// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/memtable.h" #include #include #include #include #include "db/dbformat.h" #include "db/merge_context.h" #include "db/merge_helper.h" #include "db/pinned_iterators_manager.h" #include "db/range_tombstone_fragmenter.h" #include "db/read_callback.h" #include "memory/arena.h" #include "memory/memory_usage.h" #include "monitoring/perf_context_imp.h" #include "monitoring/statistics.h" #include "port/lang.h" #include "port/port.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/iterator.h" #include "rocksdb/merge_operator.h" #include "rocksdb/slice_transform.h" #include "rocksdb/write_buffer_manager.h" #include "table/internal_iterator.h" #include "table/iterator_wrapper.h" #include "table/merging_iterator.h" #include "util/autovector.h" #include "util/coding.h" #include "util/mutexlock.h" namespace ROCKSDB_NAMESPACE { ImmutableMemTableOptions::ImmutableMemTableOptions( const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options) : arena_block_size(mutable_cf_options.arena_block_size), memtable_prefix_bloom_bits( static_cast( static_cast(mutable_cf_options.write_buffer_size) * mutable_cf_options.memtable_prefix_bloom_size_ratio) * 8u), memtable_huge_page_size(mutable_cf_options.memtable_huge_page_size), memtable_whole_key_filtering( mutable_cf_options.memtable_whole_key_filtering), inplace_update_support(ioptions.inplace_update_support), inplace_update_num_locks(mutable_cf_options.inplace_update_num_locks), inplace_callback(ioptions.inplace_callback), max_successive_merges(mutable_cf_options.max_successive_merges), statistics(ioptions.statistics), merge_operator(ioptions.merge_operator), info_log(ioptions.info_log) {} MemTable::MemTable(const InternalKeyComparator& cmp, const ImmutableCFOptions& ioptions, const MutableCFOptions& mutable_cf_options, WriteBufferManager* write_buffer_manager, SequenceNumber latest_seq, uint32_t column_family_id) : comparator_(cmp), moptions_(ioptions, mutable_cf_options), refs_(0), kArenaBlockSize(OptimizeBlockSize(moptions_.arena_block_size)), mem_tracker_(write_buffer_manager), arena_(moptions_.arena_block_size, (write_buffer_manager != nullptr && (write_buffer_manager->enabled() || write_buffer_manager->cost_to_cache())) ? &mem_tracker_ : nullptr, mutable_cf_options.memtable_huge_page_size), table_(ioptions.memtable_factory->CreateMemTableRep( comparator_, &arena_, mutable_cf_options.prefix_extractor.get(), ioptions.info_log, column_family_id)), range_del_table_(SkipListFactory().CreateMemTableRep( comparator_, &arena_, nullptr /* transform */, ioptions.info_log, column_family_id)), is_range_del_table_empty_(true), data_size_(0), num_entries_(0), num_deletes_(0), write_buffer_size_(mutable_cf_options.write_buffer_size), flush_in_progress_(false), flush_completed_(false), file_number_(0), first_seqno_(0), earliest_seqno_(latest_seq), creation_seq_(latest_seq), mem_next_logfile_number_(0), min_prep_log_referenced_(0), locks_(moptions_.inplace_update_support ? moptions_.inplace_update_num_locks : 0), prefix_extractor_(mutable_cf_options.prefix_extractor.get()), flush_state_(FLUSH_NOT_REQUESTED), env_(ioptions.env), insert_with_hint_prefix_extractor_( ioptions.memtable_insert_with_hint_prefix_extractor), oldest_key_time_(std::numeric_limits::max()), atomic_flush_seqno_(kMaxSequenceNumber), approximate_memory_usage_(0) { UpdateFlushState(); // something went wrong if we need to flush before inserting anything assert(!ShouldScheduleFlush()); // use bloom_filter_ for both whole key and prefix bloom filter if ((prefix_extractor_ || moptions_.memtable_whole_key_filtering) && moptions_.memtable_prefix_bloom_bits > 0) { bloom_filter_.reset( new DynamicBloom(&arena_, moptions_.memtable_prefix_bloom_bits, 6 /* hard coded 6 probes */, moptions_.memtable_huge_page_size, ioptions.info_log)); } } MemTable::~MemTable() { mem_tracker_.FreeMem(); assert(refs_ == 0); } size_t MemTable::ApproximateMemoryUsage() { autovector usages = { arena_.ApproximateMemoryUsage(), table_->ApproximateMemoryUsage(), range_del_table_->ApproximateMemoryUsage(), ROCKSDB_NAMESPACE::ApproximateMemoryUsage(insert_hints_)}; size_t total_usage = 0; for (size_t usage : usages) { // If usage + total_usage >= kMaxSizet, return kMaxSizet. // the following variation is to avoid numeric overflow. if (usage >= port::kMaxSizet - total_usage) { return port::kMaxSizet; } total_usage += usage; } approximate_memory_usage_.store(total_usage, std::memory_order_relaxed); // otherwise, return the actual usage return total_usage; } bool MemTable::ShouldFlushNow() { size_t write_buffer_size = write_buffer_size_.load(std::memory_order_relaxed); // In a lot of times, we cannot allocate arena blocks that exactly matches the // buffer size. Thus we have to decide if we should over-allocate or // under-allocate. // This constant variable can be interpreted as: if we still have more than // "kAllowOverAllocationRatio * kArenaBlockSize" space left, we'd try to over // allocate one more block. const double kAllowOverAllocationRatio = 0.6; // If arena still have room for new block allocation, we can safely say it // shouldn't flush. auto allocated_memory = table_->ApproximateMemoryUsage() + range_del_table_->ApproximateMemoryUsage() + arena_.MemoryAllocatedBytes(); approximate_memory_usage_.store(allocated_memory, std::memory_order_relaxed); // if we can still allocate one more block without exceeding the // over-allocation ratio, then we should not flush. if (allocated_memory + kArenaBlockSize < write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) { return false; } // if user keeps adding entries that exceeds write_buffer_size, we need to // flush earlier even though we still have much available memory left. if (allocated_memory > write_buffer_size + kArenaBlockSize * kAllowOverAllocationRatio) { return true; } // In this code path, Arena has already allocated its "last block", which // means the total allocatedmemory size is either: // (1) "moderately" over allocated the memory (no more than `0.6 * arena // block size`. Or, // (2) the allocated memory is less than write buffer size, but we'll stop // here since if we allocate a new arena block, we'll over allocate too much // more (half of the arena block size) memory. // // In either case, to avoid over-allocate, the last block will stop allocation // when its usage reaches a certain ratio, which we carefully choose "0.75 // full" as the stop condition because it addresses the following issue with // great simplicity: What if the next inserted entry's size is // bigger than AllocatedAndUnused()? // // The answer is: if the entry size is also bigger than 0.25 * // kArenaBlockSize, a dedicated block will be allocated for it; otherwise // arena will anyway skip the AllocatedAndUnused() and allocate a new, empty // and regular block. In either case, we *overly* over-allocated. // // Therefore, setting the last block to be at most "0.75 full" avoids both // cases. // // NOTE: the average percentage of waste space of this approach can be counted // as: "arena block size * 0.25 / write buffer size". User who specify a small // write buffer size and/or big arena block size may suffer. return arena_.AllocatedAndUnused() < kArenaBlockSize / 4; } void MemTable::UpdateFlushState() { auto state = flush_state_.load(std::memory_order_relaxed); if (state == FLUSH_NOT_REQUESTED && ShouldFlushNow()) { // ignore CAS failure, because that means somebody else requested // a flush flush_state_.compare_exchange_strong(state, FLUSH_REQUESTED, std::memory_order_relaxed, std::memory_order_relaxed); } } void MemTable::UpdateOldestKeyTime() { uint64_t oldest_key_time = oldest_key_time_.load(std::memory_order_relaxed); if (oldest_key_time == std::numeric_limits::max()) { int64_t current_time = 0; auto s = env_->GetCurrentTime(¤t_time); if (s.ok()) { assert(current_time >= 0); // If fail, the timestamp is already set. oldest_key_time_.compare_exchange_strong( oldest_key_time, static_cast(current_time), std::memory_order_relaxed, std::memory_order_relaxed); } } } int MemTable::KeyComparator::operator()(const char* prefix_len_key1, const char* prefix_len_key2) const { // Internal keys are encoded as length-prefixed strings. Slice k1 = GetLengthPrefixedSlice(prefix_len_key1); Slice k2 = GetLengthPrefixedSlice(prefix_len_key2); return comparator.CompareKeySeq(k1, k2); } int MemTable::KeyComparator::operator()(const char* prefix_len_key, const KeyComparator::DecodedType& key) const { // Internal keys are encoded as length-prefixed strings. Slice a = GetLengthPrefixedSlice(prefix_len_key); return comparator.CompareKeySeq(a, key); } void MemTableRep::InsertConcurrently(KeyHandle /*handle*/) { #ifndef ROCKSDB_LITE throw std::runtime_error("concurrent insert not supported"); #else abort(); #endif } Slice MemTableRep::UserKey(const char* key) const { Slice slice = GetLengthPrefixedSlice(key); return Slice(slice.data(), slice.size() - 8); } KeyHandle MemTableRep::Allocate(const size_t len, char** buf) { *buf = allocator_->Allocate(len); return static_cast(*buf); } // Encode a suitable internal key target for "target" and return it. // Uses *scratch as scratch space, and the returned pointer will point // into this scratch space. const char* EncodeKey(std::string* scratch, const Slice& target) { scratch->clear(); PutVarint32(scratch, static_cast(target.size())); scratch->append(target.data(), target.size()); return scratch->data(); } class MemTableIterator : public InternalIterator { public: MemTableIterator(const MemTable& mem, const ReadOptions& read_options, Arena* arena, bool use_range_del_table = false) : bloom_(nullptr), prefix_extractor_(mem.prefix_extractor_), comparator_(mem.comparator_), valid_(false), arena_mode_(arena != nullptr), value_pinned_( !mem.GetImmutableMemTableOptions()->inplace_update_support) { if (use_range_del_table) { iter_ = mem.range_del_table_->GetIterator(arena); } else if (prefix_extractor_ != nullptr && !read_options.total_order_seek && !read_options.auto_prefix_mode) { // Auto prefix mode is not implemented in memtable yet. bloom_ = mem.bloom_filter_.get(); iter_ = mem.table_->GetDynamicPrefixIterator(arena); } else { iter_ = mem.table_->GetIterator(arena); } } // No copying allowed MemTableIterator(const MemTableIterator&) = delete; void operator=(const MemTableIterator&) = delete; ~MemTableIterator() override { #ifndef NDEBUG // Assert that the MemTableIterator is never deleted while // Pinning is Enabled. assert(!pinned_iters_mgr_ || !pinned_iters_mgr_->PinningEnabled()); #endif if (arena_mode_) { iter_->~Iterator(); } else { delete iter_; } } #ifndef NDEBUG void SetPinnedItersMgr(PinnedIteratorsManager* pinned_iters_mgr) override { pinned_iters_mgr_ = pinned_iters_mgr; } PinnedIteratorsManager* pinned_iters_mgr_ = nullptr; #endif bool Valid() const override { return valid_; } void Seek(const Slice& k) override { PERF_TIMER_GUARD(seek_on_memtable_time); PERF_COUNTER_ADD(seek_on_memtable_count, 1); if (bloom_) { // iterator should only use prefix bloom filter Slice user_k(ExtractUserKey(k)); if (prefix_extractor_->InDomain(user_k) && !bloom_->MayContain(prefix_extractor_->Transform(user_k))) { PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); valid_ = false; return; } else { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } } iter_->Seek(k, nullptr); valid_ = iter_->Valid(); } void SeekForPrev(const Slice& k) override { PERF_TIMER_GUARD(seek_on_memtable_time); PERF_COUNTER_ADD(seek_on_memtable_count, 1); if (bloom_) { Slice user_k(ExtractUserKey(k)); if (prefix_extractor_->InDomain(user_k) && !bloom_->MayContain(prefix_extractor_->Transform(user_k))) { PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); valid_ = false; return; } else { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } } iter_->Seek(k, nullptr); valid_ = iter_->Valid(); if (!Valid()) { SeekToLast(); } while (Valid() && comparator_.comparator.Compare(k, key()) < 0) { Prev(); } } void SeekToFirst() override { iter_->SeekToFirst(); valid_ = iter_->Valid(); } void SeekToLast() override { iter_->SeekToLast(); valid_ = iter_->Valid(); } void Next() override { PERF_COUNTER_ADD(next_on_memtable_count, 1); assert(Valid()); iter_->Next(); valid_ = iter_->Valid(); } void Prev() override { PERF_COUNTER_ADD(prev_on_memtable_count, 1); assert(Valid()); iter_->Prev(); valid_ = iter_->Valid(); } Slice key() const override { assert(Valid()); return GetLengthPrefixedSlice(iter_->key()); } Slice value() const override { assert(Valid()); Slice key_slice = GetLengthPrefixedSlice(iter_->key()); return GetLengthPrefixedSlice(key_slice.data() + key_slice.size()); } Status status() const override { return Status::OK(); } bool IsKeyPinned() const override { // memtable data is always pinned return true; } bool IsValuePinned() const override { // memtable value is always pinned, except if we allow inplace update. return value_pinned_; } private: DynamicBloom* bloom_; const SliceTransform* const prefix_extractor_; const MemTable::KeyComparator comparator_; MemTableRep::Iterator* iter_; bool valid_; bool arena_mode_; bool value_pinned_; }; InternalIterator* MemTable::NewIterator(const ReadOptions& read_options, Arena* arena) { assert(arena != nullptr); auto mem = arena->AllocateAligned(sizeof(MemTableIterator)); return new (mem) MemTableIterator(*this, read_options, arena); } FragmentedRangeTombstoneIterator* MemTable::NewRangeTombstoneIterator( const ReadOptions& read_options, SequenceNumber read_seq) { if (read_options.ignore_range_deletions || is_range_del_table_empty_.load(std::memory_order_relaxed)) { return nullptr; } auto* unfragmented_iter = new MemTableIterator( *this, read_options, nullptr /* arena */, true /* use_range_del_table */); if (unfragmented_iter == nullptr) { return nullptr; } auto fragmented_tombstone_list = std::make_shared( std::unique_ptr(unfragmented_iter), comparator_.comparator); auto* fragmented_iter = new FragmentedRangeTombstoneIterator( fragmented_tombstone_list, comparator_.comparator, read_seq); return fragmented_iter; } port::RWMutex* MemTable::GetLock(const Slice& key) { return &locks_[fastrange64(GetSliceNPHash64(key), locks_.size())]; } MemTable::MemTableStats MemTable::ApproximateStats(const Slice& start_ikey, const Slice& end_ikey) { uint64_t entry_count = table_->ApproximateNumEntries(start_ikey, end_ikey); entry_count += range_del_table_->ApproximateNumEntries(start_ikey, end_ikey); if (entry_count == 0) { return {0, 0}; } uint64_t n = num_entries_.load(std::memory_order_relaxed); if (n == 0) { return {0, 0}; } if (entry_count > n) { // (range_del_)table_->ApproximateNumEntries() is just an estimate so it can // be larger than actual entries we have. Cap it to entries we have to limit // the inaccuracy. entry_count = n; } uint64_t data_size = data_size_.load(std::memory_order_relaxed); return {entry_count * (data_size / n), entry_count}; } bool MemTable::Add(SequenceNumber s, ValueType type, const Slice& key, /* user key */ const Slice& value, bool allow_concurrent, MemTablePostProcessInfo* post_process_info, void** hint) { // Format of an entry is concatenation of: // key_size : varint32 of internal_key.size() // key bytes : char[internal_key.size()] // value_size : varint32 of value.size() // value bytes : char[value.size()] uint32_t key_size = static_cast(key.size()); uint32_t val_size = static_cast(value.size()); uint32_t internal_key_size = key_size + 8; const uint32_t encoded_len = VarintLength(internal_key_size) + internal_key_size + VarintLength(val_size) + val_size; char* buf = nullptr; std::unique_ptr& table = type == kTypeRangeDeletion ? range_del_table_ : table_; KeyHandle handle = table->Allocate(encoded_len, &buf); char* p = EncodeVarint32(buf, internal_key_size); memcpy(p, key.data(), key_size); Slice key_slice(p, key_size); p += key_size; uint64_t packed = PackSequenceAndType(s, type); EncodeFixed64(p, packed); p += 8; p = EncodeVarint32(p, val_size); memcpy(p, value.data(), val_size); assert((unsigned)(p + val_size - buf) == (unsigned)encoded_len); size_t ts_sz = GetInternalKeyComparator().user_comparator()->timestamp_size(); if (!allow_concurrent) { // Extract prefix for insert with hint. if (insert_with_hint_prefix_extractor_ != nullptr && insert_with_hint_prefix_extractor_->InDomain(key_slice)) { Slice prefix = insert_with_hint_prefix_extractor_->Transform(key_slice); bool res = table->InsertKeyWithHint(handle, &insert_hints_[prefix]); if (UNLIKELY(!res)) { return res; } } else { bool res = table->InsertKey(handle); if (UNLIKELY(!res)) { return res; } } // this is a bit ugly, but is the way to avoid locked instructions // when incrementing an atomic num_entries_.store(num_entries_.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); data_size_.store(data_size_.load(std::memory_order_relaxed) + encoded_len, std::memory_order_relaxed); if (type == kTypeDeletion) { num_deletes_.store(num_deletes_.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); } if (bloom_filter_ && prefix_extractor_ && prefix_extractor_->InDomain(key)) { bloom_filter_->Add(prefix_extractor_->Transform(key)); } if (bloom_filter_ && moptions_.memtable_whole_key_filtering) { bloom_filter_->Add(StripTimestampFromUserKey(key, ts_sz)); } // The first sequence number inserted into the memtable assert(first_seqno_ == 0 || s >= first_seqno_); if (first_seqno_ == 0) { first_seqno_.store(s, std::memory_order_relaxed); if (earliest_seqno_ == kMaxSequenceNumber) { earliest_seqno_.store(GetFirstSequenceNumber(), std::memory_order_relaxed); } assert(first_seqno_.load() >= earliest_seqno_.load()); } assert(post_process_info == nullptr); UpdateFlushState(); } else { bool res = (hint == nullptr) ? table->InsertKeyConcurrently(handle) : table->InsertKeyWithHintConcurrently(handle, hint); if (UNLIKELY(!res)) { return res; } assert(post_process_info != nullptr); post_process_info->num_entries++; post_process_info->data_size += encoded_len; if (type == kTypeDeletion) { post_process_info->num_deletes++; } if (bloom_filter_ && prefix_extractor_ && prefix_extractor_->InDomain(key)) { bloom_filter_->AddConcurrently(prefix_extractor_->Transform(key)); } if (bloom_filter_ && moptions_.memtable_whole_key_filtering) { bloom_filter_->AddConcurrently(StripTimestampFromUserKey(key, ts_sz)); } // atomically update first_seqno_ and earliest_seqno_. uint64_t cur_seq_num = first_seqno_.load(std::memory_order_relaxed); while ((cur_seq_num == 0 || s < cur_seq_num) && !first_seqno_.compare_exchange_weak(cur_seq_num, s)) { } uint64_t cur_earliest_seqno = earliest_seqno_.load(std::memory_order_relaxed); while ( (cur_earliest_seqno == kMaxSequenceNumber || s < cur_earliest_seqno) && !first_seqno_.compare_exchange_weak(cur_earliest_seqno, s)) { } } if (type == kTypeRangeDeletion) { is_range_del_table_empty_.store(false, std::memory_order_relaxed); } UpdateOldestKeyTime(); return true; } // Callback from MemTable::Get() namespace { struct Saver { Status* status; const LookupKey* key; bool* found_final_value; // Is value set correctly? Used by KeyMayExist bool* merge_in_progress; std::string* value; SequenceNumber seq; std::string* timestamp; const MergeOperator* merge_operator; // the merge operations encountered; MergeContext* merge_context; SequenceNumber max_covering_tombstone_seq; MemTable* mem; Logger* logger; Statistics* statistics; bool inplace_update_support; bool do_merge; Env* env_; ReadCallback* callback_; bool* is_blob_index; bool CheckCallback(SequenceNumber _seq) { if (callback_) { return callback_->IsVisible(_seq); } return true; } }; } // namespace static bool SaveValue(void* arg, const char* entry) { Saver* s = reinterpret_cast(arg); assert(s != nullptr); MergeContext* merge_context = s->merge_context; SequenceNumber max_covering_tombstone_seq = s->max_covering_tombstone_seq; const MergeOperator* merge_operator = s->merge_operator; assert(merge_context != nullptr); // entry format is: // klength varint32 // userkey char[klength-8] // tag uint64 // vlength varint32f // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. uint32_t key_length; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); Slice user_key_slice = Slice(key_ptr, key_length - 8); const Comparator* user_comparator = s->mem->GetInternalKeyComparator().user_comparator(); size_t ts_sz = user_comparator->timestamp_size(); if (user_comparator->CompareWithoutTimestamp(user_key_slice, s->key->user_key()) == 0) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; SequenceNumber seq; UnPackSequenceAndType(tag, &seq, &type); // If the value is not in the snapshot, skip it if (!s->CheckCallback(seq)) { return true; // to continue to the next seq } s->seq = seq; if ((type == kTypeValue || type == kTypeMerge || type == kTypeBlobIndex) && max_covering_tombstone_seq > seq) { type = kTypeRangeDeletion; } switch (type) { case kTypeBlobIndex: if (s->is_blob_index == nullptr) { ROCKS_LOG_ERROR(s->logger, "Encounter unexpected blob index."); *(s->status) = Status::NotSupported( "Encounter unsupported blob value. Please open DB with " "ROCKSDB_NAMESPACE::blob_db::BlobDB instead."); } else if (*(s->merge_in_progress)) { *(s->status) = Status::NotSupported("Blob DB does not support merge operator."); } if (!s->status->ok()) { *(s->found_final_value) = true; return false; } FALLTHROUGH_INTENDED; case kTypeValue: { if (s->inplace_update_support) { s->mem->GetLock(s->key->user_key())->ReadLock(); } Slice v = GetLengthPrefixedSlice(key_ptr + key_length); *(s->status) = Status::OK(); if (*(s->merge_in_progress)) { if (s->do_merge) { if (s->value != nullptr) { *(s->status) = MergeHelper::TimedFullMerge( merge_operator, s->key->user_key(), &v, merge_context->GetOperands(), s->value, s->logger, s->statistics, s->env_, nullptr /* result_operand */, true); } } else { // Preserve the value with the goal of returning it as part of // raw merge operands to the user merge_context->PushOperand( v, s->inplace_update_support == false /* operand_pinned */); } } else if (!s->do_merge) { // Preserve the value with the goal of returning it as part of // raw merge operands to the user merge_context->PushOperand( v, s->inplace_update_support == false /* operand_pinned */); } else if (s->value != nullptr) { s->value->assign(v.data(), v.size()); } if (s->inplace_update_support) { s->mem->GetLock(s->key->user_key())->ReadUnlock(); } *(s->found_final_value) = true; if (s->is_blob_index != nullptr) { *(s->is_blob_index) = (type == kTypeBlobIndex); } if (ts_sz > 0 && s->timestamp != nullptr) { Slice ts = ExtractTimestampFromUserKey(user_key_slice, ts_sz); s->timestamp->assign(ts.data(), ts.size()); } return false; } case kTypeDeletion: case kTypeDeletionWithTimestamp: case kTypeSingleDeletion: case kTypeRangeDeletion: { if (*(s->merge_in_progress)) { if (s->value != nullptr) { *(s->status) = MergeHelper::TimedFullMerge( merge_operator, s->key->user_key(), nullptr, merge_context->GetOperands(), s->value, s->logger, s->statistics, s->env_, nullptr /* result_operand */, true); } } else { *(s->status) = Status::NotFound(); } *(s->found_final_value) = true; return false; } case kTypeMerge: { if (!merge_operator) { *(s->status) = Status::InvalidArgument( "merge_operator is not properly initialized."); // Normally we continue the loop (return true) when we see a merge // operand. But in case of an error, we should stop the loop // immediately and pretend we have found the value to stop further // seek. Otherwise, the later call will override this error status. *(s->found_final_value) = true; return false; } Slice v = GetLengthPrefixedSlice(key_ptr + key_length); *(s->merge_in_progress) = true; merge_context->PushOperand( v, s->inplace_update_support == false /* operand_pinned */); if (s->do_merge && merge_operator->ShouldMerge( merge_context->GetOperandsDirectionBackward())) { *(s->status) = MergeHelper::TimedFullMerge( merge_operator, s->key->user_key(), nullptr, merge_context->GetOperands(), s->value, s->logger, s->statistics, s->env_, nullptr /* result_operand */, true); *(s->found_final_value) = true; return false; } return true; } default: { std::string msg("Unrecognized value type: " + std::to_string(static_cast(type)) + ". "); msg.append("User key: " + user_key_slice.ToString(/*hex=*/true) + ". "); msg.append("seq: " + std::to_string(seq) + "."); *(s->status) = Status::Corruption(msg.c_str()); } assert(false); return true; } } // s->state could be Corrupt, merge or notfound return false; } bool MemTable::Get(const LookupKey& key, std::string* value, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* max_covering_tombstone_seq, SequenceNumber* seq, const ReadOptions& read_opts, ReadCallback* callback, bool* is_blob_index, bool do_merge) { // The sequence number is updated synchronously in version_set.h if (IsEmpty()) { // Avoiding recording stats for speed. return false; } PERF_TIMER_GUARD(get_from_memtable_time); std::unique_ptr range_del_iter( NewRangeTombstoneIterator(read_opts, GetInternalKeySeqno(key.internal_key()))); if (range_del_iter != nullptr) { *max_covering_tombstone_seq = std::max(*max_covering_tombstone_seq, range_del_iter->MaxCoveringTombstoneSeqnum(key.user_key())); } Slice user_key = key.user_key(); bool found_final_value = false; bool merge_in_progress = s->IsMergeInProgress(); bool may_contain = true; size_t ts_sz = GetInternalKeyComparator().user_comparator()->timestamp_size(); if (bloom_filter_) { // when both memtable_whole_key_filtering and prefix_extractor_ are set, // only do whole key filtering for Get() to save CPU if (moptions_.memtable_whole_key_filtering) { may_contain = bloom_filter_->MayContain(StripTimestampFromUserKey(user_key, ts_sz)); } else { assert(prefix_extractor_); may_contain = !prefix_extractor_->InDomain(user_key) || bloom_filter_->MayContain(prefix_extractor_->Transform(user_key)); } } if (bloom_filter_ && !may_contain) { // iter is null if prefix bloom says the key does not exist PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); *seq = kMaxSequenceNumber; } else { if (bloom_filter_) { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } GetFromTable(key, *max_covering_tombstone_seq, do_merge, callback, is_blob_index, value, timestamp, s, merge_context, seq, &found_final_value, &merge_in_progress); } // No change to value, since we have not yet found a Put/Delete if (!found_final_value && merge_in_progress) { *s = Status::MergeInProgress(); } PERF_COUNTER_ADD(get_from_memtable_count, 1); return found_final_value; } void MemTable::GetFromTable(const LookupKey& key, SequenceNumber max_covering_tombstone_seq, bool do_merge, ReadCallback* callback, bool* is_blob_index, std::string* value, std::string* timestamp, Status* s, MergeContext* merge_context, SequenceNumber* seq, bool* found_final_value, bool* merge_in_progress) { Saver saver; saver.status = s; saver.found_final_value = found_final_value; saver.merge_in_progress = merge_in_progress; saver.key = &key; saver.value = value; saver.timestamp = timestamp; saver.seq = kMaxSequenceNumber; saver.mem = this; saver.merge_context = merge_context; saver.max_covering_tombstone_seq = max_covering_tombstone_seq; saver.merge_operator = moptions_.merge_operator; saver.logger = moptions_.info_log; saver.inplace_update_support = moptions_.inplace_update_support; saver.statistics = moptions_.statistics; saver.env_ = env_; saver.callback_ = callback; saver.is_blob_index = is_blob_index; saver.do_merge = do_merge; table_->Get(key, &saver, SaveValue); *seq = saver.seq; } void MemTable::MultiGet(const ReadOptions& read_options, MultiGetRange* range, ReadCallback* callback, bool* is_blob) { // The sequence number is updated synchronously in version_set.h if (IsEmpty()) { // Avoiding recording stats for speed. return; } PERF_TIMER_GUARD(get_from_memtable_time); MultiGetRange temp_range(*range, range->begin(), range->end()); if (bloom_filter_) { std::array keys; std::array may_match = {{true}}; autovector prefixes; int num_keys = 0; for (auto iter = temp_range.begin(); iter != temp_range.end(); ++iter) { if (!prefix_extractor_) { keys[num_keys++] = &iter->ukey; } else if (prefix_extractor_->InDomain(iter->ukey)) { prefixes.emplace_back(prefix_extractor_->Transform(iter->ukey)); keys[num_keys++] = &prefixes.back(); } } bloom_filter_->MayContain(num_keys, &keys[0], &may_match[0]); int idx = 0; for (auto iter = temp_range.begin(); iter != temp_range.end(); ++iter) { if (prefix_extractor_ && !prefix_extractor_->InDomain(iter->ukey)) { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); continue; } if (!may_match[idx]) { temp_range.SkipKey(iter); PERF_COUNTER_ADD(bloom_memtable_miss_count, 1); } else { PERF_COUNTER_ADD(bloom_memtable_hit_count, 1); } idx++; } } for (auto iter = temp_range.begin(); iter != temp_range.end(); ++iter) { SequenceNumber seq = kMaxSequenceNumber; bool found_final_value{false}; bool merge_in_progress = iter->s->IsMergeInProgress(); std::unique_ptr range_del_iter( NewRangeTombstoneIterator( read_options, GetInternalKeySeqno(iter->lkey->internal_key()))); if (range_del_iter != nullptr) { iter->max_covering_tombstone_seq = std::max( iter->max_covering_tombstone_seq, range_del_iter->MaxCoveringTombstoneSeqnum(iter->lkey->user_key())); } GetFromTable(*(iter->lkey), iter->max_covering_tombstone_seq, true, callback, is_blob, iter->value->GetSelf(), iter->timestamp, iter->s, &(iter->merge_context), &seq, &found_final_value, &merge_in_progress); if (!found_final_value && merge_in_progress) { *(iter->s) = Status::MergeInProgress(); } if (found_final_value) { iter->value->PinSelf(); range->AddValueSize(iter->value->size()); range->MarkKeyDone(iter); RecordTick(moptions_.statistics, MEMTABLE_HIT); if (range->GetValueSize() > read_options.value_size_soft_limit) { // Set all remaining keys in range to Abort for (auto range_iter = range->begin(); range_iter != range->end(); ++range_iter) { range->MarkKeyDone(range_iter); *(range_iter->s) = Status::Aborted(); } break; } } } PERF_COUNTER_ADD(get_from_memtable_count, 1); } void MemTable::Update(SequenceNumber seq, const Slice& key, const Slice& value) { LookupKey lkey(key, seq); Slice mem_key = lkey.memtable_key(); std::unique_ptr iter( table_->GetDynamicPrefixIterator()); iter->Seek(lkey.internal_key(), mem_key.data()); if (iter->Valid()) { // entry format is: // key_length varint32 // userkey char[klength-8] // tag uint64 // vlength varint32 // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. const char* entry = iter->key(); uint32_t key_length = 0; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (comparator_.comparator.user_comparator()->Equal( Slice(key_ptr, key_length - 8), lkey.user_key())) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; SequenceNumber existing_seq; UnPackSequenceAndType(tag, &existing_seq, &type); assert(existing_seq != seq); if (type == kTypeValue) { Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length); uint32_t prev_size = static_cast(prev_value.size()); uint32_t new_size = static_cast(value.size()); // Update value, if new value size <= previous value size if (new_size <= prev_size) { char* p = EncodeVarint32(const_cast(key_ptr) + key_length, new_size); WriteLock