
“Lockless” Get() in RocksDB?

Lei Jin
Database Engineering@Facebook

Scale with CPU Cores

What’s Changed in the Picture?

Read Request

Active
MemTable

ReadOnly
MemTable

LSM

sst sst

sst sst

sst

sst

d

Memory

Get(k)

100 nanos

100 nanos

100 micros

100 nanos

tmpfs

What’s Changed in the Picture?

What’s Changed in the Picture?

What’s Changed in the Picture?

What’s Changed in the Picture?

•Mutex becomes extremely expensive when storage
access is fast

0

20

40

60

80

100

1 2 4 8 16 24 32 40

sys

usr

%
 C

P
U

of Threads

Under the Mutex

•What is done inside mutex?

mutex_.lock()
auto* sv = SuperVersion.ref() // ++int64_t & pointer assignment
mutex_.unlock()
!
{ data retrievel }
!
mutex_.lock()
if (sv->unref()) {
 delete sv
}
mutex_.unlock()

•SuperVersion change is a relatively infrequent event

Observation

mutex_.lock()
auto* sv = SuperVersion.ref()
mutex_.unlock()
!
{ data retrievel }
!
mutex_.lock()
if (sv->unref()) {
 delete sv
}
mutex_.unlock()

Compaction Flush

Proposed Solution

auto* sv = ThreadLocal.Get()
!
if (UNLIKELY(sv->version != global_version)) {
 mutex_.lock()
 auto* sv = SuperVersion.ref()
 mutex_.unlock()
}
!
{ data retrievel }
!
ThreadLocal.Put(sv)

•SuperVersion change is a relatively infrequent event

CPU Breakdown on 32 Core Server

0

20

40

60

80

100

1 2 4 8 16 24 32 40

sys

usr

0

20

40

60

80

100

1 2 4 8 16 24 32 40

sys

usr

of Threads

%
 C

P
U

Get Performance on 32 Core Server

0

1

2

3

4

5

1 2 4 8 16 24 32 40

before

after

of Threads

M
il

li
o

n
 Q

P
S

/
Se

c

P99 latency on 32 Core Server

0

10

20

30

40

50

60

70

1 2 4 8 16 24 32 40

before

after

of Threads

m
ic

ro
-s

ec
o

n
d

s

Experiment Setup

•Server

•CPU @2.2GHz, 32 cores

•20480KB cache & 144GB ram

•Key 20 bytes, value 100 bytes

•Prefix 12 bytes, 10 keys per prefix

•No compression

•500M keys loaded with filluniquerandom (~64G data)

•Readwhilewriting with 10k/s write speed

•No backup performed

Take away

•By separating read-only and read-write data structures in the
design, RocksDB makes performance scaling much easier

!

•Future work

•Iteration performance

•Write performance

•Improve cache efficiency for critical data structures

