Commit Graph

4 Commits

Author SHA1 Message Date
Peter Dillinger
0050a73a4f New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).

The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.

This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)

The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.

Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.

Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126

Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.

### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)

### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime

We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:

```
Total cache or DBs size: 32TiB  Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```

These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key.  With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.

More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day

After enough data, we get a result at the end:

```
(keep 40 bits)  17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```

If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:

```
(keep 41 bits)  16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits)  19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```

The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:

```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```

I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.

Reviewed By: zhichao-cao

Differential Revision: D33171746

Pulled By: pdillinger

fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:15:13 -08:00
Yanqin Jin
42fef0224f Fix build for msvc (#9230)
Summary:
Test plan

With Visual Studio 2017.
```
cd rocksdb
mkdir build && cd build
cmake -G "Visual Studio 15 Win64" -DWITH_GFLAGS=1 ..
MSBuild rocksdb.sln /m /TARGET:cache_bench /TARGET:db_bench /TARGET:db_stress
```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9230

Reviewed By: akankshamahajan15

Differential Revision: D32705095

Pulled By: riversand963

fbshipit-source-id: 101e3533f5178b24c0535ddc47a39347ccfcf92c
2021-11-29 14:27:48 -08:00
mrambacher
570248aeff Make SecondaryCache Customizable (#8480)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/8480

Reviewed By: zhichao-cao

Differential Revision: D29528740

Pulled By: mrambacher

fbshipit-source-id: fd0f70d15f66611c8498257a9973f7e98ca13839
2021-07-06 09:18:08 -07:00
anand76
13232e11d4 Allow cache_bench/db_bench to use a custom secondary cache (#8312)
Summary:
This PR adds a ```-secondary_cache_uri``` option to the cache_bench and db_bench tools to allow the user to specify a custom secondary cache URI. The object registry is used to create an instance of the ```SecondaryCache``` object of the type specified in the URI.

The main cache_bench code is packaged into a separate library, similar to db_bench.

An example invocation of db_bench with a secondary cache URI -
```db_bench --env_uri=ws://ws.flash_sandbox.vll1_2/ -db=anand/nvm_cache_2 -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=67108864 -cache_index_and_filter_blocks=true  -secondary_cache_uri='cachelibwrapper://filename=/home/anand76/nvm_cache/cache_file;size=2147483648;regionSize=16777216;admPolicy=random;admProbability=1.0;volatileSize=8388608;bktPower=20;lockPower=12' -partition_index_and_filters=true -duration=1800```

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8312

Reviewed By: zhichao-cao

Differential Revision: D28544325

Pulled By: anand1976

fbshipit-source-id: 8f209b9af900c459dc42daa7a610d5f00176eeed
2021-05-19 15:26:18 -07:00