ecd
This commit is contained in:
Peter Dillinger 2019-10-08 19:19:43 -07:00 committed by Facebook Github Bot
parent 167cdc9f17
commit 90e285efde
2 changed files with 71 additions and 25 deletions

View File

@ -13,7 +13,6 @@ int main() {
#include <cinttypes> #include <cinttypes>
#include <iostream> #include <iostream>
#include <random>
#include <vector> #include <vector>
#include "port/port.h" #include "port/port.h"
@ -23,13 +22,14 @@ int main() {
#include "table/block_based/mock_block_based_table.h" #include "table/block_based/mock_block_based_table.h"
#include "util/gflags_compat.h" #include "util/gflags_compat.h"
#include "util/hash.h" #include "util/hash.h"
#include "util/random.h"
#include "util/stop_watch.h" #include "util/stop_watch.h"
using GFLAGS_NAMESPACE::ParseCommandLineFlags; using GFLAGS_NAMESPACE::ParseCommandLineFlags;
using GFLAGS_NAMESPACE::RegisterFlagValidator; using GFLAGS_NAMESPACE::RegisterFlagValidator;
using GFLAGS_NAMESPACE::SetUsageMessage; using GFLAGS_NAMESPACE::SetUsageMessage;
DEFINE_int64(seed, 0, "Seed for random number generators"); DEFINE_uint32(seed, 0, "Seed for random number generators");
DEFINE_double(working_mem_size_mb, 200, DEFINE_double(working_mem_size_mb, 200,
"MB of memory to get up to among all filters"); "MB of memory to get up to among all filters");
@ -70,6 +70,7 @@ using rocksdb::fastrange32;
using rocksdb::FilterBitsBuilder; using rocksdb::FilterBitsBuilder;
using rocksdb::FilterBitsReader; using rocksdb::FilterBitsReader;
using rocksdb::FullFilterBlockReader; using rocksdb::FullFilterBlockReader;
using rocksdb::Random32;
using rocksdb::Slice; using rocksdb::Slice;
using rocksdb::mock::MockBlockBasedTableTester; using rocksdb::mock::MockBlockBasedTableTester;
@ -154,7 +155,7 @@ const char *TestModeToString(TestMode tm) {
struct FilterBench : public MockBlockBasedTableTester { struct FilterBench : public MockBlockBasedTableTester {
std::vector<KeyMaker> kms_; std::vector<KeyMaker> kms_;
std::vector<FilterInfo> infos_; std::vector<FilterInfo> infos_;
std::mt19937 random_; Random32 random_;
FilterBench() FilterBench()
: MockBlockBasedTableTester( : MockBlockBasedTableTester(
@ -193,9 +194,10 @@ void FilterBench::Go() {
rocksdb::StopWatchNano timer(rocksdb::Env::Default(), true); rocksdb::StopWatchNano timer(rocksdb::Env::Default(), true);
while (total_memory_used < 1024 * 1024 * FLAGS_working_mem_size_mb) { while (total_memory_used < 1024 * 1024 * FLAGS_working_mem_size_mb) {
uint32_t filter_id = random_(); uint32_t filter_id = random_.Next();
uint32_t keys_to_add = FLAGS_average_keys_per_filter + uint32_t keys_to_add = FLAGS_average_keys_per_filter +
(random_() & variance_mask) - (variance_mask / 2); (random_.Next() & variance_mask) -
(variance_mask / 2);
for (uint32_t i = 0; i < keys_to_add; ++i) { for (uint32_t i = 0; i < keys_to_add; ++i) {
builder->AddKey(kms_[0].Get(filter_id, i)); builder->AddKey(kms_[0].Get(filter_id, i));
} }
@ -256,19 +258,19 @@ void FilterBench::Go() {
std::cout << "----------------------------" << std::endl; std::cout << "----------------------------" << std::endl;
std::cout << "Inside queries..." << std::endl; std::cout << "Inside queries..." << std::endl;
random_.seed(FLAGS_seed + 1); random_.Seed(FLAGS_seed + 1);
RandomQueryTest(/*inside*/ true, /*dry_run*/ true, kRandomFilter); RandomQueryTest(/*inside*/ true, /*dry_run*/ true, kRandomFilter);
for (TestMode tm : testModes) { for (TestMode tm : testModes) {
random_.seed(FLAGS_seed + 1); random_.Seed(FLAGS_seed + 1);
RandomQueryTest(/*inside*/ true, /*dry_run*/ false, tm); RandomQueryTest(/*inside*/ true, /*dry_run*/ false, tm);
} }
std::cout << "----------------------------" << std::endl; std::cout << "----------------------------" << std::endl;
std::cout << "Outside queries..." << std::endl; std::cout << "Outside queries..." << std::endl;
random_.seed(FLAGS_seed + 2); random_.Seed(FLAGS_seed + 2);
RandomQueryTest(/*inside*/ false, /*dry_run*/ true, kRandomFilter); RandomQueryTest(/*inside*/ false, /*dry_run*/ true, kRandomFilter);
for (TestMode tm : testModes) { for (TestMode tm : testModes) {
random_.seed(FLAGS_seed + 2); random_.Seed(FLAGS_seed + 2);
RandomQueryTest(/*inside*/ false, /*dry_run*/ false, tm); RandomQueryTest(/*inside*/ false, /*dry_run*/ false, tm);
} }
@ -282,13 +284,14 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
info.false_positives_ = 0; info.false_positives_ = 0;
} }
uint32_t num_infos = static_cast<uint32_t>(infos_.size());
uint32_t dry_run_hash = 0; uint32_t dry_run_hash = 0;
uint64_t max_queries = uint64_t max_queries =
static_cast<uint64_t>(FLAGS_m_queries * 1000000 + 0.50); static_cast<uint64_t>(FLAGS_m_queries * 1000000 + 0.50);
// Some filters may be considered secondary in order to implement skewed // Some filters may be considered secondary in order to implement skewed
// queries. num_primary_filters is the number that are to be treated as // queries. num_primary_filters is the number that are to be treated as
// equal, and any remainder will be treated as secondary. // equal, and any remainder will be treated as secondary.
size_t num_primary_filters = infos_.size(); uint32_t num_primary_filters = num_infos;
// The proportion (when divided by 2^32 - 1) of filter queries going to // The proportion (when divided by 2^32 - 1) of filter queries going to
// the primary filters (default = all). The remainder of queries are // the primary filters (default = all). The remainder of queries are
// against secondary filters. // against secondary filters.
@ -307,14 +310,14 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
// to 20% of filters // to 20% of filters
num_primary_filters = (num_primary_filters + 4) / 5; num_primary_filters = (num_primary_filters + 4) / 5;
} }
size_t batch_size = 1; uint32_t batch_size = 1;
std::unique_ptr<Slice *[]> batch_slices; std::unique_ptr<Slice *[]> batch_slices;
std::unique_ptr<bool[]> batch_results; std::unique_ptr<bool[]> batch_results;
if (mode == kBatchPrepared || mode == kBatchUnprepared) { if (mode == kBatchPrepared || mode == kBatchUnprepared) {
batch_size = kms_.size(); batch_size = static_cast<uint32_t>(kms_.size());
batch_slices.reset(new Slice *[batch_size]); batch_slices.reset(new Slice *[batch_size]);
batch_results.reset(new bool[batch_size]); batch_results.reset(new bool[batch_size]);
for (size_t i = 0; i < batch_size; ++i) { for (uint32_t i = 0; i < batch_size; ++i) {
batch_slices[i] = &kms_[i].slice_; batch_slices[i] = &kms_[i].slice_;
batch_results[i] = false; batch_results[i] = false;
} }
@ -324,31 +327,30 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
for (uint64_t q = 0; q < max_queries; q += batch_size) { for (uint64_t q = 0; q < max_queries; q += batch_size) {
uint32_t filter_index; uint32_t filter_index;
if (random_() <= primary_filter_threshold) { if (random_.Next() <= primary_filter_threshold) {
filter_index = fastrange32(num_primary_filters, random_()); filter_index = random_.Uniformish(num_primary_filters);
} else { } else {
// secondary // secondary
filter_index = filter_index = num_primary_filters +
