Summary:
When using `PRIu64` type of printf specifier, current code base does the following:
```
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include <inttypes.h>
```
However, this can be simplified to
```
#include <cinttypes>
```
as long as flag `-std=c++11` is used.
This should solve issues like https://github.com/facebook/rocksdb/issues/5159
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5402
Differential Revision: D15701195
Pulled By: miasantreble
fbshipit-source-id: 6dac0a05f52aadb55e9728038599d3d2e4b59d03
Summary:
It's useful to be able to (optionally) associate key-value pairs with user-provided timestamps. This PR is an early effort towards this goal and continues the work of facebook#4942. A suite of new unit tests exist in DBBasicTestWithTimestampWithParam. Support for timestamp requires the user to provide timestamp as a slice in `ReadOptions` and `WriteOptions`. All timestamps of the same database must share the same length, format, etc. The format of the timestamp is the same throughout the same database, and the user is responsible for providing a comparator function (Comparator) to order the <key, timestamp> tuples. Once created, the format and length of the timestamp cannot change (at least for now).
Test plan (on devserver):
```
$COMPILE_WITH_ASAN=1 make -j32 all
$./db_basic_test --gtest_filter=Timestamp/DBBasicTestWithTimestampWithParam.PutAndGet/*
$make check
```
All tests must pass.
We also run the following db_bench tests to verify whether there is regression on Get/Put while timestamp is not enabled.
```
$TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillseq,readrandom -num=1000000
$TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=1000000
```
Repeat for 6 times for both versions.
Results are as follows:
```
| | readrandom | fillrandom |
| master | 16.77 MB/s | 47.05 MB/s |
| PR5079 | 16.44 MB/s | 47.03 MB/s |
```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5079
Differential Revision: D15132946
Pulled By: riversand963
fbshipit-source-id: 833a0d657eac21182f0f206c910a6438154c742c
Summary:
With this commit, RocksDB secondary instance respects atomic groups in version edits.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5411
Differential Revision: D15617512
Pulled By: HaoyuHuang
fbshipit-source-id: 913f4ede391d772dcaf5649e3cd2099fa292d120
Summary:
There are too many types of files under util/. Some test related files don't belong to there or just are just loosely related. Mo
ve them to a new directory test_util/, so that util/ is cleaner.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5377
Differential Revision: D15551366
Pulled By: siying
fbshipit-source-id: 0f5c8653832354ef8caa31749c0143815d719e2c
Summary:
util/ means for lower level libraries, so it's a good idea to move the files which requires knowledge to DB out. Create a file/ and move some files there.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5375
Differential Revision: D15550935
Pulled By: siying
fbshipit-source-id: 61a9715dcde5386eebfb43e93f847bba1ae0d3f2
Summary:
In version_set.cc, there is a function GetCurrentManifestPath. The goal of this task is to refactor ListColumnFamilies function so that ListColumnFamilies calls GetCurrentManifestPath to search for MANIFEST.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5331
Differential Revision: D15444524
Pulled By: HaoyuHuang
fbshipit-source-id: 1dcbd030bc0f2e835695741f450bba150f2f2903
Summary:
Previously if iterator upper/lower bound presents, `DBIter` will check the bound for every key. This patch turns the check into per-file or per-data block check when applicable, by checking against either file largest/smallest key or block index key.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5111
Differential Revision: D15330061
Pulled By: siying
fbshipit-source-id: 8a653fe3cd50d94d81eb2d13b087326c58ee2024
Summary:
This PR has two fixes for crash test failures -
1. Fix a bug in TestMultiGet() in db_stress that was passing list of key to MultiGet() in the wrong order, thus ensuring that actual values don't match expected values
2. Remove an incorrect assertion in FilePickerMultiGet::GetNextFileInLevelWithKeys() that checks that files in a level are in sorted order. This is not true with MultiGet(), especially if there are duplicate keys and we may have to go back one file for the next key. Furthermore, this assertion makes more sense when a new version is created, rather than at lookup time
Test -
asan_crash and ubsan_crash tests
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5301
Differential Revision: D15337383
Pulled By: anand1976
fbshipit-source-id: 35092cb15bbc1700e5e823cbe07bfa62f1e9e6c6
Summary:
When reseek happens in merging iterator, reseeking a child iterator can be avoided if:
(1) the iterator represents imutable data
(2) reseek() to a larger key than the current key
(3) the current key of the child iterator is larger than the seek key
because it is guaranteed that the result will fall into the same position.
