// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/block_based_table_reader.h" #include #include #include "db/dbformat.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "table/block.h" #include "table/filter_block.h" #include "table/block_hash_index.h" #include "table/format.h" #include "table/meta_blocks.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/perf_context_imp.h" #include "util/stop_watch.h" namespace rocksdb { extern const uint64_t kBlockBasedTableMagicNumber; using std::unique_ptr; typedef BlockBasedTable::IndexReader IndexReader; namespace { // The longest the prefix of the cache key used to identify blocks can be. // We are using the fact that we know for Posix files the unique ID is three // varints. // For some reason, compiling for iOS complains that this variable is unused const size_t kMaxCacheKeyPrefixSize __attribute__((unused)) = kMaxVarint64Length * 3 + 1; // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // Set *didIO to true if didIO is not null. // On failure return non-OK. // On success fill *result and return OK - caller owns *result Status ReadBlockFromFile(RandomAccessFile* file, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, Block** result, Env* env, bool* didIO = nullptr, bool do_uncompress = true) { BlockContents contents; Status s = ReadBlockContents(file, footer, options, handle, &contents, env, do_uncompress); if (s.ok()) { *result = new Block(contents); } if (didIO != nullptr) { *didIO = true; } return s; } // Delete the resource that is held by the iterator. template void DeleteHeldResource(void* arg, void* ignored) { delete reinterpret_cast(arg); } // Delete the entry resided in the cache. template void DeleteCachedEntry(const Slice& key, void* value) { auto entry = reinterpret_cast(value); delete entry; } // Release the cached entry and decrement its ref count. void ReleaseCachedEntry(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle); } Slice GetCacheKey(const char* cache_key_prefix, size_t cache_key_prefix_size, const BlockHandle& handle, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset()); return Slice(cache_key, static_cast(end - cache_key)); } Cache::Handle* GetEntryFromCache(Cache* block_cache, const Slice& key, Tickers block_cache_miss_ticker, Tickers block_cache_hit_ticker, Statistics* statistics) { auto cache_handle = block_cache->Lookup(key); if (cache_handle != nullptr) { PERF_COUNTER_ADD(block_cache_hit_count, 1); // overall cache hit RecordTick(statistics, BLOCK_CACHE_HIT); // block-type specific cache hit RecordTick(statistics, block_cache_hit_ticker); } else { // overall cache miss RecordTick(statistics, BLOCK_CACHE_MISS); // block-type specific cache miss RecordTick(statistics, block_cache_miss_ticker); } return cache_handle; } } // namespace // -- IndexReader and its subclasses // IndexReader is the interface that provide the functionality for index access. class BlockBasedTable::IndexReader { public: explicit IndexReader(const Comparator* comparator) : comparator_(comparator) {} virtual ~IndexReader() {} // Create an iterator for index access. virtual Iterator* NewIterator() = 0; // The size of the index. virtual size_t size() const = 0; protected: const Comparator* comparator_; }; // Index that allows binary search lookup for the first key of each block. // This class can be viewed as a thin wrapper for `Block` class which already // supports binary search. class BinarySearchIndexReader : public IndexReader { public: // Read index from the file and create an intance for // `BinarySearchIndexReader`. // On success, index_reader will be populated; otherwise it will remain // unmodified. static Status Create(RandomAccessFile* file, const Footer& footer, const BlockHandle& index_handle, Env* env, const Comparator* comparator, IndexReader** index_reader) { Block* index_block = nullptr; auto s = ReadBlockFromFile(file, footer, ReadOptions(), index_handle, &index_block, env); if (s.ok()) { *index_reader = new BinarySearchIndexReader(comparator, index_block); } return s; } virtual Iterator* NewIterator() override { return index_block_->NewIterator(comparator_); } virtual size_t size() const override { return index_block_->size(); } private: BinarySearchIndexReader(const Comparator* comparator, Block* index_block) : IndexReader(comparator), index_block_(index_block) { assert(index_block_ != nullptr); } std::unique_ptr index_block_; }; // Index that leverages an internal hash table to quicken the lookup for a given // key. // @param data_iter_gen, equavalent to BlockBasedTable::NewIterator(). But that // functions requires index to be