num_primary_filters + random_.Uniformish(num_infos - num_primary_filters);
fastrange32(infos_.size() - num_primary_filters, random_());
} }
FilterInfo &info = infos_[filter_index]; FilterInfo &info = infos_[filter_index];
for (size_t i = 0; i < batch_size; ++i) { for (uint32_t i = 0; i < batch_size; ++i) {
if (inside) { if (inside) {
kms_[i].Get(info.filter_id_, fastrange32(info.keys_added_, random_())); kms_[i].Get(info.filter_id_, random_.Uniformish(info.keys_added_));
} else { } else {
kms_[i].Get(info.filter_id_, random_() | 0x80000000); kms_[i].Get(info.filter_id_, random_.Next() | uint32_t{0x80000000});
info.outside_queries_++; info.outside_queries_++;
} }
} }
// TODO: implement batched interface to full block reader // TODO: implement batched interface to full block reader
if (mode == kBatchPrepared && !dry_run && !FLAGS_use_full_block_reader) { if (mode == kBatchPrepared && !dry_run && !FLAGS_use_full_block_reader) {
for (size_t i = 0; i < batch_size; ++i) { for (uint32_t i = 0; i < batch_size; ++i) {
batch_results[i] = false; batch_results[i] = false;
} }
info.reader_->MayMatch(batch_size, batch_slices.get(), info.reader_->MayMatch(batch_size, batch_slices.get(),
batch_results.get()); batch_results.get());
for (size_t i = 0; i < batch_size; ++i) { for (uint32_t i = 0; i < batch_size; ++i) {
if (inside) { if (inside) {
ALWAYS_ASSERT(batch_results[i]); ALWAYS_ASSERT(batch_results[i]);
} else { } else {
@ -356,7 +358,7 @@ void FilterBench::RandomQueryTest(bool inside, bool dry_run, TestMode mode) {
} }
} }
} else { } else {
for (size_t i = 0; i < batch_size; ++i) { for (uint32_t i = 0; i < batch_size; ++i) {
if (dry_run) { if (dry_run) {
dry_run_hash ^= rocksdb::BloomHash(kms_[i].slice_); dry_run_hash ^= rocksdb::BloomHash(kms_[i].slice_);
} else { } else {

View File

@ -77,7 +77,51 @@ class Random {
static Random* GetTLSInstance(); static Random* GetTLSInstance();
}; };
// A simple 64bit random number generator based on std::mt19937_64 // A good 32-bit random number generator based on std::mt19937.
// This exists in part to avoid compiler variance in warning about coercing
// uint_fast32_t from mt19937 to uint32_t.
class Random32 {
private:
std::mt19937 generator_;
public:
explicit Random32(uint32_t s) : generator_(s) {}
// Generates the next random number
uint32_t Next() { return static_cast<uint32_t>(generator_()); }
// Returns a uniformly distributed value in the range [0..n-1]
// REQUIRES: n > 0
uint32_t Uniform(uint32_t n) {
return static_cast<uint32_t>(
std::uniform_int_distribution<std::mt19937::result_type>(
0, n - 1)(generator_));
}
// Returns an *almost* uniformly distributed value in the range [0..n-1].
// Much faster than Uniform().
// REQUIRES: n > 0
uint32_t Uniformish(uint32_t n) {
// fastrange (without the header)
return static_cast<uint32_t>((uint64_t(generator_()) * uint64_t(n)) >> 32);
}
// Randomly returns true ~"1/n" of the time, and false otherwise.
// REQUIRES: n > 0
bool OneIn(uint32_t n) { return Uniform(n) == 0; }
// Skewed: pick "base" uniformly from range [0,max_log] and then
// return "base" random bits. The effect is to pick a number in the
// range [0,2^max_log-1] with exponential bias towards smaller numbers.
uint32_t Skewed(int max_log) {
return Uniform(uint32_t{1} << Uniform(max_log + 1));
}
// Reset the seed of the generator to the given value
void Seed(uint32_t new_seed) { generator_.seed(new_seed); }
};
// A good 64-bit random number generator based on std::mt19937_64
class Random64 { class Random64 {
private: private:
std::mt19937_64 generator_; std::mt19937_64 generator_;