This optimization will be useful for use cases where users keep seeking to keys nearby in ascending order.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5286
Differential Revision: D15283635
Pulled By: siying
fbshipit-source-id: 35f79ffd5ce3609146faa8cd55f2bfd733502f83
Summary:
This PR fixes a couple of bugs in FilePickerMultiGet that were causing db_stress test failures. The failures were caused by -
1. Improper handling of a key that matches the user key portion of an L0 file's largest key. In this case, the curr_index_in_curr_level file index in L0 for that key was getting incremented, but batch_iter_ was not advanced. By design, all keys in a batch are supposed to be checked against an L0 file before advancing to the next L0 file. Not advancing to the next key in the batch was causing a double increment of curr_index_in_curr_level due to the same key being processed again
2. Improper handling of a key that matches the user key portion of the largest key in the last file of L1 and higher. This was resulting in a premature end to the processing of the batch for that level when the next key in the batch is a duplicate. Typically, the keys in MultiGet will not be duplicates, but its good to handle that case correctly
Test -
asan_crash
make check
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5292
Differential Revision: D15282530
Pulled By: anand1976
fbshipit-source-id: d1a6a86e0af273169c3632db22a44d79c66a581f
Summary:
This PR fixes three memory issues found by ASAN
* in db_stress, the key vector for MultiGet is created using `emplace_back` which could potentially invalidates references to the underlying storage (vector<string>) due to auto resizing. Fix by calling reserve in advance.
* Similar issue in construction of GetContext autovector in version_set.cc
* In multiget_context.h use T[] specialization for unique_ptr that holds a char array
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5279
Differential Revision: D15202893
Pulled By: miasantreble
fbshipit-source-id: 14cc2cda0ed64d29f2a1e264a6bfdaa4294ee75d
Summary:
Right now, when Seek() is called again, RocksDB always does a binary search against the files and index blocks, even if they end up with the same file/block. Improve it as following:
1. in LevelIterator, reseek first try to check the boundary of the current file. If it falls into the same file, skip the binary search to find the file
2. in block based table iterator, reseek skip to reseek the iterator block if the seek key is larger than the current key and lower than the index key (boundary of the current block and the next block).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5256
Differential Revision: D15105072
Pulled By: siying
fbshipit-source-id: 39634bdb4a881082451fa39cecd7ecf12160bf80
Summary:
In some cases, we want to known the smallest and largest sequence numbers of sstable files, to help us get more details.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5231
Differential Revision: D15038087
Pulled By: siying
fbshipit-source-id: c473c1ca07b53efe2f1884fa1ecdc8686f455ed8
Summary:
We found an issue in Periodic Compactions (introduced in #5166) where files were not being picked up for compactions as all the SST files created with older versions of RocksDB have `file_creation_time` as 0. (Note that `file_creation_time` is a new table property introduced in #5166).
To address this, Periodic compactions now fall back to looking at the `creation_time` table property or the file's modification time (as given by the Env) when `file_creation_time` table property is found to be 0.
Here how the file's modification time (and, in turn, the file age) is computed now:
1. Use `file_creation_time` table property if it is > 0.
1. If not, then use `creation_time` table property if it is > 0.
1. If not, then use file's mtime stat metadata given by the underlying Env.
Don't consider the file at all for compaction if the modification time cannot be correctly determined based on the above conditions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5184
Differential Revision: D14907795
Pulled By: sagar0
fbshipit-source-id: 4bb2f3631f9a3e04470c674a1d13544584e1e56c
Summary:
In long scans, virtual function calls of Next(), Valid(), key() and value() are not trivial. By introducing NextAndGetResult(), Some of the Next(), Valid() and key() calls are consolidated into one virtual function call to reduce CPU.
Also did some inline tricks and add some "final" randomly in some functions. Even without the "final" annotation, most Next() calls are inlined with -O3, but sometimes with a final it is inlined by O2 too. It doesn't hurt to add those final annotations.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5197
Differential Revision: D14945977
Pulled By: siying
fbshipit-source-id: 7003969f9a5f1d5717f0bda503b91d19ba75ed88
Summary:
`GetOverlappingInputsRangeBinarySearch` firstly use binary search
to find a index in the given range `[begin, end]`. But after find
the index, then use linear search to find the `start_index` and
`end_index`. So the search process degraded to linear time.
Here optmize the search process with below changes:
- use `std::lower_bound` and `std::upper_bound` to get
`lg(n)` search complexity.
- use uniformed lambda for search process.
- simplify process for `within_interval` true or false.
- remove function `ExtendFileRangeWithinInterval`
and `ExtendFileRangeOverlappingInterval`.
Signed-off-by: JiYou <jiyou09@gmail.com>
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4987
Differential Revision: D14984192
Pulled By: riversand963
fbshipit-source-id: fae4b8e59a21b7e350718d60cdc94dd55ac81e89
Summary:
This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching.
Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to -
1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch()
2. Bloom filter cachelines can be prefetched, hiding the cache miss latency
The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress.
Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32).
Batch Sizes
1 | 2 | 4 | 8 | 16 | 32
Random pattern (Stride length 0)
4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get
4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching)
4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching)
Good locality (Stride length 16)
4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753
4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781
4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135
Good locality (Stride length 256)
4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232
4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268
4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62
Medium locality (Stride length 4096)
4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555
4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465
4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891
dbbench command used (on a DB with 4 levels, 12 million keys)-
TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011
Differential Revision: D14348703
Pulled By: anand1976
fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
Summary:
Introducing Periodic Compactions.
This feature allows all the files in a CF to be periodically compacted. It could help in catching any corruptions that could creep into the DB proactively as every file is constantly getting re-compacted. And also, of course, it helps to cleanup data older than certain threshold.
- Introduced a new option `periodic_compaction_time` to control how long a file can live without being compacted in a CF.
- This works across all levels.
- The files are put in the same level after going through the compaction. (Related files in the same level are picked up as `ExpandInputstoCleanCut` is used).
- Compaction filters, if any, are invoked as usual.
- A new table property, `file_creation_time`, is introduced to implement this feature. This property is set to the time at which the SST file was created (and that time is given by the underlying Env/OS).
This feature can be enabled on its own, or in conjunction with `ttl`. It is possible to set a different time threshold for the bottom level when used in conjunction with ttl. Since `ttl` works only on 0 to last but one levels, you could set `ttl` to, say, 1 day, and `periodic_compaction_time` to, say, 7 days. Since `ttl < periodic_compaction_time` all files in last but one levels keep getting picked up based on ttl, and almost never based on periodic_compaction_time. The files in the bottom level get picked up for compaction based on `periodic_compaction_time`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5166
Differential Revision: D14884441
Pulled By: sagar0
fbshipit-source-id: 408426cbacb409c06386a98632dcf90bfa1bda47
Summary:
Annotate all of the logging functions to inform the compiler that these
use printf-style formatting arguments. This allows the compiler to emit
warnings if the format arguments are incorrect.
This also fixes many problems reported now that format string checking
is enabled. Many of these are simply mix-ups in the argument type (e.g,
int vs uint64_t), but in several cases the wrong number of arguments
were being passed in which can cause the code to crash.
The primary motivation for this was to fix the log message in
`DBImpl::SwitchMemtable()` which caused a segfault due to an extra %s
format parameter with no argument supplied.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5089
Differential Revision: D14574795
Pulled By: simpkins
fbshipit-source-id: 0921b03f0743652bf4ae21e414ff54b3bb65422a
Summary:
Currently `perf_context.user_key_comparison_count` is bump only in `InternalKeyComparator`. For places user comparator is used directly the counter is not bump. Fixing the majority of it.