initalized. To avoid this problem external // caller will pass a function that can create the iterator over the entries // without the table to be fully initialized. class HashIndexReader : public IndexReader { public: static Status Create(RandomAccessFile* file, const Footer& footer, const BlockHandle& index_handle, Env* env, const Comparator* comparator, std::function data_iter_gen, const SliceTransform* prefix_extractor, IndexReader** index_reader) { assert(prefix_extractor); Block* index_block = nullptr; auto s = ReadBlockFromFile(file, footer, ReadOptions(), index_handle, &index_block, env); if (!s.ok()) { return s; } *index_reader = new HashIndexReader(comparator, index_block); std::unique_ptr index_iter(index_block->NewIterator(nullptr)); std::unique_ptr data_iter( data_iter_gen(index_block->NewIterator(nullptr))); auto hash_index = CreateBlockHashIndex(index_iter.get(), data_iter.get(), index_block->NumRestarts(), comparator, prefix_extractor); index_block->SetBlockHashIndex(hash_index); return s; } virtual Iterator* NewIterator() override { return index_block_->NewIterator(comparator_); } virtual size_t size() const override { return index_block_->size(); } private: HashIndexReader(const Comparator* comparator, Block* index_block) : IndexReader(comparator), index_block_(index_block) { assert(index_block_ != nullptr); } std::unique_ptr index_block_; }; struct BlockBasedTable::Rep { Rep(const EnvOptions& storage_options, const InternalKeyComparator& internal_comparator) : soptions(storage_options), internal_comparator(internal_comparator) {} Options options; const EnvOptions& soptions; const InternalKeyComparator& internal_comparator; Status status; unique_ptr file; char cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t cache_key_prefix_size = 0; char compressed_cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t compressed_cache_key_prefix_size = 0; // Footer contains the fixed table information Footer footer; // index_reader and filter will be populated and used only when // options.block_cache is nullptr; otherwise we will get the index block via // the block cache. unique_ptr index_reader; unique_ptr filter; std::shared_ptr table_properties; BlockBasedTableOptions::IndexType index_type; // TODO(kailiu) It is very ugly to use internal key in table, since table // module should not be relying on db module. However to make things easier // and compatible with existing code, we introduce a wrapper that allows // block to extract prefix without knowing if a key is internal or not. unique_ptr internal_prefix_transform; }; BlockBasedTable::~BlockBasedTable() { delete rep_; } // CachableEntry represents the entries that *may* be fetched from block cache. // field `value` is the item we want to get. // field `cache_handle` is the cache handle to the block cache. If the value // was not read from cache, `cache_handle` will be nullptr. template struct BlockBasedTable::CachableEntry { CachableEntry(TValue* value, Cache::Handle* cache_handle) : value(value) , cache_handle(cache_handle) { } CachableEntry(): CachableEntry(nullptr, nullptr) { } void Release(Cache* cache) { if (cache_handle) { cache->Release(cache_handle); value = nullptr; cache_handle = nullptr; } } TValue* value = nullptr; // if the entry is from the cache, cache_handle will be populated. Cache::Handle* cache_handle = nullptr; }; // Helper function to setup the cache key's prefix for the Table. void BlockBasedTable::SetupCacheKeyPrefix(Rep* rep) { assert(kMaxCacheKeyPrefixSize >= 10); rep->cache_key_prefix_size = 0; rep->compressed_cache_key_prefix_size = 0; if (rep->options.block_cache != nullptr) { GenerateCachePrefix(rep->options.block_cache.get(), rep->file.get(), &rep->cache_key_prefix[0], &rep->cache_key_prefix_size); } if (rep->options.block_cache_compressed != nullptr) { GenerateCachePrefix(rep->options.block_cache_compressed.get(), rep->file.get(), &rep->compressed_cache_key_prefix[0], &rep->compressed_cache_key_prefix_size); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, RandomAccessFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (*size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, WritableFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (*size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } Status BlockBasedTable::Open(const Options& options, const EnvOptions& soptions, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, unique_ptr&& file, uint64_t file_size, unique_ptr* table_reader) { table_reader->reset(); Footer footer(kBlockBasedTableMagicNumber); auto s = ReadFooterFromFile(file.get(), file_size, &footer); if (!s.ok()) return s; // We've successfully read the footer and the index block: we're // ready to serve requests. Rep* rep = new BlockBasedTable::Rep(soptions, internal_comparator); rep->options = options; rep->file = std::move(file); rep->footer = footer; rep->index_type = table_options.index_type; SetupCacheKeyPrefix(rep); unique_ptr new_table(new BlockBasedTable(rep)); // Read meta index std::unique_ptr meta; std::unique_ptr meta_iter; s = ReadMetaBlock(rep, &meta, &meta_iter); // Read the properties bool found_properties_block = true; s = SeekToPropertiesBlock(meta_iter.get(), &found_properties_block); if (found_properties_block) { s = meta_iter->status(); TableProperties* table_properties = nullptr; if (s.ok()) { s = ReadProperties(meta_iter->value(), rep->file.get(), rep->footer, rep->options.env, rep->options.info_log.get(), &table_properties); } if (!s.ok()) { auto err_msg = "[Warning] Encountered error while reading data from properties " "block " + s.ToString(); Log(rep->options.info_log, "%s", err_msg.c_str()); } else { rep->table_properties.reset(table_properties); } } else { Log(WARN_LEVEL, rep->options.info_log, "Cannot find Properties block from file."); } // Will use block cache for index/filter blocks access? if (options.block_cache && table_options.cache_index_and_filter_blocks) { // Hack: Call NewIndexIterator() to implicitly add index to the block_cache unique_ptr iter(new_table->NewIndexIterator(ReadOptions())); s = iter->status(); if (s.ok()) { // Hack: Call GetFilter() to implicitly add filter to the block_cache auto filter_entry = new_table->GetFilter(); filter_entry.Release(options.block_cache.get()); } } else { // If we don't use block cache for index/filter blocks access, we'll // pre-load these blocks, which will kept in member variables in Rep // and with a same life-time as this table object. IndexReader* index_reader = nullptr; // TODO: we never really verify check sum for index block s = new_table->CreateIndexReader(&index_reader); if (s.ok()) { rep->index_reader.reset(index_reader); // Set filter block if (rep->options.filter_policy) { std::string key = kFilterBlockPrefix; key.append(rep->options.filter_policy->Name()); meta_iter->Seek(key); if (meta_iter->Valid() && meta_iter->key() == Slice(key)) { rep->filter.reset(ReadFilter(meta_iter->value(), rep)); } } } else { delete index_reader; } } if (s.ok()) { *table_reader = std::move(new_table); } return s; } void BlockBasedTable::SetupForCompaction() { switch (rep_->options.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->Hint(RandomAccessFile::NORMAL); break; case Options::SEQUENTIAL: rep_->file->Hint(RandomAccessFile::SEQUENTIAL); break; case Options::WILLNEED: rep_->file->Hint(RandomAccessFile::WILLNEED); break; default: assert(false); } compaction_optimized_ = true; } std::shared_ptr BlockBasedTable::GetTableProperties() const { return rep_->table_properties; } // Load the meta-block from the file. On success, return the loaded meta block // and its iterator. Status BlockBasedTable::ReadMetaBlock( Rep* rep, std::unique_ptr* meta_block, std::unique_ptr* iter) { // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. // TODO: we never really verify check sum for meta index block Block* meta = nullptr; Status s = ReadBlockFromFile( rep->file.get(), rep->footer, ReadOptions(), rep->footer.metaindex_handle(), &meta, rep->options.env); if (!s.ok()) { auto err_msg = "[Warning] Encountered error while reading data from properties" "block " + s.ToString(); Log(rep->options.info_log, "%s", err_msg.c_str()); } if (!s.ok()) { delete meta; return s; } meta_block->reset(meta); // meta block uses bytewise comparator. iter->reset(meta->NewIterator(BytewiseComparator())); return Status::OK(); } Status BlockBasedTable::GetDataBlockFromCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, Statistics* statistics, const ReadOptions& read_options, BlockBasedTable::CachableEntry* block) { Status s; Block* compressed_block = nullptr; Cache::Handle* block_cache_compressed_handle = nullptr; // Lookup uncompressed cache first if (block_cache != nullptr) { block->cache_handle = GetEntryFromCache(block_cache, block_cache_key, BLOCK_CACHE_DATA_MISS, BLOCK_CACHE_DATA_HIT, statistics); if (block->cache_handle != nullptr) { block->value = reinterpret_cast(block_cache->Value(block->cache_handle)); return s; } } // If not found, search from the compressed block cache. assert(block->cache_handle == nullptr && block->value == nullptr); if (block_cache_compressed == nullptr) { return s; } assert(!compressed_block_cache_key.empty()); block_cache_compressed_handle = block_cache_compressed->Lookup(compressed_block_cache_key); // if we found in the compressed cache, then uncompress and insert into // uncompressed cache if (block_cache_compressed_handle == nullptr) { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS); return s; } // found compressed block RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT); compressed_block = reinterpret_cast( block_cache_compressed->Value(block_cache_compressed_handle)); assert(compressed_block->compression_type() != kNoCompression); // Retrieve the uncompressed contents into a new buffer BlockContents contents; s = UncompressBlockContents(compressed_block->data(), compressed_block->size(), &contents); // Insert uncompressed block into block cache if (s.ok()) { block->value = new Block(contents); // uncompressed block assert(block->value->compression_type() == kNoCompression); if (block_cache != nullptr && block->value->cachable() && read_options.fill_cache) { block->cache_handle = block_cache->Insert(block_cache_key, block->value, block->value->size(), &DeleteCachedEntry); assert(reinterpret_cast( block_cache->Value(block->cache_handle)) == block->value); } } // Release hold on compressed cache entry block_cache_compressed->Release(block_cache_compressed_handle); return s; } Status BlockBasedTable::PutDataBlockToCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, const ReadOptions& read_options, Statistics* statistics, CachableEntry* block, Block* raw_block) { assert(raw_block->compression_type() == kNoCompression || block_cache_compressed != nullptr); Status s; // Retrieve the uncompressed contents into a new buffer BlockContents contents; if (raw_block->compression_type() != kNoCompression) { s = UncompressBlockContents(raw_block->data(), raw_block->size(), &contents); } if (!s.ok()) { delete raw_block; return s; } if (raw_block->compression_type() != kNoCompression) { block->value = new Block(contents); // uncompressed block } else { block->value = raw_block; raw_block = nullptr; } // Insert compressed block into compressed block cache. // Release the hold on the compressed cache entry immediately. if (block_cache_compressed != nullptr && raw_block != nullptr && raw_block->cachable()) { auto cache_handle = block_cache_compressed->Insert( compressed_block_cache_key, raw_block, raw_block->size(), &DeleteCachedEntry); block_cache_compressed->Release(cache_handle); RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS); // Avoid the following code to delete this cached block. raw_block = nullptr; } delete raw_block; // insert into uncompressed block cache assert((block->value->compression_type() == kNoCompression)); if (block_cache != nullptr && block->value->cachable()) { block->cache_handle = block_cache->Insert(block_cache_key, block->value, block->value->size(), &DeleteCachedEntry); RecordTick(statistics, BLOCK_CACHE_ADD); assert(reinterpret_cast(block_cache->Value(block->cache_handle)) == block->value); } return s; } FilterBlockReader* BlockBasedTable::ReadFilter ( const Slice& filter_handle_value, BlockBasedTable::Rep* rep, size_t* filter_size) { Slice v = filter_handle_value; BlockHandle filter_handle; if (!filter_handle.DecodeFrom(&v).ok()) { return nullptr; } // TODO: We might want to unify with ReadBlockFromFile() if we start // requiring checksum verification in Table::Open. ReadOptions opt; BlockContents block; if (!ReadBlockContents(rep->file.get(), rep->footer, opt, filter_handle, &block, rep->options.env, false).ok()) { return nullptr; } if (filter_size) { *filter_size = block.data.size(); } return new FilterBlockReader( rep->options, block.data, block.heap_allocated); } BlockBasedTable::CachableEntry BlockBasedTable::GetFilter( bool no_io) const { // filter pre-populated if (rep_->filter != nullptr) { return {rep_->filter.get(), nullptr /* cache handle */}; } if (rep_->options.filter_policy == nullptr /* do not use filter at all */ || rep_->options.block_cache == nullptr /* no block cache at all */) { return {nullptr /* filter */, nullptr /* cache handle */}; } // Fetching from the cache Cache* block_cache = rep_->options.block_cache.get(); char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKey( rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->footer.metaindex_handle(), cache_key ); Statistics* statistics = rep_->options.statistics.get(); auto cache_handle = GetEntryFromCache(block_cache, key, BLOCK_CACHE_FILTER_MISS, BLOCK_CACHE_FILTER_HIT, statistics); FilterBlockReader* filter = nullptr; if (cache_handle != nullptr) { filter = reinterpret_cast( block_cache->Value(cache_handle)); } else if (no_io) { // Do