// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. #ifndef ROCKSDB_LITE #ifndef GFLAGS #include <cstdio> int main() { fprintf(stderr, "Please install gflags to run this test... Skipping...\n"); return 0; } #else #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include <inttypes.h> #include <gflags/gflags.h> #include <vector> #include <string> #include <map> #include "table/meta_blocks.h" #include "table/cuckoo_table_builder.h" #include "table/cuckoo_table_reader.h" #include "table/cuckoo_table_factory.h" #include "table/get_context.h" #include "util/arena.h" #include "util/random.h" #include "util/string_util.h" #include "util/testharness.h" #include "util/testutil.h" using GFLAGS::ParseCommandLineFlags; using GFLAGS::SetUsageMessage; DEFINE_string(file_dir, "", "Directory where the files will be created" " for benchmark. Added for using tmpfs."); DEFINE_bool(enable_perf, false, "Run Benchmark Tests too."); DEFINE_bool(write, false, "Should write new values to file in performance tests?"); DEFINE_bool(identity_as_first_hash, true, "use identity as first hash"); namespace rocksdb { namespace { const uint32_t kNumHashFunc = 10; // Methods, variables related to Hash functions. std::unordered_map<std::string, std::vector<uint64_t>> hash_map; void AddHashLookups(const std::string& s, uint64_t bucket_id, uint32_t num_hash_fun) { std::vector<uint64_t> v; for (uint32_t i = 0; i < num_hash_fun; i++) { v.push_back(bucket_id + i); } hash_map[s] = v; } uint64_t GetSliceHash(const Slice& s, uint32_t index, uint64_t max_num_buckets) { return hash_map[s.ToString()][index]; } } // namespace class CuckooReaderTest : public testing::Test { public: using testing::Test::SetUp; CuckooReaderTest() { options.allow_mmap_reads = true; env = options.env; env_options = EnvOptions(options); } void SetUp(int num) { num_items = num; hash_map.clear(); keys.clear(); keys.resize(num_items); user_keys.clear(); user_keys.resize(num_items); values.clear(); values.resize(num_items); } std::string NumToStr(int64_t i) { return std::string(reinterpret_cast<char*>(&i), sizeof(i)); } void CreateCuckooFileAndCheckReader( const Comparator* ucomp = BytewiseComparator()) { std::unique_ptr<WritableFile> writable_file; ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options)); unique_ptr<WritableFileWriter> file_writer( new WritableFileWriter(std::move(writable_file), env_options)); CuckooTableBuilder builder( file_writer.get(), 0.9, kNumHashFunc, 100, ucomp, 2, false, false, GetSliceHash, 0 /* column_family_id */, kDefaultColumnFamilyName); ASSERT_OK(builder.status()); for (uint32_t key_idx = 0; key_idx < num_items; ++key_idx) { builder.Add(Slice(keys[key_idx]), Slice(values[key_idx])); ASSERT_OK(builder.status()); ASSERT_EQ(builder.NumEntries(), key_idx + 1); } ASSERT_OK(builder.Finish()); ASSERT_EQ(num_items, builder.NumEntries()); file_size = builder.FileSize(); ASSERT_OK(file_writer->Close()); // Check reader now. std::unique_ptr<RandomAccessFile> read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); unique_ptr<RandomAccessFileReader> file_reader( new RandomAccessFileReader(std::move(read_file))); const ImmutableCFOptions ioptions(options); CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucomp, GetSliceHash); ASSERT_OK(reader.status()); // Assume no merge/deletion for (uint32_t i = 0; i < num_items; ++i) { std::string value; GetContext get_context(ucomp, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(user_keys[i]), &value, nullptr, nullptr, nullptr); ASSERT_OK(reader.Get(ReadOptions(), Slice(keys[i]), &get_context)); ASSERT_EQ(values[i], value); } } void UpdateKeys(bool with_zero_seqno) { for (uint32_t i = 0; i < num_items; i++) { ParsedInternalKey ikey(user_keys[i], with_zero_seqno ? 0 : i + 1000, kTypeValue); keys[i].clear(); AppendInternalKey(&keys[i], ikey); } } void CheckIterator(const Comparator* ucomp = BytewiseComparator()) { std::unique_ptr<RandomAccessFile> read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); unique_ptr<RandomAccessFileReader> file_reader( new RandomAccessFileReader(std::move(read_file))); const ImmutableCFOptions ioptions(options); CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucomp, GetSliceHash); ASSERT_OK(reader.status()); InternalIterator* it = reader.NewIterator(ReadOptions(), nullptr); ASSERT_OK(it->status()); ASSERT_TRUE(!it->Valid()); it->SeekToFirst(); int cnt = 0; while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); ++cnt; it->Next(); } ASSERT_EQ(static_cast<uint32_t>(cnt), num_items); it->SeekToLast(); cnt = static_cast<int>(num_items) - 1; ASSERT_TRUE(it->Valid()); while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); --cnt; it->Prev(); } ASSERT_EQ(cnt, -1); cnt = static_cast<int>(num_items) / 2; it->Seek(keys[cnt]); while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); ++cnt; it->Next(); } ASSERT_EQ(static_cast<uint32_t>(cnt), num_items); delete it; Arena arena; it = reader.NewIterator(ReadOptions(), &arena); ASSERT_OK(it->status()); ASSERT_TRUE(!it->Valid()); it->Seek(keys[num_items/2]); ASSERT_TRUE(it->Valid()); ASSERT_OK(it->status()); ASSERT_TRUE(keys[num_items/2] == it->key()); ASSERT_TRUE(values[num_items/2] == it->value()); ASSERT_OK(it->status()); it->~InternalIterator(); } std::vector<std::string> keys; std::vector<std::string> user_keys; std::vector<std::string> values; uint64_t num_items; std::string fname; uint64_t file_size; Options options; Env* env; EnvOptions env_options; }; TEST_F(CuckooReaderTest, WhenKeyExists) { SetUp(kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_WhenKeyExists"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values. AddHashLookups(user_keys[i], i, kNumHashFunc); } CreateCuckooFileAndCheckReader(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); // Test with collision. Make all hash values collide. hash_map.clear(); for (uint32_t i = 0; i < num_items; i++) { AddHashLookups(user_keys[i], 0, kNumHashFunc); } UpdateKeys(false); CreateCuckooFileAndCheckReader(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); } TEST_F(CuckooReaderTest, WhenKeyExistsWithUint64Comparator) { SetUp(kNumHashFunc); fname = test::TmpDir() + "/CuckooReaderUint64_WhenKeyExists"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i].resize(8); memcpy(&user_keys[i][0], static_cast<void*>(&i), 8); ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values. AddHashLookups(user_keys[i], i, kNumHashFunc); } CreateCuckooFileAndCheckReader(test::Uint64Comparator()); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(test::Uint64Comparator()); // Test with collision. Make all hash values collide. hash_map.clear(); for (uint32_t i = 0; i < num_items; i++) { AddHashLookups(user_keys[i], 0, kNumHashFunc); } UpdateKeys(false); CreateCuckooFileAndCheckReader(test::Uint64Comparator()); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(test::Uint64Comparator()); } TEST_F(CuckooReaderTest, CheckIterator) { SetUp(2*kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_CheckIterator"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values, in reverse order. AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc); } CreateCuckooFileAndCheckReader(); CheckIterator(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); CheckIterator(); } TEST_F(CuckooReaderTest, CheckIteratorUint64) { SetUp(2*kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_CheckIterator"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i].resize(8); memcpy(&user_keys[i][0], static_cast<void*>(&i), 8); ParsedInternalKey ikey(user_keys[i], 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values, in reverse order. AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc); } CreateCuckooFileAndCheckReader(test::Uint64Comparator()); CheckIterator(test::Uint64Comparator()); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(test::Uint64Comparator()); CheckIterator(test::Uint64Comparator()); } TEST_F(CuckooReaderTest, WhenKeyNotFound) { // Add keys with colliding hash values. SetUp(kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_WhenKeyNotFound"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Make all hash values collide. AddHashLookups(user_keys[i], 0, kNumHashFunc); } auto* ucmp = BytewiseComparator(); CreateCuckooFileAndCheckReader(); std::unique_ptr<RandomAccessFile> read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); unique_ptr<RandomAccessFileReader> file_reader( new RandomAccessFileReader(std::move(read_file))); const ImmutableCFOptions ioptions(options); CuckooTableReader reader(ioptions, std::move(file_reader), file_size, ucmp, GetSliceHash); ASSERT_OK(reader.status()); // Search for a key with colliding hash values. std::string not_found_user_key = "key" + NumToStr(num_items); std::string not_found_key; AddHashLookups(not_found_user_key, 0, kNumHashFunc); ParsedInternalKey ikey(not_found_user_key, 1000, kTypeValue); AppendInternalKey(¬_found_key, ikey); std::string value; GetContext get_context(ucmp, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(not_found_key), &value, nullptr, nullptr, nullptr); ASSERT_OK(reader.Get(ReadOptions(), Slice(not_found_key), &get_context)); ASSERT_TRUE(value.empty()); ASSERT_OK(reader.status()); // Search for a key with an independent hash value. std::string not_found_user_key2 = "key" + NumToStr(num_items + 1); AddHashLookups(not_found_user_key2, kNumHashFunc, kNumHashFunc); ParsedInternalKey ikey2(not_found_user_key2, 1000, kTypeValue); std::string not_found_key2; AppendInternalKey(¬_found_key2, ikey2); GetContext get_context2(ucmp, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(not_found_key2), &value, nullptr, nullptr, nullptr); ASSERT_OK(reader.Get(ReadOptions(), Slice(not_found_key2), &get_context2)); ASSERT_TRUE(value.empty()); ASSERT_OK(reader.status()); // Test read when key is unused key. std::string unused_key = reader.GetTableProperties()->user_collected_properties.at( CuckooTablePropertyNames::kEmptyKey); // Add hash values that map to empty buckets. AddHashLookups(ExtractUserKey(unused_key).ToString(), kNumHashFunc, kNumHashFunc); GetContext get_context3(ucmp, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(unused_key), &value, nullptr, nullptr, nullptr); ASSERT_OK(reader.Get(ReadOptions(), Slice(unused_key), &get_context3)); ASSERT_TRUE(value.empty()); ASSERT_OK(reader.status()); } // Performance tests namespace { void GetKeys(uint64_t num, std::vector<std::string>* keys) { keys->clear(); IterKey k; k.SetInternalKey("", 0, kTypeValue); std::string internal_key_suffix = k.GetKey().ToString(); ASSERT_EQ(static_cast<size_t>(8), internal_key_suffix.size()); for (uint64_t key_idx = 0; key_idx < num; ++key_idx) { uint64_t value = 2 * key_idx; std::string new_key(reinterpret_cast<char*>(&value), sizeof(value)); new_key += internal_key_suffix; keys->push_back(new_key); } } std::string GetFileName(uint64_t num) { if (FLAGS_file_dir.empty()) { FLAGS_file_dir = test::TmpDir(); } return FLAGS_file_dir + "/cuckoo_read_benchmark" + ToString(num/1000000) + "Mkeys"; } // Create last level file as we are interested in measuring performance of // last level file only. void WriteFile(const std::vector<std::string>& keys, const uint64_t num, double hash_ratio) { Options options; options.allow_mmap_reads = true; Env* env = options.env; EnvOptions env_options = EnvOptions(options); std::string fname = GetFileName(num); std::unique_ptr<WritableFile> writable_file; ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options)); unique_ptr<WritableFileWriter> file_writer( new WritableFileWriter(std::move(writable_file), env_options)); CuckooTableBuilder builder( file_writer.get(), hash_ratio, 64, 1000, test::Uint64Comparator(), 5, false, FLAGS_identity_as_first_hash, nullptr, 0 /* column_family_id */, kDefaultColumnFamilyName); ASSERT_OK(builder.status()); for (uint64_t key_idx = 0; key_idx < num; ++key_idx) { // Value is just a part of key. builder.Add(Slice(keys[key_idx]), Slice(&keys[key_idx][0], 4)); ASSERT_EQ(builder.NumEntries(), key_idx + 1); ASSERT_OK(builder.status()); } ASSERT_OK(builder.Finish()); ASSERT_EQ(num, builder.NumEntries()); ASSERT_OK(file_writer->Close()); uint64_t file_size; env->GetFileSize(fname, &file_size); std::unique_ptr<RandomAccessFile> read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); unique_ptr<RandomAccessFileReader> file_reader( new RandomAccessFileReader(std::move(read_file))); const ImmutableCFOptions ioptions(options); CuckooTableReader reader(ioptions, std::move(file_reader), file_size, test::Uint64Comparator(), nullptr); ASSERT_OK(reader.status()); ReadOptions r_options; std::string value; // Assume only the fast path is triggered GetContext get_context(nullptr, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(), &value, nullptr, nullptr, nullptr); for (uint64_t i = 0; i < num; ++i) { value.clear(); ASSERT_OK(reader.Get(r_options, Slice(keys[i]), &get_context)); ASSERT_TRUE(Slice(keys[i]) == Slice(&keys[i][0], 4)); } } void ReadKeys(uint64_t num, uint32_t batch_size) { Options options; options.allow_mmap_reads = true; Env* env = options.env; EnvOptions env_options = EnvOptions(options); std::string fname = GetFileName(num); uint64_t file_size; env->GetFileSize(fname, &file_size); std::unique_ptr<RandomAccessFile> read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); unique_ptr<RandomAccessFileReader> file_reader( new RandomAccessFileReader(std::move(read_file))); const ImmutableCFOptions ioptions(options); CuckooTableReader reader(ioptions, std::move(file_reader), file_size, test::Uint64Comparator(), nullptr); ASSERT_OK(reader.status()); const UserCollectedProperties user_props = reader.GetTableProperties()->user_collected_properties; const uint32_t num_hash_fun = *reinterpret_cast<const uint32_t*>( user_props.at(CuckooTablePropertyNames::kNumHashFunc).data()); const uint64_t table_size = *reinterpret_cast<const uint64_t*>( user_props.at(CuckooTablePropertyNames::kHashTableSize).data()); fprintf(stderr, "With %" PRIu64 " items, utilization is %.2f%%, number of" " hash functions: %u.\n", num, num * 100.0 / (table_size), num_hash_fun); ReadOptions r_options; std::vector<uint64_t> keys; keys.reserve(num); for (uint64_t i = 0; i < num; ++i) { keys.push_back(2 * i); } std::random_shuffle(keys.begin(), keys.end()); std::string value; // Assume only the fast path is triggered GetContext get_context(nullptr, nullptr, nullptr, nullptr, GetContext::kNotFound, Slice(), &value, nullptr, nullptr, nullptr); uint64_t start_time = env->NowMicros(); if (batch_size > 0) { for (uint64_t i = 0; i < num; i += batch_size) { for (uint64_t j = i; j < i+batch_size && j < num; ++j) { reader.Prepare(Slice(reinterpret_cast<char*>(&keys[j]), 16)); } for (uint64_t j = i; j < i+batch_size && j < num; ++j) { reader.Get(r_options, Slice(reinterpret_cast<char*>(&keys[j]), 16), &get_context); } } } else { for (uint64_t i = 0; i < num; i++) { reader.Get(r_options, Slice(reinterpret_cast<char*>(&keys[i]), 16), &get_context); } } float time_per_op = (env->NowMicros() - start_time) * 1.0f / num; fprintf(stderr, "Time taken per op is %.3fus (%.1f Mqps) with batch size of %u\n", time_per_op, 1.0 / time_per_op, batch_size); } } // namespace. TEST_F(CuckooReaderTest, TestReadPerformance) { if (!FLAGS_enable_perf) { return; } double hash_ratio = 0.95; // These numbers are chosen to have a hash utilizaiton % close to // 0.9, 0.75, 0.6 and 0.5 respectively. // They all create 128 M buckets. std::vector<uint64_t> nums = {120*1024*1024, 100*1024*1024, 80*1024*1024, 70*1024*1024}; #ifndef NDEBUG fprintf(stdout, "WARNING: Not compiled with DNDEBUG. Performance tests may be slow.\n"); #endif for (uint64_t num : nums) { if (FLAGS_write || Env::Default()->FileExists(GetFileName(num)).IsNotFound()) { std::vector<std::string> all_keys; GetKeys(num, &all_keys); WriteFile(all_keys, num, hash_ratio); } ReadKeys(num, 0); ReadKeys(num, 10); ReadKeys(num, 25); ReadKeys(num, 50); ReadKeys(num, 100); fprintf(stderr, "\n"); } } } // namespace rocksdb int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); ParseCommandLineFlags(&argc, &argv, true); return RUN_ALL_TESTS(); } #endif // GFLAGS. #else #include <stdio.h> int main(int argc, char** argv) { fprintf(stderr, "SKIPPED as Cuckoo table is not supported in ROCKSDB_LITE\n"); return 0; } #endif // ROCKSDB_LITE