Index iterator and filter code also use user comparator directly and don't bump the counter. It is not fixed in this patch.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5098
Differential Revision: D14603753
Pulled By: siying
fbshipit-source-id: 1cd41035644ca9e49b97a51030a5d1e15f5f3cae
Summary:
This PR allows RocksDB to run in single-primary, multi-secondary process mode.
The writer is a regular RocksDB (e.g. an `DBImpl`) instance playing the role of a primary.
Multiple `DBImplSecondary` processes (secondaries) share the same set of SST files, MANIFEST, WAL files with the primary. Secondaries tail the MANIFEST of the primary and apply updates to their own in-memory state of the file system, e.g. `VersionStorageInfo`.
This PR has several components:
1. (Originally in #4745). Add a `PathNotFound` subcode to `IOError` to denote the failure when a secondary tries to open a file which has been deleted by the primary.
2. (Similar to #4602). Add `FragmentBufferedReader` to handle partially-read, trailing record at the end of a log from where future read can continue.
3. (Originally in #4710 and #4820). Add implementation of the secondary, i.e. `DBImplSecondary`.
3.1 Tail the primary's MANIFEST during recovery.
3.2 Tail the primary's MANIFEST during normal processing by calling `ReadAndApply`.
3.3 Tailing WAL will be in a future PR.
4. Add an example in 'examples/multi_processes_example.cc' to demonstrate the usage of secondary RocksDB instance in a multi-process setting. Instructions to run the example can be found at the beginning of the source code.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4899
Differential Revision: D14510945
Pulled By: riversand963
fbshipit-source-id: 4ac1c5693e6012ad23f7b4b42d3c374fecbe8886
Summary:
We introduced ttl option in CompactionOptionsFIFO when ttl-based file
deletion (compaction) was supported only as part of FIFO Compaction. But
with the extension of ttl semantics even to Level compaction,
CompactionOptionsFIFO.ttl can now be deprecated. Instead we will start
using ColumnFamilyOptions.ttl for FIFO compaction as well.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4965
Differential Revision: D14072960
Pulled By: sagar0
fbshipit-source-id: c98cc2ae695a28136295787cd88d36a220fc219e
Summary:
Make file ingestion atomic.
as title.
Ingesting external SST files into multiple column families should be atomic. If
a crash occurs and db reopens, either all column families have successfully
ingested the files before the crash, or non of the ingestions have any effect
on the state of the db.
Also add unit tests for atomic ingestion.
Note that the unit test here does not cover the case of incomplete atomic group
in the MANIFEST, which is covered in VersionSetTest already.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4895
Differential Revision: D13718245
Pulled By: riversand963
fbshipit-source-id: 7df97cc483af73ad44dd6993008f99b083852198
Summary:
Measure CPU time consumed for a compaction and report it in the stats report
Enable NowCPUNanos() to work for MacOS
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4889
Differential Revision: D13701276
Pulled By: zinoale
fbshipit-source-id: 5024e5bbccd4dd10fd90d947870237f436445055
Summary:
Right now, CompactionPri = kMinOverlappingRatio provides best write amplification, but it doesn't
prioritize files with more tombstones. We combine the two good features: make kMinOverlappingRatio
to boost files with lots of tombstones too.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4907
Differential Revision: D13788774
Pulled By: siying
fbshipit-source-id: 1991cbb495fb76c8b529de69896e38d81ed9d9b3
Summary:
https://github.com/facebook/rocksdb/pull/3340 introduces preloading when max_open_files != -1.
It doesn't preload index and filter in non-initial file loading case. This is a little bit too
complicated to understand. We observed in one MyRocks use case where the filter is expected to be
preloaded but is not. To simplify the use case, we simply always prefetch the index and filter.
They anyway is expected to be loaded in the file verification phase anyway.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4852
Differential Revision: D13595402
Pulled By: siying
fbshipit-source-id: d4d8624eb3e849e20aeb990df2100502d85aff31
Summary:
Previously for point lookup we decided which file to look into based on user key overlap only. We also did not truncate range tombstones in the point lookup code path. These two ideas did not interact well in cases like this:
- L1 has range tombstone [a, c)#1 and point key b#2. The data is split between file1 with range [a#1,1, b#72057594037927935,15], and file2 with range [b#2, c#1].
- L1's file2 gets compacted to L2.
- User issues `Get()` for b#3.
- L1's file1 is opened and the range tombstone [a, c)#1 is found for b, while no point-key for b is found in L1.
- `Get()` assumes that the range tombstone must cover all data in that range in lower levels, so short circuits and returns `NotFound`.
The solution to this problem is to not look into files that only overlap with the point lookup at a range tombstone sentinel endpoint. In the above example, this would mean not opening L1's file1 or its tombstones during the `Get()`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4829
Differential Revision: D13561355
Pulled By: ajkr
fbshipit-source-id: a13c21c816870a2f5d32a48af6dbd719a7d9d19f
Summary:
Choose to preload some files if options.max_open_files != -1. This can slightly narrow the gap of performance between options.max_open_files is -1 and a large number. To avoid a significant regression to DB reopen speed if options.max_open_files != -1. Limit the files to preload in DB open time to 16.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/3340
Differential Revision: D6686945
Pulled By: siying
fbshipit-source-id: 8ec11bbdb46e3d0cdee7b6ad5897a09c5a07869f
Summary:
Now that v2 is fully functional, the v1 aggregator is removed.
The v2 aggregator has been renamed.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4778
Differential Revision: D13495930
Pulled By: abhimadan
fbshipit-source-id: 9d69500a60a283e79b6c4fa938fc68a8aa4d40d6
Summary:
RangeDelAggregatorV2 now supports ShouldDelete calls on
snapshot stripes and creation of range tombstone compaction iterators.
RangeDelAggregator is no longer used on any non-test code path, and will
be removed in a future commit.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4758
Differential Revision: D13439254
Pulled By: abhimadan
fbshipit-source-id: fe105bcf8e3d4a2df37a622d5510843cd71b0401
Summary:
If one column family is dropped, we should simply skip it and continue to flush
other active ones.
Currently we use Status::ShutdownInProgress to notify caller of column families
being dropped. In the future, we should consider using a different Status code.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4708
Differential Revision: D13378954
Pulled By: riversand963
fbshipit-source-id: 42f248cdf2d32d4c0f677cd39012694b8f1328ca
Summary:
…ons (#4676)"
This reverts commit b32d087dbb3b9d9f2c9597caa650d0ca9d2e2d7f.
`MemoryAllocator` needs to be with `Cache`, since cache entry can
outlive DB and block based table. The cache needs to hold reference to
memory allocator when deleting cache entry.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4697
Differential Revision: D13133490
Pulled By: yiwu-arbug
fbshipit-source-id: 8ef7e8a51263bfd929f892fd062665ff4ce9ce5a
Summary:
The old RangeDelAggregator did expensive pre-processing work
to create a collapsed, binary-searchable representation of range
tombstones. With FragmentedRangeTombstoneIterator, much of this work is
now unnecessary. RangeDelAggregatorV2 takes advantage of this by seeking
in each iterator to find a covering tombstone in ShouldDelete, while
doing minimal work in AddTombstones. The old RangeDelAggregator is still
used during flush/compaction for now, though RangeDelAggregatorV2 will
support those uses in a future PR.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4649
Differential Revision: D13146964
Pulled By: abhimadan
fbshipit-source-id: be29a4c020fc440500c137216fcc1cf529571eb3
Summary:
Since a range tombstone seen at one level will cover all keys
in the range at lower levels, there was a short-circuiting check in Get
that reported a key was not found at most one file after the range
tombstone was discovered. However, this was incorrect for merge
operands, since a deletion might only cover some merge operands,
which implies that the key should be found. This PR fixes this logic in
the Version portion of Get, and removes the logic from the MemTable
portion of Get, since the perforamnce benefit provided there is minimal.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4698
Differential Revision: D13142484
Pulled By: abhimadan
fbshipit-source-id: cbd74537c806032f2bfa564724d01a80df7c8f10
Summary:
This is a quick fix for the uninitialized bugs in `LiveFileMetaData` and `SstFileMetaData` that were uncovered in #4686.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4693
Differential Revision: D13113189
Pulled By: ajkr
fbshipit-source-id: 18e798d031d2a59d0b55fc010c135e0126f4042d
Summary:
Per offline discussion with siying, `MemoryAllocator` and `Cache` should be decouple. The idea is that memory allocator handles memory allocation, while cache handle cache policy.
It is normal that external cache libraries pack couple the two components for better optimization. If we want to integrate with such library in the future, we can make a wrapper of the library implementing both `Cache` and `MemoryAllocator` interface.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4676
Differential Revision: D13047662
Pulled By: yiwu-arbug
fbshipit-source-id: cd42e246d80ab600b4de47d073f7d2db308ce6dd
Summary:
he ratio of num_deletions to num_entries of a level can be useful to determine if a manual compaction needs to be triggered on a level.
Also refer #3980
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4623
Differential Revision: D13045744
Pulled By: sagar0
fbshipit-source-id: 71f3c8e363a8ffd194ec3bb0ed0b69612231f0b3
Summary:
this PR adds two more per-level perf context counters to track
* number of keys returned in Get call, break down by levels
* total processing time at each level during Get call
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4617
Differential Revision: D12898024
Pulled By: miasantreble
fbshipit-source-id: 6b84ef1c8097c0d9e97bee1a774958f56ab4a6c4
Summary:
Ran the following commands to recursively change all the files under RocksDB:
```
find . -type f -name "*.cc" -exec sed -i 's/ unique_ptr/ std::unique_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/<unique_ptr/<std::unique_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/ shared_ptr/ std::shared_ptr/g' {} +
find . -type f -name "*.cc" -exec sed -i 's/<shared_ptr/<std::shared_ptr/g' {} +
```
Running `make format` updated some formatting on the files touched.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4638
Differential Revision: D12934992
Pulled By: sagar0
fbshipit-source-id: 45a15d23c230cdd64c08f9c0243e5183934338a8
Summary:
Add unit tests to demonstrate that `VersionSet::Recover` is able to detect and handle cases in which the MANIFEST has valid atomic group, incomplete trailing atomic group, atomic group mixed with normal version edits and atomic group with incorrect size.
With this capability, RocksDB identifies non-valid groups of version edits and do not apply them, thus guaranteeing that the db is restored to a state consistent with the most recent successful atomic flush before applying WAL.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4433
Differential Revision: D10079202
Pulled By: riversand963
fbshipit-source-id: a0e0b8bf4da1cf68e044d397588c121b66c68876
Summary:
Since the number of range deletions are reported in
TableProperties, it is confusing to not report the number of merge
operands and point deletions as top-level properties; they are
accessible through the public API, but since they are not the "main"
properties, they do not appear in aggregated table properties, or the
string representation of table properties.
This change promotes those two property keys to
`rocksdb/table_properties.h`, adds corresponding uint64 members for
them, deprecates the old access methods `GetDeletedKeys()` and
`GetMergeOperands()` (though they are still usable for now), and removes
`InternalKeyPropertiesCollector`. The property key strings are the same
as before this change, so this should be able to read DBs written from older
versions (though I haven't tested this yet).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4594
Differential Revision: D12826893
Pulled By: abhimadan
fbshipit-source-id: 9e4e4fbdc5b0da161c89582566d184101ba8eb68
Summary:
This allows tombstone fragmenting to only be performed when the table is opened, and cached for subsequent accesses.
On the same DB used in #4449, running `readrandom` results in the following:
```
readrandom : 0.983 micros/op 1017076 ops/sec; 78.3 MB/s (63103 of 100000 found)
```
Now that Get performance in the presence of range tombstones is reasonable, I also compared the performance between a DB with range tombstones, "expanded" range tombstones (several point tombstones that cover the same keys the equivalent range tombstone would cover, a common workaround for DeleteRange), and no range tombstones. The created DBs had 5 million keys each, and DeleteRange was called at regular intervals (depending on the total number of range tombstones being written) after 4.5 million Puts. The table below summarizes the results of a `readwhilewriting` benchmark (in order to provide somewhat more realistic results):
```
Tombstones? | avg micros/op | stddev micros/op | avg ops/s | stddev ops/s
----------------- | ------------- | ---------------- | ------------ | ------------
None | 0.6186 | 0.04637 | 1,625,252.90 | 124,679.41
500 Expanded | 0.6019 | 0.03628 | 1,666,670.40 | 101,142.65
500 Unexpanded | 0.6435 | 0.03994 | 1,559,979.40 | 104,090.52
1k Expanded | 0.6034 | 0.04349 | 1,665,128.10 | 125,144.57
1k Unexpanded | 0.6261 | 0.03093 | 1,600,457.50 | 79,024.94
5k Expanded | 0.6163 | 0.05926 | 1,636,668.80 | 154,888.85
5k Unexpanded | 0.6402 | 0.04002 | 1,567,804.70 | 100,965.55
10k Expanded | 0.6036 | 0.05105 | 1,667,237.70 | 142,830.36
10k Unexpanded | 0.6128 | 0.02598 | 1,634,633.40 | 72,161.82
25k Expanded | 0.6198 | 0.04542 | 1,620,980.50 | 116,662.93
25k Unexpanded | 0.5478 | 0.0362 | 1,833,059.10 | 121,233.81
50k Expanded | 0.5104 | 0.04347 | 1,973,107.90 | 184,073.49
50k Unexpanded | 0.4528 | 0.03387 | 2,219,034.50 | 170,984.32
```
After a large enough quantity of range tombstones are written, range tombstone Gets can become faster than reading from an equivalent DB with several point tombstones.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4493
Differential Revision: D10842844
Pulled By: abhimadan
fbshipit-source-id: a7d44534f8120e6aabb65779d26c6b9df954c509
Summary:
Previously, range tombstones were accumulated from every level, which
was necessary if a range tombstone in a higher level covered a key in a lower
level. However, RangeDelAggregator::AddTombstones's complexity is based on
the number of tombstones that are currently stored in it, which is wasteful in
the Get case, where we only need to know the highest sequence number of range
tombstones that cover the key from higher levels, and compute the highest covering
sequence number at the current level. This change introduces this optimization, and
removes the use of RangeDelAggregator from the Get path.
In the benchmark results, the following command was used to initialize the database:
```
./db_bench -db=/dev/shm/5k-rts -use_existing_db=false -benchmarks=filluniquerandom -write_buffer_size=1048576 -compression_type=lz4 -target_file_size_base=1048576 -max_bytes_for_level_base=4194304 -value_size=112 -key_size=16 -block_size=4096 -level_compaction_dynamic_level_bytes=true -num=5000000 -max_background_jobs=12 -benchmark_write_rate_limit=20971520 -range_tombstone_width=100 -writes_per_range_tombstone=100 -max_num_range_tombstones=50000 -bloom_bits=8
```
...and the following command was used to measure read throughput:
```
./db_bench -db=/dev/shm/5k-rts/ -use_existing_db=true -benchmarks=readrandom -disable_auto_compactions=true -num=5000000 -reads=100000 -threads=32
```
The filluniquerandom command was only run once, and the resulting database was used
to measure read performance before and after the PR. Both binaries were compiled with
`DEBUG_LEVEL=0`.
Readrandom results before PR:
```
readrandom : 4.544 micros/op 220090 ops/sec; 16.9 MB/s (63103 of 100000 found)
```
Readrandom results after PR:
```
readrandom : 11.147 micros/op 89707 ops/sec; 6.9 MB/s (63103 of 100000 found)
```
So it's actually slower right now, but this PR paves the way for future optimizations (see #4493).
----
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4449
Differential Revision: D10370575
Pulled By: abhimadan
fbshipit-source-id: 9a2e152be1ef36969055c0e9eb4beb0d96c11f4d