8 Commits

Author SHA1 Message Date
Peter Dillinger
efd035164b Meta-internal folly integration with F14FastMap (#9546)
Summary:
Especially after updating to C++17, I don't see a compelling case for
*requiring* any folly components in RocksDB. I was able to purge the existing
hard dependencies, and it can be quite difficult to strip out non-trivial components
from folly for use in RocksDB. (The prospect of doing that on F14 has changed
my mind on the best approach here.)

But this change creates an optional integration where we can plug in
components from folly at compile time, starting here with F14FastMap to replace
std::unordered_map when possible (probably no public APIs for example). I have
replaced the biggest CPU users of std::unordered_map with compile-time
pluggable UnorderedMap which will use F14FastMap when USE_FOLLY is set.
USE_FOLLY is always set in the Meta-internal buck build, and a simulation of
that is in the Makefile for public CI testing. A full folly build is not needed, but
checking out the full folly repo is much simpler for getting the dependency,
and anything else we might want to optionally integrate in the future.

Some picky details:
* I don't think the distributed mutex stuff is actually used, so it was easy to remove.
* I implemented an alternative to `folly::constexpr_log2` (which is much easier
in C++17 than C++11) so that I could pull out the hard dependencies on
`ConstexprMath.h`
* I had to add noexcept move constructors/operators to some types to make
F14's complainUnlessNothrowMoveAndDestroy check happy, and I added a
macro to make that easier in some common cases.
* Updated Meta-internal buck build to use folly F14Map (always)

No updates to HISTORY.md nor INSTALL.md as this is not (yet?) considered a
production integration for open source users.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9546

Test Plan:
CircleCI tests updated so that a couple of them use folly.

Most internal unit & stress/crash tests updated to use Meta-internal latest folly.
(Note: they should probably use buck but they currently use Makefile.)

Example performance improvement: when filter partitions are pinned in cache,
they are tracked by PartitionedFilterBlockReader::filter_map_ and we can build
a test that exercises that heavily. Build DB with

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=10000000 -disable_wal=1 -write_buffer_size=30000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters
```

and test with (simultaneous runs with & without folly, ~20 times each to see
convergence)