not invoke any io. return CachableEntry(); } else { size_t filter_size = 0; std::unique_ptr meta; std::unique_ptr iter; auto s = ReadMetaBlock(rep_, &meta, &iter); if (s.ok()) { std::string filter_block_key = kFilterBlockPrefix; filter_block_key.append(rep_->options.filter_policy->Name()); iter->Seek(filter_block_key); if (iter->Valid() && iter->key() == Slice(filter_block_key)) { filter = ReadFilter(iter->value(), rep_, &filter_size); assert(filter); assert(filter_size > 0); cache_handle = block_cache->Insert( key, filter, filter_size, &DeleteCachedEntry); RecordTick(statistics, BLOCK_CACHE_ADD); } } } return { filter, cache_handle }; } Iterator* BlockBasedTable::NewIndexIterator(const ReadOptions& read_options) { // index reader has already been pre-populated. if (rep_->index_reader) { return rep_->index_reader->NewIterator(); } bool no_io = read_options.read_tier == kBlockCacheTier; Cache* block_cache = rep_->options.block_cache.get(); char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->footer.index_handle(), cache_key); Statistics* statistics = rep_->options.statistics.get(); auto cache_handle = GetEntryFromCache(block_cache, key, BLOCK_CACHE_INDEX_MISS, BLOCK_CACHE_INDEX_HIT, statistics); if (cache_handle == nullptr && no_io) { return NewErrorIterator(Status::Incomplete("no blocking io")); } IndexReader* index_reader = nullptr; if (cache_handle != nullptr) { index_reader = reinterpret_cast(block_cache->Value(cache_handle)); } else { // Create index reader and put it in the cache. Status s; s = CreateIndexReader(&index_reader); if (!s.ok()) { // make sure if something goes wrong, index_reader shall remain intact. assert(index_reader == nullptr); return NewErrorIterator(s); } cache_handle = block_cache->Insert(key, index_reader, index_reader->size(), &DeleteCachedEntry); RecordTick(statistics, BLOCK_CACHE_ADD); } assert(cache_handle); auto iter = index_reader->NewIterator(); iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, cache_handle); return iter; } // Convert an index iterator value (i.e., an encoded BlockHandle) // into an iterator over the contents of the corresponding block. Iterator* BlockBasedTable::NewDataBlockIterator(Rep* rep, const ReadOptions& ro, bool* didIO, const Slice& index_value) { const bool no_io = (ro.read_tier == kBlockCacheTier); Cache* block_cache = rep->options.block_cache.get(); Cache* block_cache_compressed = rep->options. block_cache_compressed.get(); CachableEntry block; BlockHandle handle; Slice input = index_value; // We intentionally allow extra stuff in index_value so that we // can add more features in the future. Status s = handle.DecodeFrom(&input); if (!s.ok()) { return NewErrorIterator(s); } // If either block cache is enabled, we'll try to read from it. if (block_cache != nullptr || block_cache_compressed != nullptr) { Statistics* statistics = rep->options.statistics.get(); char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; char compressed_cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice key, /* key to the block cache */ ckey /* key to the compressed block cache */; // create key for block cache if (block_cache != nullptr) { key = GetCacheKey(rep->cache_key_prefix, rep->cache_key_prefix_size, handle, cache_key); } if (block_cache_compressed != nullptr) { ckey = GetCacheKey(rep->compressed_cache_key_prefix, rep->compressed_cache_key_prefix_size, handle, compressed_cache_key); } s = GetDataBlockFromCache(key, ckey, block_cache, block_cache_compressed, statistics, ro, &block); if (block.value == nullptr && !no_io && ro.fill_cache) { Histograms histogram = READ_BLOCK_GET_MICROS; Block* raw_block = nullptr; { StopWatch sw(rep->options.env, statistics, histogram); s = ReadBlockFromFile(rep->file.get(), rep->footer, ro, handle, &raw_block, rep->options.env, didIO, block_cache_compressed == nullptr); } if (s.ok()) { s = PutDataBlockToCache(key, ckey, block_cache, block_cache_compressed, ro, statistics, &block, raw_block); } } } // Didn't get any data from block caches. if (block.value == nullptr) { if (no_io) { // Could not read from block_cache and can't do IO return NewErrorIterator(Status::Incomplete("no blocking io")); } s = ReadBlockFromFile(rep->file.get(), rep->footer, ro, handle, &block.value, rep->options.env, didIO); } Iterator* iter; if (block.value != nullptr) { iter = block.value->NewIterator(&rep->internal_comparator); if (block.cache_handle != nullptr) { iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, block.cache_handle); } else { iter->RegisterCleanup(&DeleteHeldResource, block.value, nullptr); } } else { iter = NewErrorIterator(s); } return