Commit Graph

4 Commits

Author SHA1 Message Date
Yanqin Jin
3122cb4358 Revise APIs related to user-defined timestamp (#8946)
Summary:
ajkr reminded me that we have a rule of not including per-kv related data in `WriteOptions`.
Namely, `WriteOptions` should not include information about "what-to-write", but should just
include information about "how-to-write".

According to this rule, `WriteOptions::timestamp` (experimental) is clearly a violation. Therefore,
this PR removes `WriteOptions::timestamp` for compliance.
After the removal, we need to pass timestamp info via another set of APIs. This PR proposes a set
of overloaded functions `Put(write_opts, key, value, ts)`, `Delete(write_opts, key, ts)`, and
`SingleDelete(write_opts, key, ts)`. Planned to add `Write(write_opts, batch, ts)`, but its complexity
made me reconsider doing it in another PR (maybe).

For better checking and returning error early, we also add a new set of APIs to `WriteBatch` that take
extra `timestamp` information when writing to `WriteBatch`es.
These set of APIs in `WriteBatchWithIndex` are currently not supported, and are on our TODO list.

Removed `WriteBatch::AssignTimestamps()` and renamed `WriteBatch::AssignTimestamp()` to
`WriteBatch::UpdateTimestamps()` since this method require that all keys have space for timestamps
allocated already and multiple timestamps can be updated.

The constructor of `WriteBatch` now takes a fourth argument `default_cf_ts_sz` which is the timestamp
size of the default column family. This will be used to allocate space when calling APIs that do not
specify a column family handle.

Also, updated `DB::Get()`, `DB::MultiGet()`, `DB::NewIterator()`, `DB::NewIterators()` methods, replacing
some assertions about timestamp to returning Status code.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8946

Test Plan:
make check
./db_bench -benchmarks=fillseq,fillrandom,readrandom,readseq,deleterandom -user_timestamp_size=8
./db_stress --user_timestamp_size=8 -nooverwritepercent=0 -test_secondary=0 -secondary_catch_up_one_in=0 -continuous_verification_interval=0

Make sure there is no perf regression by running the following
```
./db_bench_opt -db=/dev/shm/rocksdb -use_existing_db=0 -level0_stop_writes_trigger=256 -level0_slowdown_writes_trigger=256 -level0_file_num_compaction_trigger=256 -disable_wal=1 -duration=10 -benchmarks=fillrandom
```

Before this PR
```
DB path: [/dev/shm/rocksdb]
fillrandom   :       1.831 micros/op 546235 ops/sec;   60.4 MB/s
```
After this PR
```
DB path: [/dev/shm/rocksdb]
fillrandom   :       1.820 micros/op 549404 ops/sec;   60.8 MB/s
```

Reviewed By: ltamasi

Differential Revision: D33721359

Pulled By: riversand963

fbshipit-source-id: c131561534272c120ffb80711d42748d21badf09
2022-02-01 22:19:01 -08:00
Yanqin Jin
2a2b3e03a5 Allow WriteBatch to have keys with different timestamp sizes (#8725)
Summary:
In the past, we unnecessarily requires all keys in the same write batch
to be from column families whose timestamps' formats are the same for
simplicity. Specifically, we cannot use the same write batch to write to
two column families, one of which enables timestamp while the other
disables it.

The limitation is due to the member `timestamp_size_` that used to exist
in each `WriteBatch` object. We pass a timestamp_size to the constructor
of `WriteBatch`. Therefore, users can simply use the old
`WriteBatch::Put()`, `WriteBatch::Delete()`, etc APIs for write, while
the internal implementation of `WriteBatch` will take care of memory
allocation for timestamps.

The above is not necessary.
One the one hand, users can set up a memory buffer to store user key and
then contiguously append the timestamp to the user key. Then the user
can pass this buffer to the `WriteBatch::Put(Slice&)` API.
On the other hand, users can set up a SliceParts object which is an
array of Slices and let the last Slice to point to the memory buffer
storing timestamp. Then the user can pass the SliceParts object to the
`WriteBatch::Put(SliceParts&)` API.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8725

Test Plan: make check

Reviewed By: ltamasi

Differential Revision: D30654499

Pulled By: riversand963

fbshipit-source-id: 9d848c77ad3c9dd629aa5fc4e2bc16fb0687b4a2
2021-09-12 15:34:26 -07:00
Drewryz
3b27725245 Fix a minor issue with initializing the test path (#8555)
Summary:
The PerThreadDBPath has already specified a slash. It does not need to be specified when initializing the test path.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8555

Reviewed By: ajkr

Differential Revision: D29758399

Pulled By: jay-zhuang

fbshipit-source-id: 6d2b878523e3e8580536e2829cb25489844d9011
2021-07-23 08:38:45 -07:00
Andrew Kryczka
78ee8564ad Integrity protection for live updates to WriteBatch (#7748)
Summary:
This PR adds the foundation classes for key-value integrity protection and the first use case: protecting live updates from the source buffers added to `WriteBatch` through the destination buffer in `MemTable`. The width of the protection info is not yet configurable -- only eight bytes per key is supported. This PR allows users to enable protection by constructing `WriteBatch` with `protection_bytes_per_key == 8`. It does not yet expose a way for users to get integrity protection via other write APIs (e.g., `Put()`, `Merge()`, `Delete()`, etc.).

The foundation classes (`ProtectionInfo.*`) embed the coverage info in their type, and provide `Protect.*()` and `Strip.*()` functions to navigate between types with different coverage. For making bytes per key configurable (for powers of two up to eight) in the future, these classes are templated on the unsigned integer type used to store the protection info. That integer contains the XOR'd result of hashes with independent seeds for all covered fields. For integer fields, the hash is computed on the raw unadjusted bytes, so the result is endian-dependent. The most significant bytes are truncated when the hash value (8 bytes) is wider than the protection integer.

When `WriteBatch` is constructed with `protection_bytes_per_key == 8`, we hold a `ProtectionInfoKVOTC` (i.e., one that covers key, value, optype aka `ValueType`, timestamp, and CF ID) for each entry added to the batch. The protection info is generated from the original buffers passed by the user, as well as the original metadata generated internally. When writing to memtable, each entry is transformed to a `ProtectionInfoKVOTS` (i.e., dropping coverage of CF ID and adding coverage of sequence number), since at that point we know the sequence number, and have already selected a memtable corresponding to a particular CF. This protection info is verified once the entry is encoded in the `MemTable` buffer.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7748

Test Plan:
- an integration test to verify a wide variety of single-byte changes to the encoded `MemTable` buffer are caught
- add to stress/crash test to verify it works in variety of configs/operations without intentional corruption
- [deferred] unit tests for `ProtectionInfo.*` classes for edge cases like KV swap, `SliceParts` and `Slice` APIs are interchangeable, etc.

Reviewed By: pdillinger

Differential Revision: D25754492

Pulled By: ajkr

fbshipit-source-id: e481bac6c03c2ab268be41359730f1ceb9964866
2021-01-29 12:18:58 -08:00