```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench_folly -readonly -use_existing_db -benchmarks=readrandom -num=10000000 -bloom_bits=16 -compaction_style=2 -fifo_compaction_max_table_files_size_mb=10000 -fifo_compaction_allow_compaction=0 -partition_index_and_filters -duration=40 -pin_l0_filter_and_index_blocks_in_cache
```

Average ops/s no folly: 26229.2
Average ops/s with folly: 26853.3 (+2.4%)

Reviewed By: ajkr

Differential Revision: D34181736

Pulled By: pdillinger

fbshipit-source-id: ffa6ad5104c2880321d8a1aa7187e00ab0d02e94
2022-04-13 07:34:01 -07:00
Hui Xiao
49623f9c8e Account memory of big memory users in BlockBasedTable in global memory limit (#9748)
Summary:
**Context:**
Through heap profiling, we discovered that `BlockBasedTableReader` objects can accumulate and lead to high memory usage (e.g, `max_open_file = -1`). These memories are currently not saved, not tracked, not constrained and not cache evict-able. As a first step to improve this, similar to https://github.com/facebook/rocksdb/pull/8428,  this PR is to track an estimate of `BlockBasedTableReader` object's memory in block cache and fail future creation if the memory usage exceeds the available space of cache at the time of creation.

**Summary:**
- Approximate big memory users  (`BlockBasedTable::Rep` and `TableProperties` )' memory usage in addition to the existing estimated ones (filter block/index block/un-compression dictionary)
- Charge all of these memory usages to block cache on `BlockBasedTable::Open()` and release them on `~BlockBasedTable()` as there is no memory usage fluctuation of concern in between
- Refactor on CacheReservationManager (and its call-sites) to add concurrent support for BlockBasedTable  used in this PR.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9748

Test Plan:
- New unit tests
- db bench: `OpenDb` : **-0.52% in ms**
  - Setup `./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -write_buffer_size=1048576`
  - Repeated run with pre-change w/o feature and post-change with feature, benchmark `OpenDb`:  `./db_bench -benchmarks=readrandom -use_existing_db=1 -db=/dev/shm/testdb -reserve_table_reader_memory=true (remove this when running w/o feature) -file_opening_threads=3 -open_files=-1 -report_open_timing=true| egrep 'OpenDb:'`

#-run | (feature-off) avg milliseconds | std milliseconds | (feature-on) avg milliseconds | std milliseconds | change (%)
-- | -- | -- | -- | -- | --
10 | 11.4018 | 5.95173 | 9.47788 | 1.57538 | -16.87382694
20 | 9.23746 | 0.841053 | 9.32377 | 1.14074 | 0.9343477536
40 | 9.0876 | 0.671129 | 9.35053 | 1.11713 | 2.893283155
80 | 9.72514 | 2.28459 | 9.52013 | 1.0894 | -2.108041632
160 | 9.74677 | 0.991234 | 9.84743 | 1.73396 | 1.032752389
320 | 10.7297 | 5.11555 | 10.547 | 1.97692 | **-1.70275031**
640 | 11.7092 | 2.36565 | 11.7869 | 2.69377 | **0.6635807741**

-  db bench on write with cost to cache in WriteBufferManager (just in case this PR's CRM refactoring accidentally slows down anything in WBM) : `fillseq` : **+0.54% in micros/op**
`./db_bench -benchmarks=fillseq -db=/dev/shm/testdb -disable_auto_compactions=1 -cost_write_buffer_to_cache=true -write_buffer_size=10000000000 | egrep 'fillseq'`

#-run | (pre-PR) avg micros/op | std micros/op | (post-PR)  avg micros/op | std micros/op | change (%)
-- | -- | -- | -- | -- | --
10 | 6.15 | 0.260187 | 6.289 | 0.371192 | 2.260162602
20 | 7.28025 | 0.465402 | 7.37255 | 0.451256 | 1.267813605
40 | 7.06312 | 0.490654 | 7.13803 | 0.478676 | **1.060579461**
80 | 7.14035 | 0.972831 | 7.14196 | 0.92971 | **0.02254791432**

-  filter bench: `bloom filter`: **-0.78% in ms/key**
    - ` ./filter_bench -impl=2 -quick -reserve_table_builder_memory=true | grep 'Build avg'`

#-run | (pre-PR) avg ns/key | std ns/key | (post-PR)  ns/key | std ns/key | change (%)
-- | -- | -- | -- | -- | --
10 | 26.4369 | 0.442182 | 26.3273 | 0.422919 | **-0.4145720565**
20 | 26.4451 | 0.592787 | 26.1419 | 0.62451 | **-1.1465262**

- Crash test `python3 tools/db_crashtest.py blackbox --reserve_table_reader_memory=1 --cache_size=1` killed as normal

Reviewed By: ajkr

Differential Revision: D35136549

Pulled By: hx235

fbshipit-source-id: 146978858d0f900f43f4eb09bfd3e83195e3be28
2022-04-06 10:33:00 -07:00
Peter Dillinger
0050a73a4f New stable, fixed-length cache keys (#9126)
Summary:
This change standardizes on a new 16-byte cache key format for
block cache (incl compressed and secondary) and persistent cache (but
not table cache and row cache).

The goal is a really fast cache key with practically ideal stability and
uniqueness properties without external dependencies (e.g. from FileSystem).
A fixed key size of 16 bytes should enable future optimizations to the
concurrent hash table for block cache, which is a heavy CPU user /
bottleneck, but there appears to be measurable performance improvement
even with no changes to LRUCache.

This change replaces a lot of disjointed and ugly code handling cache
keys with calls to a simple, clean new internal API (cache_key.h).
(Preserving the old cache key logic under an option would be very ugly
and likely negate the performance gain of the new approach. Complete
replacement carries some inherent risk, but I think that's acceptable
with sufficient analysis and testing.)

The scheme for encoding new cache keys is complicated but explained
in cache_key.cc.

Also: EndianSwapValue is moved to math.h to be next to other bit
operations. (Explains some new include "math.h".) ReverseBits operation
added and unit tests added to hash_test for both.

Fixes https://github.com/facebook/rocksdb/issues/7405 (presuming a root cause)

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9126

Test Plan:
### Basic correctness
Several tests needed updates to work with the new functionality, mostly
because we are no longer relying on filesystem for stable cache keys
so table builders & readers need more context info to agree on cache
keys. This functionality is so core, a huge number of existing tests
exercise the cache key functionality.

### Performance
Create db with
`TEST_TMPDIR=/dev/shm ./db_bench -bloom_bits=10 -benchmarks=fillrandom -num=3000000 -partition_index_and_filters`
And test performance with
`TEST_TMPDIR=/dev/shm ./db_bench -readonly -use_existing_db -bloom_bits=10 -benchmarks=readrandom -num=3000000 -duration=30 -cache_index_and_filter_blocks -cache_size=250000 -threads=4`
using DEBUG_LEVEL=0 and simultaneous before & after runs.
Before ops/sec, avg over 100 runs: 121924
After ops/sec, avg over 100 runs: 125385 (+2.8%)

### Collision probability
I have built a tool, ./cache_bench -stress_cache_key to broadly simulate host-wide cache activity
over many months, by making some pessimistic simplifying assumptions:
* Every generated file has a cache entry for every byte offset in the file (contiguous range of cache keys)
* All of every file is cached for its entire lifetime

We use a simple table with skewed address assignment and replacement on address collision
to simulate files coming & going, with quite a variance (super-Poisson) in ages. Some output
with `./cache_bench -stress_cache_key -sck_keep_bits=40`:

