Block cache analyzer: python script to plot graphs (#5673)
Summary: This PR updated the python script to plot graphs for stats output from block cache analyzer. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5673 Test Plan: Manually run the script to generate graphs. Differential Revision: D16657145 Pulled By: HaoyuHuang fbshipit-source-id: fd510b5fd4307835f9a986fac545734dbe003d28
This commit is contained in:
parent
b1a02ffeab
commit
f4a616ebf9
@ -1,12 +1,17 @@
|
||||
#!/usr/bin/env python3
|
||||
import csv
|
||||
import math
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
|
||||
import matplotlib
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.backends.backend_pdf
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import seaborn as sns
|
||||
|
||||
|
||||
# Make sure a legend has the same color across all generated graphs.
|
||||
@ -19,7 +24,7 @@ def get_cmap(n, name="hsv"):
|
||||
color_index = 0
|
||||
bar_color_maps = {}
|
||||
colors = []
|
||||
n_colors = 60
|
||||
n_colors = 360
|
||||
linear_colors = get_cmap(n_colors)
|
||||
for i in range(n_colors):
|
||||
colors.append(linear_colors(i))
|
||||
@ -35,19 +40,20 @@ def num_to_gb(n):
|
||||
return "{0:.2f}".format(float(n) / one_gb)
|
||||
|
||||
|
||||
def plot_miss_ratio_graphs(csv_result_dir, output_result_dir):
|
||||
mrc_file_path = csv_result_dir + "/mrc"
|
||||
if not os.path.exists(mrc_file_path):
|
||||
return
|
||||
def plot_miss_stats_graphs(
|
||||
csv_result_dir, output_result_dir, file_prefix, file_suffix, ylabel, pdf_file_name
|
||||
):
|
||||
miss_ratios = {}
|
||||
print("Processing file {}".format(mrc_file_path))
|
||||
for file in os.listdir(csv_result_dir):
|
||||
if not file.startswith(file_prefix):
|
||||
continue
|
||||
if not file.endswith(file_suffix):
|
||||
continue
|
||||
print("Processing file {}/{}".format(csv_result_dir, file))
|
||||
mrc_file_path = csv_result_dir + "/" + file
|
||||
with open(mrc_file_path, "r") as csvfile:
|
||||
rows = csv.reader(csvfile, delimiter=",")
|
||||
is_header = False
|
||||
for row in rows:
|
||||
if not is_header:
|
||||
is_header = True
|
||||
continue
|
||||
cache_name = row[0]
|
||||
num_shard_bits = int(row[1])
|
||||
ghost_capacity = int(row[2])
|
||||
@ -58,18 +64,71 @@ def plot_miss_ratio_graphs(csv_result_dir, output_result_dir):
|
||||
miss_ratios[config] = {}
|
||||
miss_ratios[config]["x"] = []
|
||||
miss_ratios[config]["y"] = []
|
||||
miss_ratios[config]["x"].append(num_to_gb(capacity))
|
||||
miss_ratios[config]["x"].append(capacity)
|
||||
miss_ratios[config]["y"].append(miss_ratio)
|
||||
fig = plt.figure()
|
||||
for config in miss_ratios:
|
||||
plt.plot(miss_ratios[config]["x"], miss_ratios[config]["y"], label=config)
|
||||
plt.xlabel("Cache capacity (GB)")
|
||||
plt.ylabel("Miss Ratio (%)")
|
||||
# plt.xscale('log', basex=2)
|
||||
plt.plot(
|
||||
miss_ratios[config]["x"], miss_ratios[config]["y"], label=config
|
||||
)
|
||||
plt.xlabel("Cache capacity")
|
||||
plt.ylabel(ylabel)
|
||||
plt.xscale("log", basex=2)
|
||||
plt.ylim(ymin=0)
|
||||
plt.title("RocksDB block cache miss ratios")
|
||||
plt.title("{}".format(file))
|
||||
plt.legend()
|
||||
fig.savefig(output_result_dir + "/mrc.pdf", bbox_inches="tight")
|
||||
fig.savefig(
|
||||
output_result_dir + "/{}.pdf".format(pdf_file_name), bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def plot_miss_stats_diff_lru_graphs(
|
||||
csv_result_dir, output_result_dir, file_prefix, file_suffix, ylabel, pdf_file_name
|
||||
):
|
||||
miss_ratios = {}
|
||||
for file in os.listdir(csv_result_dir):
|
||||
if not file.startswith(file_prefix):
|
||||
continue
|
||||
if not file.endswith(file_suffix):
|
||||
continue
|
||||
print("Processing file {}/{}".format(csv_result_dir, file))
|
||||
mrc_file_path = csv_result_dir + "/" + file
|
||||
with open(mrc_file_path, "r") as csvfile:
|
||||
rows = csv.reader(csvfile, delimiter=",")
|
||||
for row in rows:
|
||||
cache_name = row[0]
|
||||
num_shard_bits = int(row[1])
|
||||
ghost_capacity = int(row[2])
|
||||
capacity = int(row[3])
|
||||
miss_ratio = float(row[4])
|
||||
config = "{}-{}-{}".format(cache_name, num_shard_bits, ghost_capacity)
|
||||
if config not in miss_ratios:
|
||||
miss_ratios[config] = {}
|
||||
miss_ratios[config]["x"] = []
|
||||
miss_ratios[config]["y"] = []
|
||||
miss_ratios[config]["x"].append(capacity)
|
||||
miss_ratios[config]["y"].append(miss_ratio)
|
||||
if "lru-0-0" not in miss_ratios:
|
||||
return
|
||||
fig = plt.figure()
|
||||
for config in miss_ratios:
|
||||
diffs = [0] * len(miss_ratios["lru-0-0"]["x"])
|
||||
for i in range(len(miss_ratios["lru-0-0"]["x"])):
|
||||
for j in range(len(miss_ratios[config]["x"])):
|
||||
if miss_ratios["lru-0-0"]["x"][i] == miss_ratios[config]["x"][j]:
|
||||
diffs[i] = (
|
||||
miss_ratios[config]["y"][j] - miss_ratios["lru-0-0"]["y"][i]
|
||||
)
|
||||
break
|
||||
plt.plot(miss_ratios["lru-0-0"]["x"], diffs, label=config)
|
||||
plt.xlabel("Cache capacity")
|
||||
plt.ylabel(ylabel)
|
||||
plt.xscale("log", basex=2)
|
||||
plt.title("{}".format(file))
|
||||
plt.legend()
|
||||
fig.savefig(
|
||||
output_result_dir + "/{}.pdf".format(pdf_file_name), bbox_inches="tight"
|
||||
)
|
||||
|
||||
|
||||
def sanitize(label):
|
||||
@ -143,6 +202,7 @@ def read_data_for_plot(csvfile, vertical):
|
||||
def plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix,
|
||||
filename_suffix,
|
||||
pdf_name,
|
||||
xlabel,
|
||||
@ -151,11 +211,14 @@ def plot_line_charts(
|
||||
vertical,
|
||||
legend,
|
||||
):
|
||||
global color_index, bar_color_maps, colors
|
||||
pdf = matplotlib.backends.backend_pdf.PdfPages(output_result_dir + "/" + pdf_name)
|
||||
for file in os.listdir(csv_result_dir):
|
||||
if not file.endswith(filename_suffix):
|
||||
continue
|
||||
print("Processing file {}".format(file))
|
||||
if not file.startswith(filename_prefix):
|
||||
continue
|
||||
print("Processing file {}/{}".format(csv_result_dir, file))
|
||||
with open(csv_result_dir + "/" + file, "r") as csvfile:
|
||||
x, labels, label_stats = read_data_for_plot(csvfile, vertical)
|
||||
if len(x) == 0 or len(labels) == 0:
|
||||
@ -163,10 +226,15 @@ def plot_line_charts(
|
||||
# plot figure
|
||||
fig = plt.figure()
|
||||
for label_index in label_stats:
|
||||
# Assign a unique color to this label.
|
||||
if labels[label_index] not in bar_color_maps:
|
||||
bar_color_maps[labels[label_index]] = colors[color_index]
|
||||
color_index += 1
|
||||
plt.plot(
|
||||
[int(x[i]) for i in range(len(x))],
|
||||
label_stats[label_index],
|
||||
[int(x[i]) for i in range(len(x) - 1)],
|
||||
label_stats[label_index][:-1],
|
||||
label=labels[label_index],
|
||||
color=bar_color_maps[labels[label_index]],
|
||||
)
|
||||
|
||||
# Translate time unit into x labels.
|
||||
@ -239,10 +307,29 @@ def plot_stacked_bar_charts(
|
||||
pdf.close()
|
||||
|
||||
|
||||
def plot_access_timeline(csv_result_dir, output_result_dir):
|
||||
def plot_heatmap(csv_result_dir, output_result_dir, filename_suffix, pdf_name, title):
|
||||
pdf = matplotlib.backends.backend_pdf.PdfPages(
|
||||
"{}/{}".format(output_result_dir, pdf_name)
|
||||
)
|
||||
for file in os.listdir(csv_result_dir):
|
||||
if not file.endswith(filename_suffix):
|
||||
continue
|
||||
csv_file_name = "{}/{}".format(csv_result_dir, file)
|
||||
print("Processing file {}/{}".format(csv_result_dir, file))
|
||||
corr_table = pd.read_csv(csv_file_name)
|
||||
corr_table = corr_table.pivot("label", "corr", "value")
|
||||
fig = plt.figure()
|
||||
sns.heatmap(corr_table, annot=True, linewidths=0.5, fmt=".2")
|
||||
plt.title("{} filename:{}".format(title, file))
|
||||
pdf.savefig(fig)
|
||||
pdf.close()
|
||||
|
||||
|
||||
def plot_timeline(csv_result_dir, output_result_dir):
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="access_timeline",
|
||||
pdf_name="access_time.pdf",
|
||||
xlabel="Time",
|
||||
@ -253,6 +340,109 @@ def plot_access_timeline(csv_result_dir, output_result_dir):
|
||||
)
|
||||
|
||||
|
||||
def convert_to_0_if_nan(n):
|
||||
if math.isnan(n):
|
||||
return 0.0
|
||||
return n
|
||||
|
||||
|
||||
def plot_correlation(csv_result_dir, output_result_dir):
|
||||
# Processing the correlation input first.
|
||||
label_str_file = {}
|
||||
for file in os.listdir(csv_result_dir):
|
||||
if not file.endswith("correlation_input"):
|
||||
continue
|
||||
csv_file_name = "{}/{}".format(csv_result_dir, file)
|
||||
print("Processing file {}/{}".format(csv_result_dir, file))
|
||||
corr_table = pd.read_csv(csv_file_name)
|
||||
label_str = file.split("_")[0]
|
||||
label = file[len(label_str) + 1 :]
|
||||
label = label[: len(label) - len("_correlation_input")]
|
||||
|
||||
output_file = "{}/{}_correlation_output".format(csv_result_dir, label_str)
|
||||
if output_file not in label_str_file:
|
||||
f = open("{}/{}_correlation_output".format(csv_result_dir, label_str), "w+")
|
||||
label_str_file[output_file] = f
|
||||
f.write("label,corr,value\n")
|
||||
f = label_str_file[output_file]
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"LA+A",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["num_accesses_since_last_access"].corr(
|
||||
corr_table["num_accesses_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"PA+A",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["num_past_accesses"].corr(
|
||||
corr_table["num_accesses_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"LT+A",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["elapsed_time_since_last_access"].corr(
|
||||
corr_table["num_accesses_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"LA+T",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["num_accesses_since_last_access"].corr(
|
||||
corr_table["elapsed_time_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"LT+T",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["elapsed_time_since_last_access"].corr(
|
||||
corr_table["elapsed_time_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
f.write(
|
||||
"{},{},{}\n".format(
|
||||
label,
|
||||
"PA+T",
|
||||
convert_to_0_if_nan(
|
||||
corr_table["num_past_accesses"].corr(
|
||||
corr_table["elapsed_time_till_next_access"], method="spearman"
|
||||
)
|
||||
),
|
||||
)
|
||||
)
|
||||
for label_str in label_str_file:
|
||||
label_str_file[label_str].close()
|
||||
|
||||
plot_heatmap(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
"correlation_output",
|
||||
"correlation.pdf",
|
||||
"Correlation",
|
||||
)
|
||||
|
||||
|
||||
def plot_reuse_graphs(csv_result_dir, output_result_dir):
|
||||
plot_stacked_bar_charts(
|
||||
csv_result_dir,
|
||||
@ -301,6 +491,7 @@ def plot_reuse_graphs(csv_result_dir, output_result_dir):
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="reuse_blocks_timeline",
|
||||
pdf_name="reuse_blocks_timeline.pdf",
|
||||
xlabel="",
|
||||
@ -370,14 +561,90 @@ def plot_access_count_summary(csv_result_dir, output_result_dir):
|
||||
vertical=True,
|
||||
x_prefix="< ",
|
||||
)
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="skewness",
|
||||
pdf_name="skew.pdf",
|
||||
xlabel="",
|
||||
ylabel="Percentage of accesses",
|
||||
title="Skewness",
|
||||
vertical=True,
|
||||
legend=False,
|
||||
)
|
||||
|
||||
|
||||
def plot_miss_ratio_timeline(csv_result_dir, output_result_dir):
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="3600_miss_ratio_timeline",
|
||||
pdf_name="miss_ratio_timeline.pdf",
|
||||
xlabel="Time",
|
||||
ylabel="Miss Ratio (%)",
|
||||
title="Miss ratio timeline",
|
||||
vertical=False,
|
||||
legend=True,
|
||||
)
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="3600_miss_timeline",
|
||||
pdf_name="miss_timeline.pdf",
|
||||
xlabel="Time",
|
||||
ylabel="# of misses ",
|
||||
title="Miss timeline",
|
||||
vertical=False,
|
||||
legend=True,
|
||||
)
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="3600_miss_timeline",
|
||||
pdf_name="miss_timeline.pdf",
|
||||
xlabel="Time",
|
||||
ylabel="# of misses ",
|
||||
title="Miss timeline",
|
||||
vertical=False,
|
||||
legend=True,
|
||||
)
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="3600_policy_timeline",
|
||||
pdf_name="policy_timeline.pdf",
|
||||
xlabel="Time",
|
||||
ylabel="# of times a policy is selected ",
|
||||
title="Policy timeline",
|
||||
vertical=False,
|
||||
legend=True,
|
||||
)
|
||||
plot_line_charts(
|
||||
csv_result_dir,
|
||||
output_result_dir,
|
||||
filename_prefix="",
|
||||
filename_suffix="3600_policy_ratio_timeline",
|
||||
pdf_name="policy_ratio_timeline.pdf",
|
||||
xlabel="Time",
|
||||
ylabel="Percentage of times a policy is selected ",
|
||||
title="Policy timeline",
|
||||
vertical=False,
|
||||
legend=True,
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(sys.argv) < 3:
|
||||
print(
|
||||
"Must provide two arguments: 1) The directory that saves a list of "
|
||||
"directories which contain block cache trace analyzer result files "
|
||||
"2) the directory to save plotted graphs."
|
||||
"Must provide two arguments: \n"
|
||||
"1) The directory that saves a list of "
|
||||
"directories which contain block cache trace analyzer result files. \n"
|
||||
"2) the directory to save plotted graphs. \n"
|
||||
)
|
||||
exit(1)
|
||||
csv_result_dir = sys.argv[1]
|
||||
@ -396,8 +663,59 @@ if __name__ == "__main__":
|
||||
print("Processing experiment dir: {}".format(csv_relative_dir))
|
||||
if not os.path.exists(result_dir):
|
||||
os.makedirs(result_dir)
|
||||
plot_miss_ratio_graphs(csv_abs_dir, result_dir)
|
||||
plot_access_timeline(csv_abs_dir, result_dir)
|
||||
plot_access_count_summary(csv_abs_dir, result_dir)
|
||||
plot_timeline(csv_abs_dir, result_dir)
|
||||
plot_miss_ratio_timeline(csv_result_dir, output_result_dir)
|
||||
plot_correlation(csv_abs_dir, result_dir)
|
||||
plot_reuse_graphs(csv_abs_dir, result_dir)
|
||||
plot_percentage_access_summary(csv_abs_dir, result_dir)
|
||||
plot_access_count_summary(csv_abs_dir, result_dir)
|
||||
plot_miss_stats_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="",
|
||||
file_suffix="mrc",
|
||||
ylabel="Miss ratio (%)",
|
||||
pdf_file_name="mrc",
|
||||
)
|
||||
plot_miss_stats_diff_lru_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="",
|
||||
file_suffix="mrc",
|
||||
ylabel="Miss ratio (%)",
|
||||
pdf_file_name="mrc_diff_lru",
|
||||
)
|
||||
# The following stats are only available in pysim.
|
||||
for time_unit in ["1", "60", "3600"]:
|
||||
plot_miss_stats_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="ml_{}_".format(time_unit),
|
||||
file_suffix="p95mb",
|
||||
ylabel="p95 number of byte miss per {} seconds".format(time_unit),
|
||||
pdf_file_name="p95mb_per{}_seconds".format(time_unit),
|
||||
)
|
||||
plot_miss_stats_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="ml_{}_".format(time_unit),
|
||||
file_suffix="avgmb",
|
||||
ylabel="Average number of byte miss per {} seconds".format(time_unit),
|
||||
pdf_file_name="avgmb_per{}_seconds".format(time_unit),
|
||||
)
|
||||
plot_miss_stats_diff_lru_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="ml_{}_".format(time_unit),
|
||||
file_suffix="p95mb",
|
||||
ylabel="p95 number of byte miss per {} seconds".format(time_unit),
|
||||
pdf_file_name="p95mb_per{}_seconds_diff_lru".format(time_unit),
|
||||
)
|
||||
plot_miss_stats_diff_lru_graphs(
|
||||
csv_abs_dir,
|
||||
result_dir,
|
||||
file_prefix="ml_{}_".format(time_unit),
|
||||
file_suffix="avgmb",
|
||||
ylabel="Average number of byte miss per {} seconds".format(time_unit),
|
||||
pdf_file_name="avgmb_per{}_seconds_diff_lru".format(time_unit),
|
||||
)
|
||||
|
Loading…
Reference in New Issue
Block a user