wl(GetLock(lkey.user_key())); memcpy(p, value.data(), value.size()); assert((unsigned)((p + value.size()) - entry) == (unsigned)(VarintLength(key_length) + key_length + VarintLength(value.size()) + value.size())); RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED); return; } } } } // key doesn't exist bool add_res __attribute__((__unused__)); add_res = Add(seq, kTypeValue, key, value); // We already checked unused != seq above. In that case, Add should not fail. assert(add_res); } bool MemTable::UpdateCallback(SequenceNumber seq, const Slice& key, const Slice& delta) { LookupKey lkey(key, seq); Slice memkey = lkey.memtable_key(); std::unique_ptr iter( table_->GetDynamicPrefixIterator()); iter->Seek(lkey.internal_key(), memkey.data()); if (iter->Valid()) { // entry format is: // key_length varint32 // userkey char[klength-8] // tag uint64 // vlength varint32 // value char[vlength] // Check that it belongs to same user key. We do not check the // sequence number since the Seek() call above should have skipped // all entries with overly large sequence numbers. const char* entry = iter->key(); uint32_t key_length = 0; const char* key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (comparator_.comparator.user_comparator()->Equal( Slice(key_ptr, key_length - 8), lkey.user_key())) { // Correct user key const uint64_t tag = DecodeFixed64(key_ptr + key_length - 8); ValueType type; uint64_t unused; UnPackSequenceAndType(tag, &unused, &type); switch (type) { case kTypeValue: { Slice prev_value = GetLengthPrefixedSlice(key_ptr + key_length); uint32_t prev_size = static_cast(prev_value.size()); char* prev_buffer = const_cast(prev_value.data()); uint32_t new_prev_size = prev_size; std::string str_value; WriteLock wl(GetLock(lkey.user_key())); auto status = moptions_.inplace_callback(prev_buffer, &new_prev_size, delta, &str_value); if (status == UpdateStatus::UPDATED_INPLACE) { // Value already updated by callback. assert(new_prev_size <= prev_size); if (new_prev_size < prev_size) { // overwrite the new prev_size char* p = EncodeVarint32(const_cast(key_ptr) + key_length, new_prev_size); if (VarintLength(new_prev_size) < VarintLength(prev_size)) { // shift the value buffer as well. memcpy(p, prev_buffer, new_prev_size); } } RecordTick(moptions_.statistics, NUMBER_KEYS_UPDATED); UpdateFlushState(); return true; } else if (status == UpdateStatus::UPDATED) { Add(seq, kTypeValue, key, Slice(str_value)); RecordTick(moptions_.statistics, NUMBER_KEYS_WRITTEN); UpdateFlushState(); return true; } else if (status == UpdateStatus::UPDATE_FAILED) { // No action required. Return. UpdateFlushState(); return true; } } default: break; } } } // If the latest value is not kTypeValue // or key doesn't exist return false; } size_t MemTable::CountSuccessiveMergeEntries(const LookupKey& key) { Slice memkey = key.memtable_key(); // A total ordered iterator is costly for some memtablerep (prefix aware // reps). By passing in the user key, we allow efficient iterator creation. // The iterator only needs to be ordered within the same user key. std::unique_ptr iter( table_->GetDynamicPrefixIterator()); iter->Seek(key.internal_key(), memkey.data()); size_t num_successive_merges = 0; for (; iter->Valid(); iter->Next()) { const char* entry = iter->key(); uint32_t key_length = 0; const char* iter_key_ptr = GetVarint32Ptr(entry, entry + 5, &key_length); if (!comparator_.comparator.user_comparator()->Equal( Slice(iter_key_ptr, key_length - 8), key.user_key())) { break; } const uint64_t tag = DecodeFixed64(iter_key_ptr + key_length - 8); ValueType type; uint64_t unused; UnPackSequenceAndType(tag, &unused, &type); if (type != kTypeMerge) { break; } ++num_successive_merges; } return num_successive_merges; } void MemTableRep::Get(const LookupKey& k, void* callback_args, bool (*callback_func)(void* arg, const char* entry)) { auto iter = GetDynamicPrefixIterator(); for (iter->Seek(k.internal_key(), k.memtable_key().data()); iter->Valid() && callback_func(callback_args, iter->key()); iter->Next()) { } } void MemTable::RefLogContainingPrepSection(uint64_t log) { assert(log > 0); auto cur = min_prep_log_referenced_.load(); while ((log < cur || cur == 0) && !min_prep_log_referenced_.compare_exchange_strong(cur, log)) { cur = min_prep_log_referenced_.load(); } } uint64_t MemTable::GetMinLogContainingPrepSection() { return min_prep_log_referenced_.load(); } } // namespace ROCKSDB_NAMESPACE