```
Total cache or DBs size: 32TiB  Writing 925.926 MiB/s or 76.2939TiB/day
Multiply by 9.22337e+18 to correct for simulation losses (but still assume whole file cached)
```

These come from default settings of 2.5M files per day of 32 MB each, and
`-sck_keep_bits=40` means that to represent a single file, we are only keeping 40 bits of
the 128-bit cache key.  With file size of 2\*\*25 contiguous keys (pessimistic), our simulation
is about 2\*\*(128-40-25) or about 9 billion billion times more prone to collision than reality.

More default assumptions, relatively pessimistic:
* 100 DBs in same process (doesn't matter much)
* Re-open DB in same process (new session ID related to old session ID) on average
every 100 files generated
* Restart process (all new session IDs unrelated to old) 24 times per day

After enough data, we get a result at the end:

```
(keep 40 bits)  17 collisions after 2 x 90 days, est 10.5882 days between (9.76592e+19 corrected)
```

If we believe the (pessimistic) simulation and the mathematical generalization, we would need to run a billion machines all for 97 billion days to expect a cache key collision. To help verify that our generalization ("corrected") is robust, we can make our simulation more precise with `-sck_keep_bits=41` and `42`, which takes more running time to get enough data:

```
(keep 41 bits)  16 collisions after 4 x 90 days, est 22.5 days between (1.03763e+20 corrected)
(keep 42 bits)  19 collisions after 10 x 90 days, est 47.3684 days between (1.09224e+20 corrected)
```

The generalized prediction still holds. With the `-sck_randomize` option, we can see that we are beating "random" cache keys (except offsets still non-randomized) by a modest amount (roughly 20x less collision prone than random), which should make us reasonably comfortable even in "degenerate" cases:

```
197 collisions after 1 x 90 days, est 0.456853 days between (4.21372e+18 corrected)
```

I've run other tests to validate other conditions behave as expected, never behaving "worse than random" unless we start chopping off structured data.

Reviewed By: zhichao-cao

Differential Revision: D33171746

Pulled By: pdillinger

fbshipit-source-id: f16a57e369ed37be5e7e33525ace848d0537c88f
2021-12-16 17:15:13 -08:00
Hui Xiao
2fbe32b0c1 RAII support for per cache reservation through handle (#9130)
Summary:
Note: This PR is the 3rd PR of a bigger PR stack (https://github.com/facebook/rocksdb/issues/9073) and depends on the second PR (https://github.com/facebook/rocksdb/pull/9071). **See changes from this PR only 00447324d0**

Context:
pdillinger brought up a good [point](https://github.com/facebook/rocksdb/pull/9073#discussion_r741478309) about lacking RAII support for per cache reservation in `CacheReservationManager`  when reviewing https://github.com/facebook/rocksdb/pull/9073.

To summarize the discussion, the current API `CacheReservationManager::UpdateCacheReservation()` requires callers to explicitly calculate and pass in a correct`new_mem_used` to release a cache reservation (if they don't want to rely on the clean-up during `CacheReservationManager`'s destruction - such as they want to release it earlier).

While this implementation has convenience in some use-case such as `WriteBufferManager`, where [reservation](https://github.com/facebook/rocksdb/blob/main/memtable/write_buffer_manager.cc#L69-L91) and [release](https://github.com/facebook/rocksdb/blob/main/memtable/write_buffer_manager.cc#L109-L129) amounts do not necessarily correspond symmetrically and thus a flexible `new_mem_used` inputing is needed, it can be prone to caller's calculation error as well as cause a mass of codes in releasing cache in other use-case such as filter construction, where reservation and release amounts do correspond symmetrically and many code paths requiring a cache release, as [pointed](https://github.com/facebook/rocksdb/pull/9073#discussion_r741478309) out by pdillinger.

Therefore we decided to provide a new API in `CacheReservationManager` to update reservation with better RAII support for per cache reservation, using a handle to manage the life time of that particular cache reservation.
- Added a new class `CacheReservationHandle`
- Added a new API `CacheReservationManager::MakeCacheReservation()` that outputs a `CacheReservationHandle` for managing the reservation
- Updated class comments to clarify two different cache reservation methods

Tests:
- Passing new tests

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9130

Reviewed By: pdillinger

Differential Revision: D32199446

Pulled By: hx235

fbshipit-source-id: 1cba7c636e5ecfb55b0c1e0c2d218cc9b5b30b4e
2021-11-09 12:06:28 -08:00
Hui Xiao
ffd6085e1f Add new API CacheReservationManager::GetTotalMemoryUsage() (#9071)
Summary:
Note: This PR is the 2nd PR of a bigger PR stack (https://github.com/facebook/rocksdb/pull/9073).

Context:
`CacheReservationManager::UpdateCacheReservation(std::size_t new_memory_used)` accepts an accumulated total memory used (e.g, used 10MB so far) instead of usage change (e.g, increase by 5 MB, decrease by 5 MB). It has benefits including consolidating API for increase and decrease as described in https://github.com/facebook/rocksdb/pull/8506.

However, not every `CacheReservationManager` user keeps track of this accumulated total memory usage. For example, Bloom/Ribbon Filter construction (e.g, [here](822d729fcd/table/block_based/filter_policy.cc (L587)) in https://github.com/facebook/rocksdb/pull/9073) does not  while WriteBufferManager and compression dictionary buffering do.

Considering future users might or might not keep track of this counter and implementing this counter within `CacheReservationManager` is easy due to the passed-in `std::size_t new_memory_used` in calling `CacheReservationManager::UpdateCacheReservation(std::size_t new_memory_used)`, it is proposed to add a new API `CacheReservationManager::GetTotalMemoryUsage()`.

As noted in the API comments,   since `CacheReservationManager` is NOT thread-safe, external synchronization is
 needed in calling `UpdateCacheReservation()` if you want `GetTotalMemoryUsed()` returns the indeed latest memory used.
- Added and updated private counter `memory_used_` every time `CacheReservationManager::UpdateCacheReservation(std::size_t new_memory_used)` is called regardless if the call returns non-okay status
- Added `CacheReservationManager::GetTotalMemoryUsage()` to return `memory_used_`

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9071

Test Plan:
- Passing new tests
- Passing existing tests

Reviewed By: ajkr

Differential Revision: D31887813

Pulled By: hx235

fbshipit-source-id: 9a09f0c8683822673260362894c878b61ee60ceb
2021-11-09 08:17:03 -08:00
Hui Xiao
3018a3e27e Minor improvement to CacheReservationManager/WriteBufferManager/CompressionDictBuilding (#9139)
Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/9139

Reviewed By: zhichao-cao

Differential Revision: D32211415

Pulled By: hx235

fbshipit-source-id: 39ce036ba34e1fb4a1992a33ac6904a4a943301d
2021-11-05 16:13:47 -07:00
Hui Xiao
560fe70233 Add new API CacheReservationManager::GetDummyEntrySize() (#9072)
Summary:
Note: it might conflict with another CRM related PR https://github.com/facebook/rocksdb/pull/9071 and so will merge after that's merged.

Context:
As `CacheReservationManager` being used by more memory users, it is convenient to retrieve the dummy entry size for `CacheReservationManager` instead of hard-coding `256 * 1024` in writing tests. Plus it allows more flexibility to change our implementation on dummy entry size.

A follow-up PR is needed to replace those hard-coded dummy entry size value in `db_test2.cc`, `db_write_buffer_manager_test.cc`, `write_buffer_manager_test.cc`, `table_test.cc` and the ones introduced in https://github.com/facebook/rocksdb/pull/9072#issue-1034326069.
- Exposed the private static constexpr `kDummyEntrySize` through public static `CacheReservationManager::GetDummyEntrySize()`

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9072

Test Plan:
- Passing new tests
- Passing existing tests

Reviewed By: ajkr

Differential Revision: D32043684

Pulled By: hx235

fbshipit-source-id: ddefc6921c052adab6a2cda2394eb26da3076a50
2021-11-01 14:46:09 -07:00
Hui Xiao
74cfe7db60 Refactor WriteBufferManager::CacheRep into CacheReservationManager (#8506)
Summary:
Context:
To help cap various memory usage by a single limit of the block cache capacity, we charge the memory usage through inserting/releasing dummy entries in the block cache. CacheReservationManager is such a class (non thread-safe) responsible for  inserting/removing dummy entries to reserve cache space for memory used by the class user.

- Refactored the inner private class CacheRep of WriteBufferManager into public CacheReservationManager class for reusability such as for https://github.com/facebook/rocksdb/pull/8428

- Encapsulated implementation details of cache key generation and dummy entries insertion/release in cache reservation as discussed in https://github.com/facebook/rocksdb/pull/8506#discussion_r666550838

- Consolidated increase/decrease cache reservation into one API - UpdateCacheReservation.

- Adjusted the previous dummy entry release algorithm in decreasing cache reservation to be loop-releasing dummy entries to stay symmetric to dummy entry insertion algorithm

- Made the previous dummy entry release algorithm in delayed decrease mode more aggressive for better decreasing cache reservation when memory used is less likely to increase back.

  Previously, the algorithms only release 1 dummy entries when new_mem_used < 3/4 * cache_allocated_size_ and cache_allocated_size_ - kSizeDummyEntry > new_mem_used.
Now, the algorithms loop-releases as many dummy entries as possible when new_mem_used < 3/4 * cache_allocated_size_.

- Updated WriteBufferManager's test cases to adapt to changes on the release algorithm mentioned above and left comment for some test cases for clarity

- Replaced the previous cache key prefix generation (utilizing object address related to the cache client) with one that utilizes Cache->NewID() to prevent cache-key collision among dummy entry clients sharing the same cache.

  The specific collision we are preventing happens when the object address is reused for a new cache-key prefix while the old cache-key using that same object address in its prefix still exists in the cache. This could happen due to that, under LRU cache policy, there is a possible delay in releasing a cache entry after the cache client object owning that cache entry get deallocated. In this case, the object address related to the cache client object can get reused for other client object to generate a new cache-key prefix.

  This prefix generation can be made obsolete after Peter's unification of all the code generating cache key, mentioned in https://github.com/facebook/rocksdb/pull/8506#discussion_r667265255

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8506

Test Plan:
- Passing the added unit tests cache_reservation_manager_test.cc
- Passing existing and adjusted write_buffer_manager_test.cc

Reviewed By: ajkr

Differential Revision: D29644135

Pulled By: hx235

fbshipit-source-id: 0fc93fbfe4a40bb41be85c314f8f2bafa8b741f7
2021-08-24 12:43:31 -07:00