Summary:
Currently it is not possible to change bloom filter config without restart the db, which is causing a lot of operational complexity for users.
This PR aims to make it possible to dynamically change bloom filter config.
Closes https://github.com/facebook/rocksdb/pull/3601
Differential Revision: D7253114
Pulled By: miasantreble
fbshipit-source-id: f22595437d3e0b86c95918c484502de2ceca120c
Summary:
this PR fixes a few failed contbuild:
1. ASAN memory leak in Block::NewIterator (table/block.cc:429). the proper destruction of first_level_iter_ and second_level_iter_ of two_level_iterator.cc is missing from the code after the refactoring in https://github.com/facebook/rocksdb/pull/3406
2. various unused param errors introduced by https://github.com/facebook/rocksdb/pull/3662
3. updated comment for `ForceReleaseCachedEntry` to emphasize the use of `force_erase` flag.
Closes https://github.com/facebook/rocksdb/pull/3718
Reviewed By: maysamyabandeh
Differential Revision: D7621192
Pulled By: miasantreble
fbshipit-source-id: 476c94264083a0730ded957c29de7807e4f5b146
Summary:
I started adding gflags support for cmake on linux and got frustrated that I'd need to duplicate the build_detect_platform logic, which determines namespace based on attempting compilation. We can do it differently -- use the GFLAGS_NAMESPACE macro if available, and if not, that indicates it's an old gflags version without configurable namespace so we can simply hardcode "google".
Closes https://github.com/facebook/rocksdb/pull/3212
Differential Revision: D6456973
Pulled By: ajkr
fbshipit-source-id: 3e6d5bde3ca00d4496a120a7caf4687399f5d656
Summary:
This reverts the previous commit 1d7048c5985e60be8e356663ec3cb6d020adb44d, which broke the build.
Did a `git revert 1d7048c`.
Closes https://github.com/facebook/rocksdb/pull/2627
Differential Revision: D5476473
Pulled By: sagar0
fbshipit-source-id: 4756ff5c0dfc88c17eceb00e02c36176de728d06
Summary: This uses `clang-tidy` to comment out unused parameters (in functions, methods and lambdas) in fbcode. Cases that the tool failed to handle are fixed manually.
Reviewed By: igorsugak
Differential Revision: D5454343
fbshipit-source-id: 5dee339b4334e25e963891b519a5aa81fbf627b2
Summary:
We've got some DBs where iterators return Status with message "Corruption: block checksum mismatch" all the time. That's not very informative. It would be much easier to investigate if the error message contained the file name - then we would know e.g. how old the corrupted file is, which would be very useful for finding the root cause. This PR adds file name, offset and other stuff to some block corruption-related status messages.
It doesn't improve all the error messages, just a few that were easy to improve. I'm mostly interested in "block checksum mismatch" and "Bad table magic number" since they're the only corruption errors that I've ever seen in the wild.
Closes https://github.com/facebook/rocksdb/pull/2507
Differential Revision: D5345702
Pulled By: al13n321
fbshipit-source-id: fc8023d43f1935ad927cef1b9c55481ab3cb1339
Summary:
Replacement of #2147
The change was squashed due to a lot of conflicts.
Closes https://github.com/facebook/rocksdb/pull/2194
Differential Revision: D4929799
Pulled By: siying
fbshipit-source-id: 5cd49c254737a1d5ac13f3c035f128e86524c581
Summary:
to void future bug that caused by the mix of userkey/internalkey
Closes https://github.com/facebook/rocksdb/pull/2084
Differential Revision: D4825889
Pulled By: lightmark
fbshipit-source-id: 28411db
Summary:
PinnableSlice
Summary:
Currently the point lookup values are copied to a string provided by the
user. This incures an extra memcpy cost. This patch allows doing point lookup
via a PinnableSlice which pins the source memory location (instead of
copying their content) and releases them after the content is consumed
by the user. The old API of Get(string) is translated to the new API
underneath.
Here is the summary for improvements:
value 100 byte: 1.8% regular, 1.2% merge values
value 1k byte: 11.5% regular, 7.5% merge values
value 10k byte: 26% regular, 29.9% merge values
The improvement for merge could be more if we extend this approach to
pin the merge output and delay the full merge operation until the user
actually needs it. We have put that for future work.
PS:
Sometimes we observe a small decrease in performance when switching from
t5452014 to this patch but with the old Get(string) API. The d
Closes https://github.com/facebook/rocksdb/pull/1756
Differential Revision: D4391738
Pulled By: maysamyabandeh
fbshipit-source-id: 6f3edd3
Summary:
Currently the point lookup values are copied to a string provided by the user.
This incures an extra memcpy cost. This patch allows doing point lookup
via a PinnableSlice which pins the source memory location (instead of
copying their content) and releases them after the content is consumed
by the user. The old API of Get(string) is translated to the new API
underneath.
Here is the summary for improvements:
1. value 100 byte: 1.8% regular, 1.2% merge values
2. value 1k byte: 11.5% regular, 7.5% merge values
3. value 10k byte: 26% regular, 29.9% merge values
The improvement for merge could be more if we extend this approach to
pin the merge output and delay the full merge operation until the user
actually needs it. We have put that for future work.
PS:
Sometimes we observe a small decrease in performance when switching from
t5452014 to this patch but with the old Get(string) API. The difference
is a little and could be noise. More importantly it is safely
cancelled
Closes https://github.com/facebook/rocksdb/pull/1732
Differential Revision: D4374613
Pulled By: maysamyabandeh
fbshipit-source-id: a077f1a
Summary:
During Get()/MultiGet(), build up a RangeDelAggregator with range
tombstones as we search through live memtable, immutable memtables, and
SST files. This aggregator is then used by memtable.cc's SaveValue() and
GetContext::SaveValue() to check whether keys are covered.
added tests for Get on memtables/files; end-to-end tests mainly in https://reviews.facebook.net/D64761
Closes https://github.com/facebook/rocksdb/pull/1456
Differential Revision: D4111271
Pulled By: ajkr
fbshipit-source-id: 6e388d4
Summary:
Added the column family name to the properties block. This property
is omitted only if the property is unavailable, such as when RepairDB()
writes SST files.
In a next diff, I will change RepairDB to use this new property for
deciding to which column family an existing SST file belongs. If this
property is missing, it will add it to the "unknown" column family (same
as its existing behavior).
Test Plan:
New unit test:
$ ./db_table_properties_test --gtest_filter=DBTablePropertiesTest.GetColumnFamilyNameProperty
Reviewers: IslamAbdelRahman, yhchiang, sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D55605
Summary:
Separate a new class InternalIterator from class Iterator, when the look-up is done internally, which also means they operate on key with sequence ID and type.
This change will enable potential future optimizations but for now InternalIterator's functions are still the same as Iterator's.
At the same time, separate the cleanup function to a separate class and let both of InternalIterator and Iterator inherit from it.
Test Plan: Run all existing tests.
Reviewers: igor, yhchiang, anthony, kradhakrishnan, IslamAbdelRahman, rven
Reviewed By: rven
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D48549
Summary: Missed one file in the previous commit
Test Plan: compiles
Reviewers: sdong
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D47055
Summary: Add new CheckFileExists method. Considered changing the FileExists api but didn't want to break anyone's builds.
Test Plan: unit tests
Reviewers: yhchiang, igor, sdong
Reviewed By: sdong
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D42003
Summary: We want to keep Env a think layer for better portability. Less platform dependent codes should be moved out of Env. In this patch, I create a wrapper of file readers and writers, and put rate limiting, write buffering, as well as most perf context instrumentation and random kill out of Env. It will make it easier to maintain multiple Env in the future.
Test Plan: Run all existing unit tests.
Reviewers: anthony, kradhakrishnan, IslamAbdelRahman, yhchiang, igor
Reviewed By: igor
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D42321
Summary: Fixing issues with get context function.
Test Plan: Run make commit-prereq
Reviewers: sdong, meyering, yhchiang
Reviewed By: sdong
Subscribers: dhruba
Differential Revision: https://reviews.facebook.net/D35853
Summary:
Our existing test notation is very similar to what is used in gtest. It makes it easy to adopt what is different.
In this diff I modify existing [[ https://code.google.com/p/googletest/wiki/Primer#Test_Fixtures:_Using_the_Same_Data_Configuration_for_Multiple_Te | test fixture ]] classes to inherit from `testing::Test`. Also for unit tests that use fixture class, `TEST` is replaced with `TEST_F` as required in gtest.
There are several custom `main` functions in our existing tests. To make this transition easier, I modify all `main` functions to fallow gtest notation. But eventually we can remove them and use implementation of `main` that gtest provides.
```lang=bash
% cat ~/transform
#!/bin/sh
files=$(git ls-files '*test\.cc')
for file in $files
do
if grep -q "rocksdb::test::RunAllTests()" $file
then
if grep -Eq '^class \w+Test {' $file
then
perl -pi -e 's/^(class \w+Test) {/${1}: public testing::Test {/g' $file
perl -pi -e 's/^(TEST)/${1}_F/g' $file
fi
perl -pi -e 's/(int main.*\{)/${1}::testing::InitGoogleTest(&argc, argv);/g' $file
perl -pi -e 's/rocksdb::test::RunAllTests/RUN_ALL_TESTS/g' $file
fi
done
% sh ~/transform
% make format
```
Second iteration of this diff contains only scripted changes.
Third iteration contains manual changes to fix last errors and make it compilable.
Test Plan:
Build and notice no errors.
```lang=bash
% USE_CLANG=1 make check -j55
```
Tests are still testing.
Reviewers: meyering, sdong, rven, igor
Reviewed By: igor
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D35157
Summary: These changes are necessary to make tests look more generic, and avoid feature conflicts with gtest.
Test Plan:
Make sure no build errors, and all test are passing.
```
% make check
```
Reviewers: igor, meyering
Reviewed By: meyering
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D35145
Summary:
In some environment such as android, the c++ library does not have
std::to_string. This path adds rocksdb::ToString(), which wraps std::to_string
when std::to_string is not available, and implements std::to_string
in the other case.
Test Plan:
make dbg -j32
./db_test
make clean
make dbg OPT=-DOS_ANDROID -j32
./db_test
Reviewers: ljin, sdong, igor
Reviewed By: igor
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D29181
Summary:
We need to turn on -Wshorten-64-to-32 for mobile. See D1671432 (internal phabricator) for details.
This diff turns on the warning flag and fixes all the errors. There were also some interesting errors that I might call bugs, especially in plain table. Going forward, I think it makes sense to have this flag turned on and be very very careful when converting 64-bit to 32-bit variables.
Test Plan: compiles
Reviewers: ljin, rven, yhchiang, sdong
Reviewed By: yhchiang
Subscribers: bobbaldwin, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D28689
Summary: It turns out that -Wshadow has different rules for gcc than clang. Previous commit fixed clang. This commits fixes the rest of the warnings for gcc.
Test Plan: compiles
Reviewers: ljin, yhchiang, rven, sdong
Reviewed By: sdong
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D28131
Summary:
...and fix all the errors :)
Jim suggested turning on -Wshadow because it helped him fix number of critical bugs in fbcode. I think it's a good idea to be -Wshadow clean.
Test Plan: compiles
Reviewers: yhchiang, rven, sdong, ljin
Reviewed By: ljin
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D27711
Summary:
Intead of passing callback function pointer and its arg on Table::Get()
interface, passing GetContext. This makes the interface cleaner and
possible better perf. Also adding a fast pass for SaveValue()
Test Plan: make all check
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D24057
Summary:
Using module to calculate hash makes lookup ~8% slower. But it has its
benefit: file size is more predictable, more space enffient
Test Plan: db_bench
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23691
Summary:
MurmurHash becomes expensive when we do millions Get() a second in one
thread. Add this option to allow the first hash function to use identity
function as hash function. It results in QPS increase from 3.7M/s to
~4.3M/s. I did not observe improvement for end to end RocksDB
performance. This may be caused by other bottlenecks that I will address
in a separate diff.
Test Plan:
```
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320
[ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1
==== Test CuckooReaderTest.WhenKeyExists
==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator
==== Test CuckooReaderTest.CheckIterator
==== Test CuckooReaderTest.CheckIteratorUint64
==== Test CuckooReaderTest.WhenKeyNotFound
==== Test CuckooReaderTest.TestReadPerformance
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120
With 125829120 items, utilization is 93.75%, number of hash functions: 2.
Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600
With 104857600 items, utilization is 78.12%, number of hash functions: 2.
Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080
With 83886080 items, utilization is 62.50%, number of hash functions: 2.
Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320
With 73400320 items, utilization is 54.69%, number of hash functions: 2.
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320
```
Reviewers: sdong, igor, yhchiang
Reviewed By: igor
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D23451
Summary:
As a preparation to support updating some options dynamically, I'd like
to first introduce ImmutableOptions, which is a subset of Options that
cannot be changed during the course of a DB lifetime without restart.
ColumnFamily will keep both Options and ImmutableOptions. Any component
below ColumnFamily should only take ImmutableOptions in their
constructor. Other options should be taken from APIs, which will be
allowed to adjust dynamically.
