74cfe7db60
4 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Peter Dillinger
|
df5dc73bec |
Don't hold DB mutex for block cache entry stat scans (#8538)
Summary: I previously didn't notice the DB mutex was being held during block cache entry stat scans, probably because I primarily checked for read performance regressions, because they require the block cache and are traditionally latency-sensitive. This change does some refactoring to avoid holding DB mutex and to avoid triggering and waiting for a scan in GetProperty("rocksdb.cfstats"). Some tests have to be updated because now the stats collector is populated in the Cache aggressively on DB startup rather than lazily. (I hope to clean up some of this added complexity in the future.) This change also ensures proper treatment of need_out_of_mutex for non-int DB properties. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8538 Test Plan: Added unit test logic that uses sync points to fail if the DB mutex is held during a scan, covering the various ways that a scan might be triggered. Performance test - the known impact to holding the DB mutex is on TransactionDB, and the easiest way to see the impact is to hack the scan code to almost always miss and take an artificially long time scanning. Here I've injected an unconditional 5s sleep at the call to ApplyToAllEntries. Before (hacked): $ TEST_TMPDIR=/dev/shm ./db_bench.base_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 433.219 micros/op 2308 ops/sec; 0.1 MB/s ( transactions:78999 aborts:0) rocksdb.db.write.micros P50 : 16.135883 P95 : 36.622503 P99 : 66.036115 P100 : 5000614.000000 COUNT : 149677 SUM : 8364856 $ TEST_TMPDIR=/dev/shm ./db_bench.base_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 448.802 micros/op 2228 ops/sec; 0.1 MB/s ( transactions:75999 aborts:0) rocksdb.db.write.micros P50 : 16.629221 P95 : 37.320607 P99 : 72.144341 P100 : 5000871.000000 COUNT : 143995 SUM : 13472323 Notice the 5s P100 write time. After (hacked): $ TEST_TMPDIR=/dev/shm ./db_bench.new_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 303.645 micros/op 3293 ops/sec; 0.1 MB/s ( transactions:98999 aborts:0) rocksdb.db.write.micros P50 : 16.061871 P95 : 33.978834 P99 : 60.018017 P100 : 616315.000000 COUNT : 187619 SUM : 4097407 $ TEST_TMPDIR=/dev/shm ./db_bench.new_xxx -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 310.383 micros/op 3221 ops/sec; 0.1 MB/s ( transactions:96999 aborts:0) rocksdb.db.write.micros P50 : 16.270026 P95 : 35.786844 P99 : 64.302878 P100 : 603088.000000 COUNT : 183819 SUM : 4095918 P100 write is now ~0.6s. Not good, but it's the same even if I completely bypass all the scanning code: $ TEST_TMPDIR=/dev/shm ./db_bench.new_skip -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 311.365 micros/op 3211 ops/sec; 0.1 MB/s ( transactions:96999 aborts:0) rocksdb.db.write.micros P50 : 16.274362 P95 : 36.221184 P99 : 68.809783 P100 : 649808.000000 COUNT : 183819 SUM : 4156767 $ TEST_TMPDIR=/dev/shm ./db_bench.new_skip -benchmarks=randomtransaction,stats -cache_index_and_filter_blocks=1 -bloom_bits=10 -partition_index_and_filters=1 -duration=30 -stats_dump_period_sec=12 -cache_size=100000000 -statistics -transaction_db 2>&1 | egrep 'db.db.write.micros|micros/op' randomtransaction : 308.395 micros/op 3242 ops/sec; 0.1 MB/s ( transactions:97999 aborts:0) rocksdb.db.write.micros P50 : 16.106222 P95 : 37.202403 P99 : 67.081875 P100 : 598091.000000 COUNT : 185714 SUM : 4098832 No substantial difference. Reviewed By: siying Differential Revision: D29738847 Pulled By: pdillinger fbshipit-source-id: 1c5c155f5a1b62e4fea0fd4eeb515a8b7474027b |
||
Peter Dillinger
|
d5a46c40e5 |
Pin CacheEntryStatsCollector to fix performance bug (#8385)
Summary: If the block Cache is full with strict_capacity_limit=false, then our CacheEntryStatsCollector could be immediately evicted on release, so iterating through column families with shared block cache could trigger re-scan for each CF. This change fixes that problem by pinning the CacheEntryStatsCollector from InternalStats so that it's not evicted. I had originally thought that this object could participate in LRU like everything else, but even though a re-load+re-scan only touches memory, it can be orders of magnitude more expensive than other cache misses. One service in Facebook has scans that take ~20s over 100GB block cache that is mostly 4KB entries. (The up-side of this bug and https://github.com/facebook/rocksdb/issues/8369 is that we had a natural experiment on the effect on some service metrics even with block cache scans running continuously in the background--a kind of worst case scenario. Metrics like latency were not affected enough to trigger warnings.) Other smaller fixes: 20s is already a sizable portion of 600s stats dump period, or 180s default max age to force re-scan, so added logic to ensure that (for each block cache) we don't spend more than 0.2% of our background thread time scanning it. Nevertheless, "foreground" requests for cache entry stats (calls to `db->GetMapProperty(DB::Properties::kBlockCacheEntryStats)`) are permitted to consume more CPU. Renamed field to cache_entry_stats_ to match code style. This change is intended for patching in 6.21 release. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8385 Test Plan: unit test expanded to cover new logic (detect regression), some manual testing with db_bench Reviewed By: ajkr Differential Revision: D29042759 Pulled By: pdillinger fbshipit-source-id: 236faa902397f50038c618f50fbc8cf3f277308c |
||
Peter Dillinger
|
2f93a3b809 |
Fix a major performance bug in 6.21 for cache entry stats (#8369)
Summary: In final polishing of https://github.com/facebook/rocksdb/issues/8297 (after most manual testing), I broke my own caching layer by sanitizing an input parameter with std::min(0, x) instead of std::max(0, x). I resisted unit testing the timing part of the result caching because historically, these test are either flaky or difficult to write, and this was not a correctness issue. This bug is essentially unnoticeable with a small number of column families but can explode background work with a large number of column families. This change fixes the logical error, removes some unnecessary related optimization, and adds mock time/sleeps to the unit test to ensure we can cache hit within the age limit. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8369 Test Plan: added time testing logic to existing unit test Reviewed By: ajkr Differential Revision: D28950892 Pulled By: pdillinger fbshipit-source-id: e79cd4ff3eec68fd0119d994f1ed468c38026c3b |
||
Peter Dillinger
|
311a544c2a |
Use deleters to label cache entries and collect stats (#8297)
Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb |