// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef OS_WIN #include #endif #ifdef ROCKSDB_MALLOC_USABLE_SIZE #ifdef OS_FREEBSD #include #else #include #endif #endif #include #include #include #include #include #ifdef OS_LINUX #include #include #include #include #include #endif #ifdef ROCKSDB_FALLOCATE_PRESENT #include #endif #include "port/port.h" #include "rocksdb/env.h" #include "util/coding.h" #include "util/env_chroot.h" #include "util/log_buffer.h" #include "util/mutexlock.h" #include "util/string_util.h" #include "util/sync_point.h" #include "util/testharness.h" #include "util/testutil.h" #ifdef OS_LINUX static const size_t kPageSize = sysconf(_SC_PAGESIZE); #else static const size_t kPageSize = 4 * 1024; #endif namespace rocksdb { static const int kDelayMicros = 100000; struct Deleter { explicit Deleter(void (*fn)(void*)) : fn_(fn) {} void operator()(void* ptr) { assert(fn_); assert(ptr); (*fn_)(ptr); } void (*fn_)(void*); }; std::unique_ptr NewAligned(const size_t size, const char ch) { char* ptr = nullptr; #ifdef OS_WIN if (!(ptr = reinterpret_cast(_aligned_malloc(size, kPageSize)))) { return std::unique_ptr(nullptr, Deleter(_aligned_free)); } std::unique_ptr uptr(ptr, Deleter(_aligned_free)); #else if (posix_memalign(reinterpret_cast(&ptr), kPageSize, size) != 0) { return std::unique_ptr(nullptr, Deleter(free)); } std::unique_ptr uptr(ptr, Deleter(free)); #endif memset(uptr.get(), ch, size); return uptr; } class EnvPosixTest : public testing::Test { private: port::Mutex mu_; std::string events_; public: Env* env_; bool direct_io_; EnvPosixTest() : env_(Env::Default()), direct_io_(false) {} }; class EnvPosixTestWithParam : public EnvPosixTest, public ::testing::WithParamInterface> { public: EnvPosixTestWithParam() { std::pair param_pair = GetParam(); env_ = param_pair.first; direct_io_ = param_pair.second; } void WaitThreadPoolsEmpty() { // Wait until the thread pools are empty. while (env_->GetThreadPoolQueueLen(Env::Priority::LOW) != 0) { Env::Default()->SleepForMicroseconds(kDelayMicros); } while (env_->GetThreadPoolQueueLen(Env::Priority::HIGH) != 0) { Env::Default()->SleepForMicroseconds(kDelayMicros); } } ~EnvPosixTestWithParam() { WaitThreadPoolsEmpty(); } }; static void SetBool(void* ptr) { reinterpret_cast*>(ptr)->store(true); } TEST_P(EnvPosixTestWithParam, RunImmediately) { std::atomic called(false); env_->Schedule(&SetBool, &called); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(called.load()); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, UnSchedule) { std::atomic called(false); env_->SetBackgroundThreads(1, Env::LOW); /* Block the low priority queue */ test::SleepingBackgroundTask sleeping_task, sleeping_task1; env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task, Env::Priority::LOW); /* Schedule another task */ env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task1, Env::Priority::LOW, &sleeping_task1); /* Remove it with a different tag */ ASSERT_EQ(0, env_->UnSchedule(&called, Env::Priority::LOW)); /* Remove it from the queue with the right tag */ ASSERT_EQ(1, env_->UnSchedule(&sleeping_task1, Env::Priority::LOW)); // Unblock background thread sleeping_task.WakeUp(); /* Schedule another task */ env_->Schedule(&SetBool, &called); for (int i = 0; i < kDelayMicros; i++) { if (called.load()) { break; } Env::Default()->SleepForMicroseconds(1); } ASSERT_TRUE(called.load()); ASSERT_TRUE(!sleeping_task.IsSleeping() && !sleeping_task1.IsSleeping()); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, RunMany) { std::atomic last_id(0); struct CB { std::atomic* last_id_ptr; // Pointer to shared slot int id; // Order# for the execution of this callback CB(std::atomic* p, int i) : last_id_ptr(p), id(i) {} static void Run(void* v) { CB* cb = reinterpret_cast(v); int cur = cb->last_id_ptr->load(); ASSERT_EQ(cb->id - 1, cur); cb->last_id_ptr->store(cb->id); } }; // Schedule in different order than start time CB cb1(&last_id, 1); CB cb2(&last_id, 2); CB cb3(&last_id, 3); CB cb4(&last_id, 4); env_->Schedule(&CB::Run, &cb1); env_->Schedule(&CB::Run, &cb2); env_->Schedule(&CB::Run, &cb3); env_->Schedule(&CB::Run, &cb4); Env::Default()->SleepForMicroseconds(kDelayMicros); int cur = last_id.load(std::memory_order_acquire); ASSERT_EQ(4, cur); WaitThreadPoolsEmpty(); } struct State { port::Mutex mu; int val; int num_running; }; static void ThreadBody(void* arg) { State* s = reinterpret_cast(arg); s->mu.Lock(); s->val += 1; s->num_running -= 1; s->mu.Unlock(); } TEST_P(EnvPosixTestWithParam, StartThread) { State state; state.val = 0; state.num_running = 3; for (int i = 0; i < 3; i++) { env_->StartThread(&ThreadBody, &state); } while (true) { state.mu.Lock(); int num = state.num_running; state.mu.Unlock(); if (num == 0) { break; } Env::Default()->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(state.val, 3); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, TwoPools) { // Data structures to signal tasks to run. port::Mutex mutex; port::CondVar cv(&mutex); bool should_start = false; class CB { public: CB(const std::string& pool_name, int pool_size, port::Mutex* trigger_mu, port::CondVar* trigger_cv, bool* _should_start) : mu_(), num_running_(0), num_finished_(0), pool_size_(pool_size), pool_name_(pool_name), trigger_mu_(trigger_mu), trigger_cv_(trigger_cv), should_start_(_should_start) {} static void Run(void* v) { CB* cb = reinterpret_cast(v); cb->Run(); } void Run() { { MutexLock l(&mu_); num_running_++; // make sure we don't have more than pool_size_ jobs running. ASSERT_LE(num_running_, pool_size_.load()); } { MutexLock l(trigger_mu_); while (!(*should_start_)) { trigger_cv_->Wait(); } } { MutexLock l(&mu_); num_running_--; num_finished_++; } } int NumFinished() { MutexLock l(&mu_); return num_finished_; } void Reset(int pool_size) { pool_size_.store(pool_size); num_finished_ = 0; } private: port::Mutex mu_; int num_running_; int num_finished_; std::atomic pool_size_; std::string pool_name_; port::Mutex* trigger_mu_; port::CondVar* trigger_cv_; bool* should_start_; }; const int kLowPoolSize = 2; const int kHighPoolSize = 4; const int kJobs = 8; CB low_pool_job("low", kLowPoolSize, &mutex, &cv, &should_start); CB high_pool_job("high", kHighPoolSize, &mutex, &cv, &should_start); env_->SetBackgroundThreads(kLowPoolSize); env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. int sleep_count = 0; while ((unsigned int)(kJobs - kLowPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::LOW) || (unsigned int)(kJobs - kHighPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) { env_->SleepForMicroseconds(kDelayMicros); if (++sleep_count > 100) { break; } } ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Trigger jobs to run. { MutexLock l(&mutex); should_start = true; cv.SignalAll(); } // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Hold jobs to schedule; should_start = false; // call IncBackgroundThreadsIfNeeded to two pools. One increasing and // the other decreasing env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW); env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH); high_pool_job.Reset(kHighPoolSize + 1); low_pool_job.Reset(kLowPoolSize); // schedule same number of jobs in each pool for (int i = 0; i < kJobs; i++) { env_->Schedule(&CB::Run, &low_pool_job); env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH); } // Wait a short while for the jobs to be dispatched. sleep_count = 0; while ((unsigned int)(kJobs - kLowPoolSize) != env_->GetThreadPoolQueueLen(Env::Priority::LOW) || (unsigned int)(kJobs - (kHighPoolSize + 1)) != env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) { env_->SleepForMicroseconds(kDelayMicros); if (++sleep_count > 100) { break; } } ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen()); ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize), env_->GetThreadPoolQueueLen(Env::Priority::LOW)); ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)), env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); // Trigger jobs to run. { MutexLock l(&mutex); should_start = true; cv.SignalAll(); } // wait for all jobs to finish while (low_pool_job.NumFinished() < kJobs || high_pool_job.NumFinished() < kJobs) { env_->SleepForMicroseconds(kDelayMicros); } env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH); WaitThreadPoolsEmpty(); } TEST_P(EnvPosixTestWithParam, DecreaseNumBgThreads) { std::vector tasks(10); // Set number of thread to 1 first. env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); // Schedule 3 tasks. 0 running; Task 1, 2 waiting. for (size_t i = 0; i < 3; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); } ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 2 threads. Task 0, 1 running; 2 waiting env_->SetBackgroundThreads(2, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Shrink back to 1 thread. Still task 0, 1 running, 2 waiting env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // The last task finishes. Task 0 running, 2 waiting. tasks[1].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(!tasks[1].IsSleeping()); ASSERT_TRUE(!tasks[2].IsSleeping()); // Increase to 5 threads. Task 0 and 2 running. env_->SetBackgroundThreads(5, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[0].IsSleeping()); ASSERT_TRUE(tasks[2].IsSleeping()); // Change number of threads a couple of times while there is no sufficient // tasks. env_->SetBackgroundThreads(7, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); tasks[2].WakeUp(); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(3, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(5, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); Env::Default()->SleepForMicroseconds(kDelayMicros * 50); // Enqueue 5 more tasks. Thread pool size now is 4. // Task 0, 3, 4, 5 running;6, 7 waiting. for (size_t i = 3; i < 8; i++) { env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i], Env::Priority::HIGH); } Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[3].IsSleeping()); ASSERT_TRUE(tasks[4].IsSleeping()); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(!tasks[7].IsSleeping()); // Wake up task 0, 3 and 4. Task 5, 6, 7 running. tasks[0].WakeUp(); tasks[3].WakeUp(); tasks[4].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); for (size_t i = 5; i < 8; i++) { ASSERT_TRUE(tasks[i].IsSleeping()); } // Shrink back to 1 thread. Still task 5, 6, 7 running env_->SetBackgroundThreads(1, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up task 6. Task 5, 7 running tasks[6].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(tasks[5].IsSleeping()); ASSERT_TRUE(!tasks[6].IsSleeping()); ASSERT_TRUE(tasks[7].IsSleeping()); // Wake up threads 7. Task 5 running tasks[7].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[7].IsSleeping()); // Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running. env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[8], Env::Priority::HIGH); env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[9], Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0); ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping()); // Increase to 4 threads. Task 5, 8, 9 running. env_->SetBackgroundThreads(4, Env::Priority::HIGH); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH)); ASSERT_TRUE(tasks[8].IsSleeping()); ASSERT_TRUE(tasks[9].IsSleeping()); // Shrink to 1 thread env_->SetBackgroundThreads(1, Env::Priority::HIGH); // Wake up thread 9. tasks[9].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[9].IsSleeping()); ASSERT_TRUE(tasks[8].IsSleeping()); // Wake up thread 8 tasks[8].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[8].IsSleeping()); // Wake up the last thread tasks[5].WakeUp(); Env::Default()->SleepForMicroseconds(kDelayMicros); ASSERT_TRUE(!tasks[5].IsSleeping()); WaitThreadPoolsEmpty(); } #if (defined OS_LINUX || defined OS_WIN) // Travis doesn't support fallocate or getting unique ID from files for whatever // reason. #ifndef TRAVIS namespace { bool IsSingleVarint(const std::string& s) { Slice slice(s); uint64_t v; if (!GetVarint64(&slice, &v)) { return false; } return slice.size() == 0; } bool IsUniqueIDValid(const std::string& s) { return !s.empty() && !IsSingleVarint(s); } const size_t MAX_ID_SIZE = 100; char temp_id[MAX_ID_SIZE]; } // namespace // Determine whether we can use the FS_IOC_GETVERSION ioctl // on a file in directory DIR. Create a temporary file therein, // try to apply the ioctl (save that result), cleanup and // return the result. Return true if it is supported, and // false if anything fails. // Note that this function "knows" that dir has just been created // and is empty, so we create a simply-named test file: "f". bool ioctl_support__FS_IOC_GETVERSION(const std::string& dir) { #ifdef OS_WIN return true; #else const std::string file = dir + "/f"; int fd; do { fd = open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); long int version; bool ok = (fd >= 0 && ioctl(fd, FS_IOC_GETVERSION, &version) >= 0); close(fd); unlink(file.c_str()); return ok; #endif } // To ensure that Env::GetUniqueId-related tests work correctly, the files // should be stored in regular storage like "hard disk" or "flash device", // and not on a tmpfs file system (like /dev/shm and /tmp on some systems). // Otherwise we cannot get the correct id. // // This function serves as the replacement for test::TmpDir(), which may be // customized to be on a file system that doesn't work with GetUniqueId(). class IoctlFriendlyTmpdir { public: explicit IoctlFriendlyTmpdir() { char dir_buf[100]; const char *fmt = "%s/rocksdb.XXXXXX"; const char *tmp = getenv("TEST_IOCTL_FRIENDLY_TMPDIR"); #ifdef OS_WIN #define rmdir _rmdir if(tmp == nullptr) { tmp = getenv("TMP"); } snprintf(dir_buf, sizeof dir_buf, fmt, tmp); auto result = _mktemp(dir_buf); assert(result != nullptr); BOOL ret = CreateDirectory(dir_buf, NULL); assert(ret == TRUE); dir_ = dir_buf; #else std::list candidate_dir_list = {"/var/tmp", "/tmp"}; // If $TEST_IOCTL_FRIENDLY_TMPDIR/rocksdb.XXXXXX fits, use // $TEST_IOCTL_FRIENDLY_TMPDIR; subtract 2 for the "%s", and // add 1 for the trailing NUL byte. if (tmp && strlen(tmp) + strlen(fmt) - 2 + 1 <= sizeof dir_buf) { // use $TEST_IOCTL_FRIENDLY_TMPDIR value candidate_dir_list.push_front(tmp); } for (const std::string& d : candidate_dir_list) { snprintf(dir_buf, sizeof dir_buf, fmt, d.c_str()); if (mkdtemp(dir_buf)) { if (ioctl_support__FS_IOC_GETVERSION(dir_buf)) { dir_ = dir_buf; return; } else { // Diagnose ioctl-related failure only if this is the // directory specified via that envvar. if (tmp && tmp == d) { fprintf(stderr, "TEST_IOCTL_FRIENDLY_TMPDIR-specified directory is " "not suitable: %s\n", d.c_str()); } rmdir(dir_buf); // ignore failure } } else { // mkdtemp failed: diagnose it, but don't give up. fprintf(stderr, "mkdtemp(%s/...) failed: %s\n", d.c_str(), strerror(errno)); } } fprintf(stderr, "failed to find an ioctl-friendly temporary directory;" " specify one via the TEST_IOCTL_FRIENDLY_TMPDIR envvar\n"); std::abort(); #endif } ~IoctlFriendlyTmpdir() { rmdir(dir_.c_str()); } const std::string& name() const { return dir_; } private: std::string dir_; }; #ifndef ROCKSDB_LITE TEST_F(EnvPosixTest, PositionedAppend) { unique_ptr writable_file; EnvOptions options; options.use_direct_writes = true; options.use_mmap_writes = false; IoctlFriendlyTmpdir ift; ASSERT_OK(env_->NewWritableFile(ift.name() + "/f", &writable_file, options)); const size_t kBlockSize = 4096; const size_t kPageSize = 4096; const size_t kDataSize = kPageSize; // Write a page worth of 'a' auto data_ptr = NewAligned(kDataSize, 'a'); Slice data_a(data_ptr.get(), kDataSize); ASSERT_OK(writable_file->PositionedAppend(data_a, 0U)); // Write a page worth of 'b' right after the first sector data_ptr = NewAligned(kDataSize, 'b'); Slice data_b(data_ptr.get(), kDataSize); ASSERT_OK(writable_file->PositionedAppend(data_b, kBlockSize)); ASSERT_OK(writable_file->Close()); // The file now has 1 sector worth of a followed by a page worth of b // Verify the above unique_ptr seq_file; ASSERT_OK(env_->NewSequentialFile(ift.name() + "/f", &seq_file, options)); char scratch[kPageSize * 2]; Slice result; ASSERT_OK(seq_file->Read(sizeof(scratch), &result, scratch)); ASSERT_EQ(kPageSize + kBlockSize, result.size()); ASSERT_EQ('a', result[kBlockSize - 1]); ASSERT_EQ('b', result[kBlockSize]); } #endif // !ROCKSDB_LITE // Only works in linux platforms TEST_P(EnvPosixTestWithParam, RandomAccessUniqueID) { // Create file. if (env_ == Env::Default()) { EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/testfile"; unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); unique_ptr file; // Get Unique ID ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id1(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id1)); // Get Unique ID again ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id2(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id2)); // Get Unique ID again after waiting some time. env_->SleepForMicroseconds(1000000); ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); std::string unique_id3(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id3)); // Check IDs are the same. ASSERT_EQ(unique_id1, unique_id2); ASSERT_EQ(unique_id2, unique_id3); // Delete the file env_->DeleteFile(fname); } } // only works in linux platforms #ifdef ROCKSDB_FALLOCATE_PRESENT TEST_P(EnvPosixTestWithParam, AllocateTest) { if (env_ == Env::Default()) { IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/preallocate_testfile"; // Try fallocate in a file to see whether the target file system supports // it. // Skip the test if fallocate is not supported. std::string fname_test_fallocate = ift.name() + "/preallocate_testfile_2"; int fd = -1; do { fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644); } while (fd < 0 && errno == EINTR); ASSERT_GT(fd, 0); int alloc_status = fallocate(fd, 0, 0, 1); int err_number = 0; if (alloc_status != 0) { err_number = errno; fprintf(stderr, "Warning: fallocate() fails, %s\n", strerror(err_number)); } close(fd); ASSERT_OK(env_->DeleteFile(fname_test_fallocate)); if (alloc_status != 0 && err_number == EOPNOTSUPP) { // The filesystem containing the file does not support fallocate return; } EnvOptions soptions; soptions.use_mmap_writes = false; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); // allocate 100 MB size_t kPreallocateSize = 100 * 1024 * 1024; size_t kBlockSize = 512; size_t kPageSize = 4096; size_t kDataSize = 1024 * 1024; auto data_ptr = NewAligned(kDataSize, 'A'); Slice data(data_ptr.get(), kDataSize); wfile->SetPreallocationBlockSize(kPreallocateSize); wfile->PrepareWrite(wfile->GetFileSize(), kDataSize); ASSERT_OK(wfile->Append(data)); ASSERT_OK(wfile->Flush()); struct stat f_stat; ASSERT_EQ(stat(fname.c_str(), &f_stat), 0); ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size); // verify that blocks are preallocated // Note here that we don't check the exact number of blocks preallocated -- // we only require that number of allocated blocks is at least what we // expect. // It looks like some FS give us more blocks that we asked for. That's fine. // It might be worth investigating further. ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks); // close the file, should deallocate the blocks wfile.reset(); stat(fname.c_str(), &f_stat); ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size); // verify that preallocated blocks were deallocated on file close // Because the FS might give us more blocks, we add a full page to the size // and expect the number of blocks to be less or equal to that. ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize, (unsigned int)f_stat.st_blocks); } } #endif // ROCKSDB_FALLOCATE_PRESENT // Returns true if any of the strings in ss are the prefix of another string. bool HasPrefix(const std::unordered_set& ss) { for (const std::string& s: ss) { if (s.empty()) { return true; } for (size_t i = 1; i < s.size(); ++i) { if (ss.count(s.substr(0, i)) != 0) { return true; } } } return false; } // Only works in linux and WIN platforms TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDConcurrent) { if (env_ == Env::Default()) { // Check whether a bunch of concurrently existing files have unique IDs. EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; // Create the files IoctlFriendlyTmpdir ift; std::vector fnames; for (int i = 0; i < 1000; ++i) { fnames.push_back(ift.name() + "/" + "testfile" + ToString(i)); // Create file. unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions)); } // Collect and check whether the IDs are unique. std::unordered_set ids; for (const std::string fname : fnames) { unique_ptr file; std::string unique_id; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); } // Delete the files for (const std::string fname : fnames) { ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } } // Only works in linux and WIN platforms TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDDeletes) { if (env_ == Env::Default()) { EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; IoctlFriendlyTmpdir ift; std::string fname = ift.name() + "/" + "testfile"; // Check that after file is deleted we don't get same ID again in a new // file. std::unordered_set ids; for (int i = 0; i < 1000; ++i) { // Create file. { unique_ptr wfile; ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); } // Get Unique ID std::string unique_id; { unique_ptr file; ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE); ASSERT_TRUE(id_size > 0); unique_id = std::string(temp_id, id_size); } ASSERT_TRUE(IsUniqueIDValid(unique_id)); ASSERT_TRUE(ids.count(unique_id) == 0); ids.insert(unique_id); // Delete the file ASSERT_OK(env_->DeleteFile(fname)); } ASSERT_TRUE(!HasPrefix(ids)); } } // Only works in linux platforms #ifdef OS_WIN TEST_P(EnvPosixTestWithParam, DISABLED_InvalidateCache) { #else TEST_P(EnvPosixTestWithParam, InvalidateCache) { #endif rocksdb::SyncPoint::GetInstance()->EnableProcessing(); EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; std::string fname = test::TmpDir(env_) + "/" + "testfile"; const size_t kSectorSize = 512; auto data = NewAligned(kSectorSize, 0); Slice slice(data.get(), kSectorSize); // Create file. { unique_ptr wfile; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (soptions.use_direct_writes) { soptions.use_direct_writes = false; } #endif ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions)); ASSERT_OK(wfile->Append(slice)); ASSERT_OK(wfile->InvalidateCache(0, 0)); ASSERT_OK(wfile->Close()); } // Random Read { unique_ptr file; auto scratch = NewAligned(kSectorSize, 0); Slice result; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (soptions.use_direct_reads) { soptions.use_direct_reads = false; } #endif ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions)); ASSERT_OK(file->Read(0, kSectorSize, &result, scratch.get())); ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0); ASSERT_OK(file->InvalidateCache(0, 11)); ASSERT_OK(file->InvalidateCache(0, 0)); } // Sequential Read { unique_ptr file; auto scratch = NewAligned(kSectorSize, 0); Slice result; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (soptions.use_direct_reads) { soptions.use_direct_reads = false; } #endif ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions)); if (file->use_direct_io()) { ASSERT_OK(file->PositionedRead(0, kSectorSize, &result, scratch.get())); } else { ASSERT_OK(file->Read(kSectorSize, &result, scratch.get())); } ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0); ASSERT_OK(file->InvalidateCache(0, 11)); ASSERT_OK(file->InvalidateCache(0, 0)); } // Delete the file ASSERT_OK(env_->DeleteFile(fname)); rocksdb::SyncPoint::GetInstance()->ClearTrace(); } #endif // not TRAVIS #endif // OS_LINUX || OS_WIN class TestLogger : public Logger { public: using Logger::Logv; virtual void Logv(const char* format, va_list ap) override { log_count++; char new_format[550]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated // When we have n == -1 there is not a terminating zero expected #ifdef OS_WIN if (n < 0) { char_0_count++; } #endif if (new_format[0] == '[') { // "[DEBUG] " ASSERT_TRUE(n <= 56 + (512 - static_cast(sizeof(struct timeval)))); } else { ASSERT_TRUE(n <= 48 + (512 - static_cast(sizeof(struct timeval)))); } va_end(backup_ap); } for (size_t i = 0; i < sizeof(new_format); i++) { if (new_format[i] == 'x') { char_x_count++; } else if (new_format[i] == '\0') { char_0_count++; } } } int log_count; int char_x_count; int char_0_count; }; TEST_P(EnvPosixTestWithParam, LogBufferTest) { TestLogger test_logger; test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); test_logger.log_count = 0; test_logger.char_x_count = 0; test_logger.char_0_count = 0; LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger); char bytes200[200]; std::fill_n(bytes200, sizeof(bytes200), '1'); bytes200[sizeof(bytes200) - 1] = '\0'; char bytes600[600]; std::fill_n(bytes600, sizeof(bytes600), '1'); bytes600[sizeof(bytes600) - 1] = '\0'; char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; LogToBuffer(&log_buffer, "x%sx", bytes200); LogToBuffer(&log_buffer, "x%sx", bytes600); LogToBuffer(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200); LogToBuffer(&log_buffer, "x%sx%sx", bytes200, bytes600); LogToBuffer(&log_buffer, "x%sx%sx", bytes600, bytes9000); LogToBuffer(&log_buffer_debug, "x%sx", bytes200); test_logger.SetInfoLogLevel(DEBUG_LEVEL); LogToBuffer(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000, bytes200); ASSERT_EQ(0, test_logger.log_count); log_buffer.FlushBufferToLog(); log_buffer_debug.FlushBufferToLog(); ASSERT_EQ(6, test_logger.log_count); ASSERT_EQ(6, test_logger.char_0_count); ASSERT_EQ(10, test_logger.char_x_count); } class TestLogger2 : public Logger { public: explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {} using Logger::Logv; virtual void Logv(const char* format, va_list ap) override { char new_format[2000]; std::fill_n(new_format, sizeof(new_format), '2'); { va_list backup_ap; va_copy(backup_ap, ap); int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap); // 48 bytes for extra information + bytes allocated ASSERT_TRUE( n <= 48 + static_cast(max_log_size_ - sizeof(struct timeval))); ASSERT_TRUE(n > static_cast(max_log_size_ - sizeof(struct timeval))); va_end(backup_ap); } } size_t max_log_size_; }; TEST_P(EnvPosixTestWithParam, LogBufferMaxSizeTest) { char bytes9000[9000]; std::fill_n(bytes9000, sizeof(bytes9000), '1'); bytes9000[sizeof(bytes9000) - 1] = '\0'; for (size_t max_log_size = 256; max_log_size <= 1024; max_log_size += 1024 - 256) { TestLogger2 test_logger(max_log_size); test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL); LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger); LogToBuffer(&log_buffer, max_log_size, "%s", bytes9000); log_buffer.FlushBufferToLog(); } } TEST_P(EnvPosixTestWithParam, Preallocation) { rocksdb::SyncPoint::GetInstance()->EnableProcessing(); const std::string src = test::TmpDir(env_) + "/" + "testfile"; unique_ptr srcfile; EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (soptions.use_direct_writes) { rocksdb::SyncPoint::GetInstance()->SetCallBack( "NewWritableFile:O_DIRECT", [&](void* arg) { int* val = static_cast(arg); *val &= ~O_DIRECT; }); } #endif ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions)); srcfile->SetPreallocationBlockSize(1024 * 1024); // No writes should mean no preallocation size_t