I am yet to make changes to memtable and other related classes to take
ImmutableOptions in their ctor. That can be done in a seprate diff as
this one is already pretty big.
Test Plan: make all check
Reviewers: yhchiang, igor, sdong
Reviewed By: sdong
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D22545
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
Summary: This implements a cache friendly version of Cuckoo Hash in which, in case of collission, we try to insert in next few locations. The size of the neighborhood to check is taken as an input parameter in builder and stored in the table.
Test Plan:
make check all
cuckoo_table_{db,reader,builder}_test
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22455
Summary:
- New Uint64 comparator
- Modify Reader and Builder to take custom user comparators instead of bytewise comparator
- Modify logic for choosing unused user key in builder
- Modify iterator logic in reader
- test changes
Test Plan:
cuckoo_table_{builder,reader,db}_test
make check all
Reviewers: ljin, sdong
Reviewed By: ljin
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D22377
Summary:
- Implement Prepare method
- Rewrite performance tests in cuckoo_table_reader_test to write new file only if one doesn't already exist.
- Add performance tests for batch lookup along with prefetching.
Test Plan:
./cuckoo_table_reader_test --enable_perf
Results (We get better results if we used int64 comparator instead of string comparator (TBD in future diffs)):
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.208us (4.8 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.182us (5.5 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.161us (6.2 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.161us (6.2 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2.
Time taken per op is 0.163us (6.1 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.252us (4.0 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.192us (5.2 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.195us (5.1 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.191us (5.2 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3.
Time taken per op is 0.194us (5.1 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.228us (4.4 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.185us (5.4 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.186us (5.4 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.189us (5.3 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3.
Time taken per op is 0.188us (5.3 Mqps) with batch size of 100
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.325us (3.1 Mqps) with batch size of 0
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.196us (5.1 Mqps) with batch size of 10
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.199us (5.0 Mqps) with batch size of 25
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.196us (5.1 Mqps) with batch size of 50
With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3.
Time taken per op is 0.209us (4.8 Mqps) with batch size of 100
Reviewers: sdong, yhchiang, igor, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22167
Summary:
Contains the following changes:
- Implementation of cuckoo_table_factory
- Adding cuckoo table into AdaptiveTableFactory
- Adding cuckoo_table_db_test, similar to lines of plain_table_db_test
- Minor fixes to Reader: When a key is found in the table, return the key found instead of the search key.
- Minor fixes to Builder: Add table properties that are required by Version::UpdateTemporaryStats() during Get operation. Don't define curr_node as a reference variable as the memory locations may get reassigned during tree.push_back operation, leading to invalid memory access.
Test Plan:
cuckoo_table_reader_test --enable_perf
cuckoo_table_builder_test
cuckoo_table_db_test
make check all
make valgrind_check
make asan_check
Reviewers: sdong, igor, yhchiang, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D21219
Summary:
- Maintain a list of key-value pairs as vectors during Add operation.
- Start building hash table only when Finish() is called.
- This approach takes more time and space but avoids taking file_size, key and value lengths.
- Rewrote cuckoo_table_builder_test
I did not know about IterKey while writing this diff. I shall change places where IterKey could be used instead of std::string tomorrow. Please review rest of the logic.
Test Plan:
cuckoo_table_reader_test --enable_perf
cuckoo_table_builder_test
valgrind_check
asan_check
Reviewers: sdong, igor, yhchiang, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20907
Summary:
- Reads key-value pairs from file and builds an in-memory index of key-to-bucket id map in sorted order of key.
- Assumes bytewise comparator for sorting keys.
- Test changes
Test Plan:
cuckoo_table_reader_test --enable_perf
valgrind_check
asan_check
Reviewers: yhchiang, sdong, ljin
Reviewed By: ljin
Subscribers: leveldb, igor
Differential Revision: https://reviews.facebook.net/D20721
Summary: Made some small changes to fix the broken mac build
Test Plan: make check all in both linux and mac. All tests pass.
Reviewers: sdong, igor, ljin, yhchiang
Reviewed By: ljin, yhchiang
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20895
Summary:
- Copy the key and value to in-memory hash table during Add operation. Also modified cuckoo_table_reader_test to use this.
- Store only the user_key in in-memory hash table if it is last level file.
- Handle Carryover while chosing unused key in Finish() method in case unused key was never found before Finish() call.
Test Plan:
cuckoo_table_reader_test --enable_perf
cuckoo_table_builder_test
valgrind_check
asan_check
Reviewers: sdong, yhchiang, igor, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D20715