Summary:
When defining a template class, the constructor should be specified
simply using the class name; it does not take template arguments.a
Apparently older versions of gcc and clang did not complain about this
syntax, but gcc 11.x and recent versions of clang both complain about
this file.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9173
Test Plan:
When building with platform010 I got compile errors in this file both
in `mode/dev` (clang) and in `mode/opt-gcc`. This diff fixes the
compile failures.
Reviewed By: ajkr
Differential Revision: D32455881
Pulled By: simpkins
fbshipit-source-id: 0682910d9e2cdade94ce1e77973d47ac04d9f7e2
Summary:
After https://github.com/facebook/rocksdb/issues/8725, keys added to `WriteBatch` may be timestamp-suffixed, while `WriteBatch` has no awareness of the timestamp size. Therefore, `WriteBatch` can no longer calculate timestamp checksum separately from the rest of the key's checksum in all cases.
This PR changes the definition of key in KV checksum to include the timestamp suffix. That way we do not need to worry about where the timestamp begins within the key. I believe the only practical effect of this change is now `AssignTimestamp()` requires recomputing the whole key checksum (`UpdateK()`) rather than just the timestamp portion (`UpdateT()`).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8914
Test Plan:
run stress command that used to fail
```
$ ./db_stress --batch_protection_bytes_per_key=8 -clear_column_family_one_in=0 -test_batches_snapshots=1
```
Reviewed By: riversand963
Differential Revision: D30925715
Pulled By: ajkr
fbshipit-source-id: c143f7ccb46c0efb390ad57ef415c250d754deff
Summary:
In the past, we unnecessarily requires all keys in the same write batch
to be from column families whose timestamps' formats are the same for
simplicity. Specifically, we cannot use the same write batch to write to
two column families, one of which enables timestamp while the other
disables it.
The limitation is due to the member `timestamp_size_` that used to exist
in each `WriteBatch` object. We pass a timestamp_size to the constructor
of `WriteBatch`. Therefore, users can simply use the old
`WriteBatch::Put()`, `WriteBatch::Delete()`, etc APIs for write, while
the internal implementation of `WriteBatch` will take care of memory
allocation for timestamps.
The above is not necessary.
One the one hand, users can set up a memory buffer to store user key and
then contiguously append the timestamp to the user key. Then the user
can pass this buffer to the `WriteBatch::Put(Slice&)` API.
On the other hand, users can set up a SliceParts object which is an
array of Slices and let the last Slice to point to the memory buffer
storing timestamp. Then the user can pass the SliceParts object to the
`WriteBatch::Put(SliceParts&)` API.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8725
Test Plan: make check
Reviewed By: ltamasi
Differential Revision: D30654499
Pulled By: riversand963
fbshipit-source-id: 9d848c77ad3c9dd629aa5fc4e2bc16fb0687b4a2
Summary:
Old typedef syntax is confusing
Most but not all changes with
perl -pi -e 's/typedef (.*) ([a-zA-Z0-9_]+);/using $2 = $1;/g' list_of_files
make format
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8751
Test Plan: existing
Reviewed By: zhichao-cao
Differential Revision: D30745277
Pulled By: pdillinger
fbshipit-source-id: 6f65f0631c3563382d43347896020413cc2366d9
Summary:
This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.).
The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer.
When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748
Test Plan:
- an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught
- add to stress/crash test to verify it works in variety of configs/operations without intentional corruption
- [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc.
Reviewed By: pdillinger
Differential Revision: D25754492
Pulled By: ajkr
fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866