block_size, last_allocated_block; srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 0UL); // Small write should preallocate one block size_t kStrSize = 4096; auto data = NewAligned(kStrSize, 'A'); Slice str(data.get(), kStrSize); srcfile->PrepareWrite(srcfile->GetFileSize(), kStrSize); srcfile->Append(str); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 1UL); // Write an entire preallocation block, make sure we increased by two. { auto buf_ptr = NewAligned(block_size, ' '); Slice buf(buf_ptr.get(), block_size); srcfile->PrepareWrite(srcfile->GetFileSize(), block_size); srcfile->Append(buf); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 2UL); } // Write five more blocks at once, ensure we're where we need to be. { auto buf_ptr = NewAligned(block_size * 5, ' '); Slice buf = Slice(buf_ptr.get(), block_size * 5); srcfile->PrepareWrite(srcfile->GetFileSize(), buf.size()); srcfile->Append(buf); srcfile->GetPreallocationStatus(&block_size, &last_allocated_block); ASSERT_EQ(last_allocated_block, 7UL); } rocksdb::SyncPoint::GetInstance()->ClearTrace(); } // Test that the two ways to get children file attributes (in bulk or // individually) behave consistently. TEST_P(EnvPosixTestWithParam, ConsistentChildrenAttributes) { rocksdb::SyncPoint::GetInstance()->EnableProcessing(); EnvOptions soptions; soptions.use_direct_reads = soptions.use_direct_writes = direct_io_; const int kNumChildren = 10; std::string data; for (int i = 0; i < kNumChildren; ++i) { std::ostringstream oss; oss << test::TmpDir(env_) << "/testfile_" << i; const std::string path = oss.str(); unique_ptr file; #if !defined(OS_MACOSX) && !defined(OS_WIN) if (soptions.use_direct_writes) { rocksdb::SyncPoint::GetInstance()->SetCallBack( "NewWritableFile:O_DIRECT", [&](void* arg) { int* val = static_cast(arg); *val &= ~O_DIRECT; }); } #endif ASSERT_OK(env_->NewWritableFile(path, &file, soptions)); auto buf_ptr = NewAligned(data.size(), 'T'); Slice buf(buf_ptr.get(), data.size()); file->Append(buf); data.append(std::string(4096, 'T')); } std::vector file_attrs; ASSERT_OK(env_->GetChildrenFileAttributes(test::TmpDir(env_), &file_attrs)); for (int i = 0; i < kNumChildren; ++i) { std::ostringstream oss; oss << "testfile_" << i; const std::string name = oss.str(); const std::string path = test::TmpDir(env_) + "/" + name; auto file_attrs_iter = std::find_if( file_attrs.begin(), file_attrs.end(), [&name](const Env::FileAttributes& fm) { return fm.name == name; }); ASSERT_TRUE(file_attrs_iter != file_attrs.end()); uint64_t size; ASSERT_OK(env_->GetFileSize(path, &size)); ASSERT_EQ(size, 4096 * i); ASSERT_EQ(size, file_attrs_iter->size_bytes); } rocksdb::SyncPoint::GetInstance()->ClearTrace(); } // Test that all WritableFileWrapper forwards all calls to WritableFile. TEST_P(EnvPosixTestWithParam, WritableFileWrapper) { class Base : public WritableFile { public: mutable int *step_; void inc(int x) const { EXPECT_EQ(x, (*step_)++); } explicit Base(int* step) : step_(step) { inc(0); } Status Append(const Slice& data) override { inc(1); return Status::OK(); } Status Truncate(uint64_t size) override { return Status::OK(); } Status Close() override { inc(2); return Status::OK(); } Status Flush() override { inc(3); return Status::OK(); } Status Sync() override { inc(4); return Status::OK(); } Status Fsync() override { inc(5); return Status::OK(); } void SetIOPriority(Env::IOPriority pri) override { inc(6); } uint64_t GetFileSize() override { inc(7); return 0; } void GetPreallocationStatus(size_t* block_size, size_t* last_allocated_block) override { inc(8); } size_t GetUniqueId(char* id, size_t max_size) const override { inc(9); return 0; } Status InvalidateCache(size_t offset, size_t length) override { inc(10); return Status::OK(); } protected: Status Allocate(uint64_t offset, uint64_t len) override { inc(11); return Status::OK(); } Status RangeSync(uint64_t offset, uint64_t nbytes) override { inc(12); return Status::OK(); } public: ~Base() { inc(13); } }; class Wrapper : public WritableFileWrapper { public: explicit Wrapper(WritableFile* target) : WritableFileWrapper(target) {} void CallProtectedMethods() { Allocate(0, 0); RangeSync(0, 0); } }; int step = 0; { Base b(&step); Wrapper w(&b); w.Append(Slice()); w.Close(); w.Flush(); w.Sync(); w.Fsync(); w.SetIOPriority(Env::IOPriority::IO_HIGH); w.GetFileSize(); w.GetPreallocationStatus(nullptr, nullptr); w.GetUniqueId(nullptr, 0); w.InvalidateCache(0, 0); w.CallProtectedMethods(); } EXPECT_EQ(14, step); } TEST_P(EnvPosixTestWithParam, PosixRandomRWFile) { const std::string path = test::TmpDir(env_) + "/random_rw_file"; env_->DeleteFile(path); std::unique_ptr file; ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); char buf[10000]; Slice read_res; ASSERT_OK(file->Write(0, "ABCD")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABCD"); ASSERT_OK(file->Write(2, "XXXX")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXX"); ASSERT_OK(file->Write(10, "ZZZ")); ASSERT_OK(file->Read(10, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZZZ"); ASSERT_OK(file->Write(11, "Y")); ASSERT_OK(file->Read(10, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZYZ"); ASSERT_OK(file->Write(200, "FFFFF")); ASSERT_OK(file->Read(200, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFF"); ASSERT_OK(file->Write(205, "XXXX")); ASSERT_OK(file->Read(200, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFFXXXX"); ASSERT_OK(file->Write(5, "QQQQ")); ASSERT_OK(file->Read(0, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ"); ASSERT_OK(file->Read(2, 4, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "XXXQ"); // Close file and reopen it file->Close(); ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); ASSERT_OK(file->Read(0, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ"); ASSERT_OK(file->Read(10, 3, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ZYZ"); ASSERT_OK(file->Read(200, 9, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "FFFFFXXXX"); ASSERT_OK(file->Write(4, "TTTTTTTTTTTTTTTT")); ASSERT_OK(file->Read(0, 10, &read_res, buf)); ASSERT_EQ(read_res.ToString(), "ABXXTTTTTT"); // Clean up env_->DeleteFile(path); } class RandomRWFileWithMirrorString { public: explicit RandomRWFileWithMirrorString(RandomRWFile* _file) : file_(_file) {} void Write(size_t offset, const std::string& data) { // Write to mirror string StringWrite(offset, data); // Write to file Status s = file_->Write(offset, data); ASSERT_OK(s) << s.ToString(); } void Read(size_t offset = 0, size_t n = 1000000) { Slice str_res(nullptr, 0); if (offset < file_mirror_.size()) { size_t str_res_sz = std::min(file_mirror_.size() - offset, n); str_res = Slice(file_mirror_.data() + offset, str_res_sz); StopSliceAtNull(&str_res); } Slice file_res; Status s = file_->Read(offset, n, &file_res, buf_); ASSERT_OK(s) << s.ToString(); StopSliceAtNull(&file_res); ASSERT_EQ(str_res.ToString(), file_res.ToString()) << offset << " " << n; } void SetFile(RandomRWFile* _file) { file_ = _file; } private: void StringWrite(size_t offset, const std::string& src) { if (offset + src.size() > file_mirror_.size()) { file_mirror_.resize(offset + src.size(), '\0'); } char* pos = const_cast(file_mirror_.data() + offset); memcpy(pos, src.data(), src.size()); } void StopSliceAtNull(Slice* slc) { for (size_t i = 0; i < slc->size(); i++) { if ((*slc)[i] == '\0') { *slc = Slice(slc->data(), i); break; } } } char buf_[10000]; RandomRWFile* file_; std::string file_mirror_; }; TEST_P(EnvPosixTestWithParam, PosixRandomRWFileRandomized) { const std::string path = test::TmpDir(env_) + "/random_rw_file_rand"; env_->DeleteFile(path); unique_ptr file; ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); RandomRWFileWithMirrorString file_with_mirror(file.get()); Random rnd(301); std::string buf; for (int i = 0; i < 10000; i++) { // Genrate random data test::RandomString(&rnd, 10, &buf); // Pick random offset for write size_t write_off = rnd.Next() % 1000; file_with_mirror.Write(write_off, buf); // Pick random offset for read size_t read_off = rnd.Next() % 1000; size_t read_sz = rnd.Next() % 20; file_with_mirror.Read(read_off, read_sz); if (i % 500 == 0) { // Reopen the file every 500 iters ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions())); file_with_mirror.SetFile(file.get()); } } // clean up env_->DeleteFile(path); } INSTANTIATE_TEST_CASE_P(DefaultEnvWithoutDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(Env::Default(), false))); #if !defined(ROCKSDB_LITE) INSTANTIATE_TEST_CASE_P(DefaultEnvWithDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(Env::Default(), true))); #endif // !defined(ROCKSDB_LITE) #if !defined(ROCKSDB_LITE) && !defined(OS_WIN) static unique_ptr chroot_env(NewChrootEnv(Env::Default(), test::TmpDir(Env::Default()))); INSTANTIATE_TEST_CASE_P( ChrootEnvWithoutDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(chroot_env.get(), false))); INSTANTIATE_TEST_CASE_P( ChrootEnvWithDirectIO, EnvPosixTestWithParam, ::testing::Values(std::pair(chroot_env.get(), true))); #endif // !defined(ROCKSDB_LITE) && !defined(OS_WIN) } // namespace rocksdb int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }