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What’s Changed in the Picture?
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What’s Changed in the Picture?

•Mutex becomes extremely expensive when storage 
access is fast
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Under the Mutex

•What is done inside mutex?

mutex_.lock() 
auto* sv = SuperVersion.ref()          // ++int64_t & pointer assignment 
mutex_.unlock() 
!
{ data retrievel } 
!
mutex_.lock() 
if (sv->unref()) { 
   delete sv 
} 
mutex_.unlock()



•SuperVersion change is a relatively infrequent event

Observation

mutex_.lock() 
auto* sv = SuperVersion.ref() 
mutex_.unlock() 
!
{ data retrievel } 
!
mutex_.lock() 
if (sv->unref()) { 
   delete sv 
} 
mutex_.unlock()

Compaction Flush



Proposed Solution

auto* sv = ThreadLocal.Get() 
!
if (UNLIKELY(sv->version != global_version)) { 
    mutex_.lock() 
    auto* sv = SuperVersion.ref() 
    mutex_.unlock() 
} 
!
{ data retrievel } 
!
ThreadLocal.Put(sv)

•SuperVersion change is a relatively infrequent event



CPU Breakdown on 32 Core Server
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Get Performance on 32 Core Server
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P99 latency on 32 Core Server
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Experiment Setup

•Server 

•CPU @2.2GHz, 32 cores 

•20480KB cache & 144GB ram 

•Key 20 bytes, value 100 bytes 

•Prefix 12 bytes, 10 keys per prefix 

•No compression 

•500M keys loaded with filluniquerandom (~64G data) 

•Readwhilewriting with 10k/s write speed 

•No backup performed 



Take away

•By separating read-only and read-write data structures in the 
design, RocksDB makes performance scaling much easier  

!

•Future work 

•Iteration performance 

•Write performance 

•Improve cache efficiency for critical data structures


