Summary:
Adds an improved, replacement Bloom filter implementation (FastLocalBloom) for full and partitioned filters in the block-based table. This replacement is faster and more accurate, especially for high bits per key or millions of keys in a single filter.
Speed
The improved speed, at least on recent x86_64, comes from
* Using fastrange instead of modulo (%)
* Using our new hash function (XXH3 preview, added in a previous commit), which is much faster for large keys and only *slightly* slower on keys around 12 bytes if hashing the same size many thousands of times in a row.
* Optimizing the Bloom filter queries with AVX2 SIMD operations. (Added AVX2 to the USE_SSE=1 build.) Careful design was required to support (a) SIMD-optimized queries, (b) compatible non-SIMD code that's simple and efficient, (c) flexible choice of number of probes, and (d) essentially maximized accuracy for a cache-local Bloom filter. Probes are made eight at a time, so any number of probes up to 8 is the same speed, then up to 16, etc.
* Prefetching cache lines when building the filter. Although this optimization could be applied to the old structure as well, it seems to balance out the small added cost of accumulating 64 bit hashes for adding to the filter rather than 32 bit hashes.
Here's nominal speed data from filter_bench (200MB in filters, about 10k keys each, 10 bits filter data / key, 6 probes, avg key size 24 bytes, includes hashing time) on Skylake DE (relatively low clock speed):
$ ./filter_bench -quick -impl=2 -net_includes_hashing # New Bloom filter
Build avg ns/key: 47.7135
Mixed inside/outside queries...
Single filter net ns/op: 26.2825
Random filter net ns/op: 150.459
Average FP rate %: 0.954651
$ ./filter_bench -quick -impl=0 -net_includes_hashing # Old Bloom filter
Build avg ns/key: 47.2245
Mixed inside/outside queries...
Single filter net ns/op: 63.2978
Random filter net ns/op: 188.038
Average FP rate %: 1.13823
Similar build time but dramatically faster query times on hot data (63 ns to 26 ns), and somewhat faster on stale data (188 ns to 150 ns). Performance differences on batched and skewed query loads are between these extremes as expected.
The only other interesting thing about speed is "inside" (query key was added to filter) vs. "outside" (query key was not added to filter) query times. The non-SIMD implementations are substantially slower when most queries are "outside" vs. "inside". This goes against what one might expect or would have observed years ago, as "outside" queries only need about two probes on average, due to short-circuiting, while "inside" always have num_probes (say 6). The problem is probably the nastily unpredictable branch. The SIMD implementation has few branches (very predictable) and has pretty consistent running time regardless of query outcome.
Accuracy
The generally improved accuracy (re: Issue https://github.com/facebook/rocksdb/issues/5857) comes from a better design for probing indices
within a cache line (re: Issue https://github.com/facebook/rocksdb/issues/4120) and improved accuracy for millions of keys in a single filter from using a 64-bit hash function (XXH3p). Design details in code comments.
Accuracy data (generalizes, except old impl gets worse with millions of keys):
Memory bits per key: FP rate percent old impl -> FP rate percent new impl
6: 5.70953 -> 5.69888
8: 2.45766 -> 2.29709
10: 1.13977 -> 0.959254
12: 0.662498 -> 0.411593
16: 0.353023 -> 0.0873754
24: 0.261552 -> 0.0060971
50: 0.225453 -> ~0.00003 (less than 1 in a million queries are FP)
Fixes https://github.com/facebook/rocksdb/issues/5857
Fixes https://github.com/facebook/rocksdb/issues/4120
Unlike the old implementation, this implementation has a fixed cache line size (64 bytes). At 10 bits per key, the accuracy of this new implementation is very close to the old implementation with 128-byte cache line size. If there's sufficient demand, this implementation could be generalized.
Compatibility
Although old releases would see the new structure as corrupt filter data and read the table as if there's no filter, we've decided only to enable the new Bloom filter with new format_version=5. This provides a smooth path for automatic adoption over time, with an option for early opt-in.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6007
Test Plan: filter_bench has been used thoroughly to validate speed, accuracy, and correctness. Unit tests have been carefully updated to exercise new and old implementations, as well as the logic to select an implementation based on context (format_version).
Differential Revision: D18294749
Pulled By: pdillinger
fbshipit-source-id: d44c9db3696e4d0a17caaec47075b7755c262c5f
Summary:
- Updated our included xxhash implementation to version 0.7.2 (== the latest dev version as of 2019-10-09).
- Using XXH_NAMESPACE (like other fb projects) to avoid potential name collisions.
- Added fastrange64, and unit tests for it and fastrange32. These are faster alternatives to hash % range.
- Use preview version of XXH3 instead of MurmurHash64A for NPHash64
-- Had to update cache_test to increase probability of passing for any given hash function.
- Use fastrange64 instead of % with uses of NPHash64
-- Had to fix WritePreparedTransactionTest.CommitOfDelayedPrepared to avoid deadlock apparently caused by new hash collision.
- Set default seed for NPHash64 because specifying a seed rarely makes sense for it.
- Removed unnecessary include xxhash.h in a popular .h file
- Rename preview version of XXH3 to XXH3p for clarity and to ease backward compatibility in case final version of XXH3 is integrated.
Relying on existing unit tests for NPHash64-related changes. Each new implementation of fastrange64 passed unit tests when manipulating my local build to select it. I haven't done any integration performance tests, but I consider the improved performance of the pieces being swapped in to be well established.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5909
Differential Revision: D18125196
Pulled By: pdillinger
fbshipit-source-id: f6bf83d49d20cbb2549926adf454fd035f0ecc0d
Summary:
It's useful to be able to (optionally) associate key-value pairs with user-provided timestamps. This PR is an early effort towards this goal and continues the work of facebook#4942. A suite of new unit tests exist in DBBasicTestWithTimestampWithParam. Support for timestamp requires the user to provide timestamp as a slice in `ReadOptions` and `WriteOptions`. All timestamps of the same database must share the same length, format, etc. The format of the timestamp is the same throughout the same database, and the user is responsible for providing a comparator function (Comparator) to order the <key, timestamp> tuples. Once created, the format and length of the timestamp cannot change (at least for now).
Test plan (on devserver):
```
$COMPILE_WITH_ASAN=1 make -j32 all
$./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/*
$make check
```
All tests must pass.
We also run the following db_bench tests to verify whether there is regression on Get/Put while timestamp is not enabled.
```
$TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000
$TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000
```
Repeat for 6 times for both versions.
Results are as follows:
```
| | readrandom | fillrandom |
| master | 16.77 MB/s | 47.05 MB/s |
| PR5079 | 16.44 MB/s | 47.03 MB/s |
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5079
Differential Revision: D15132946
Pulled By: riversand963
fbshipit-source-id: 833a0d657eac21182f0f206c910a6438154c742c