iter; } class BlockBasedTable::BlockEntryIteratorState : public TwoLevelIteratorState { public: BlockEntryIteratorState(BlockBasedTable* table, const ReadOptions& read_options, bool* did_io) : TwoLevelIteratorState(table->rep_->options.prefix_extractor != nullptr), table_(table), read_options_(read_options), did_io_(did_io) {} Iterator* NewSecondaryIterator(const Slice& index_value) override { return NewDataBlockIterator(table_->rep_, read_options_, did_io_, index_value); } bool PrefixMayMatch(const Slice& internal_key) override { return table_->PrefixMayMatch(internal_key); } private: // Don't own table_ BlockBasedTable* table_; const ReadOptions read_options_; // Don't own did_io_ bool* did_io_; }; // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in Options.filter_policy. In particular, we // require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // Otherwise, this method guarantees no I/O will be incurred. // // REQUIRES: this method shouldn't be called while the DB lock is held. bool BlockBasedTable::PrefixMayMatch(const Slice& internal_key) { assert(rep_->options.prefix_extractor != nullptr); auto prefix = rep_->options.prefix_extractor->Transform( ExtractUserKey(internal_key)); InternalKey internal_key_prefix(prefix, 0, kTypeValue); auto internal_prefix = internal_key_prefix.Encode(); bool may_match = true; Status s; if (!rep_->options.filter_policy) { return true; } // To prevent any io operation in this method, we set `read_tier` to make // sure we always read index or filter only when they have already been // loaded to memory. ReadOptions no_io_read_options; no_io_read_options.read_tier = kBlockCacheTier; unique_ptr iiter(NewIndexIterator(no_io_read_options)); iiter->Seek(internal_prefix); if (!iiter->Valid()) { // we're past end of file // if it's incomplete, it means that we avoided I/O // and we're not really sure that we're past the end // of the file may_match = iiter->status().IsIncomplete(); } else if (ExtractUserKey(iiter->key()).starts_with( ExtractUserKey(internal_prefix))) { // we need to check for this subtle case because our only // guarantee is that "the key is a string >= last key in that data // block" according to the doc/table_format.txt spec. // // Suppose iiter->key() starts with the desired prefix; it is not // necessarily the case that the corresponding data block will // contain the prefix, since iiter->key() need not be in the // block. However, the next data block may contain the prefix, so // we return true to play it safe. may_match = true; } else { // iiter->key() does NOT start with the desired prefix. Because // Seek() finds the first key that is >= the seek target, this // means that iiter->key() > prefix. Thus, any data blocks coming // after the data block corresponding to iiter->key() cannot // possibly contain the key. Thus, the corresponding data block // is the only one which could potentially contain the prefix. Slice handle_value = iiter->value(); BlockHandle handle; s = handle.DecodeFrom(&handle_value); assert(s.ok()); auto filter_entry = GetFilter(true /* no io */); may_match = filter_entry.value == nullptr || filter_entry.value->PrefixMayMatch(handle.offset(), internal_prefix); filter_entry.Release(rep_->options.block_cache.get()); } Statistics* statistics = rep_->options.statistics.get(); RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED); if (!may_match) { RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL); } return may_match; } Iterator* BlockBasedTable::NewIterator(const ReadOptions& read_options) { return NewTwoLevelIterator(new BlockEntryIteratorState(this, read_options, nullptr), NewIndexIterator(read_options)); } Status BlockBasedTable::Get( const ReadOptions& read_options, const Slice& key, void* handle_context, bool (*result_handler)(void* handle_context, const ParsedInternalKey& k, const Slice& v, bool didIO), void (*mark_key_may_exist_handler)(void* handle_context)) { Status s; Iterator* iiter = NewIndexIterator(read_options); auto filter_entry = GetFilter(read_options.read_tier == kBlockCacheTier); FilterBlockReader* filter = filter_entry.value; bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { Slice handle_value = iiter->value(); BlockHandle handle; bool may_not_exist_in_filter = filter != nullptr && handle.DecodeFrom(&handle_value).ok() && !filter->KeyMayMatch(handle.offset(), key); if (may_not_exist_in_filter) { // Not found // TODO: think about interaction with Merge. If a user key cannot // cross one data block, we should be fine. RecordTick(rep_->options.statistics.get(), BLOOM_FILTER_USEFUL); break; } else { bool didIO = false; unique_ptr block_iter( NewDataBlockIterator(rep_, read_options, &didIO, iiter->value())); if (read_options.read_tier && block_iter->status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for whether // we can guarantee the key is not there when "no_io" is set (*mark_key_may_exist_handler)(handle_context); break; } // Call the *saver function on each entry/block until it returns false for (block_iter->Seek(key); block_iter->Valid(); block_iter->Next()) { ParsedInternalKey parsed_key; if (!ParseInternalKey(block_iter->key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (!(*result_handler)(handle_context, parsed_key, block_iter->value(), didIO)) { done = true; break; } } s = block_iter->status(); } } filter_entry.Release(rep_->options.block_cache.get()); if (s.ok()) { s = iiter->status(); } delete iiter; return s; } namespace { bool SaveDidIO(void* arg, const ParsedInternalKey& key, const Slice& value, bool didIO) { *reinterpret_cast(arg) = didIO; return false; } } // namespace bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { // We use Get() as it has logic that checks whether we read the // block from the disk or not. bool didIO = false; Status s = Get(options, key, &didIO, SaveDidIO); assert(s.ok()); return !didIO; } // REQUIRES: The following fields of rep_ should have already been populated: // 1. file // 2. index_handle, // 3. options // 4. internal_comparator // 5. index_type Status BlockBasedTable::CreateIndexReader(IndexReader** index_reader) { // Some old version of block-based tables don't have index type present in // table properties. If that's the case we can safely use the kBinarySearch. auto index_type_on_file = BlockBasedTableOptions::kBinarySearch; if (rep_->table_properties) { auto& props = rep_->table_properties->user_collected_properties; auto pos = props.find(BlockBasedTablePropertyNames::kIndexType); if (pos != props.end()) { index_type_on_file = static_cast( DecodeFixed32(pos->second.c_str())); } } // TODO(sdong): Currently binary index is the only index type we support in // files. Hash index is built on top of binary index too. if (index_type_on_file != BlockBasedTableOptions::kBinarySearch) { return Status::NotSupported("File Contains not supported index type: ", std::to_string(index_type_on_file)); } auto file = rep_->file.get(); auto env = rep_->options.env; auto comparator = &rep_->internal_comparator; const Footer& footer = rep_->footer; switch (rep_->index_type) { case BlockBasedTableOptions::kBinarySearch: { return BinarySearchIndexReader::Create( file, footer, footer.index_handle(), env, comparator, index_reader); } case BlockBasedTableOptions::kHashSearch: { // We need to wrap data with internal_prefix_transform to make sure it can // handle prefix correctly. rep_->internal_prefix_transform.reset( new InternalKeySliceTransform(rep_->options.prefix_extractor.get())); return HashIndexReader::Create( file, footer, footer.index_handle(), env, comparator, [&](Iterator* index_iter) { return NewTwoLevelIterator(new BlockEntryIteratorState(this, ReadOptions(), nullptr), index_iter); }, rep_->internal_prefix_transform.get(), index_reader); } default: { std::string error_message = "Unrecognized index type: " + std::to_string(rep_->index_type); // equivalent to assert(false), but more informative. assert(!error_message.c_str()); return Status::InvalidArgument(error_message.c_str()); } } } uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key) { unique_ptr index_iter(NewIndexIterator(ReadOptions())); index_iter->Seek(key); uint64_t result; if (index_iter->Valid()) { BlockHandle handle; Slice input = index_iter->value(); Status s = handle.DecodeFrom(&input); if (s.ok()) { result = handle.offset(); } else { // Strange: we can't decode the block handle in the index block. // We'll just return the offset of the metaindex block, which is // close to the whole file size for this case. result = rep_->footer.metaindex_handle().offset(); } } else { // key is past the last key in the file. If table_properties is not // available, approximate the offset by returning the offset of the // metaindex block (which is right near the end of the file). result = 0; if (rep_->table_properties) { result = rep_->table_properties->data_size; } // table_properties is not present in the table. if (result == 0) { result = rep_->footer.metaindex_handle().offset(); } } return result; } bool BlockBasedTable::TEST_filter_block_preloaded() const { return rep_->filter != nullptr; } bool BlockBasedTable::TEST_index_reader_preloaded() const { return rep_->index_reader != nullptr; } } // namespace rocksdb