// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // WriteBatch::rep_ := // sequence: fixed64 // count: fixed32 // data: record[count] // record := // kTypeValue varstring varstring // kTypeDeletion varstring // kTypeSingleDeletion varstring // kTypeMerge varstring varstring // kTypeColumnFamilyValue varint32 varstring varstring // kTypeColumnFamilyDeletion varint32 varstring varstring // kTypeColumnFamilySingleDeletion varint32 varstring varstring // kTypeColumnFamilyMerge varint32 varstring varstring // varstring := // len: varint32 // data: uint8[len] #include "rocksdb/write_batch.h" #include #include #include #include "db/column_family.h" #include "db/db_impl.h" #include "db/dbformat.h" #include "db/flush_scheduler.h" #include "db/memtable.h" #include "db/snapshot_impl.h" #include "db/write_batch_internal.h" #include "rocksdb/merge_operator.h" #include "util/coding.h" #include "util/perf_context_imp.h" #include "util/statistics.h" namespace rocksdb { // anon namespace for file-local types namespace { enum ContentFlags : uint32_t { DEFERRED = 1, HAS_PUT = 2, HAS_DELETE = 4, HAS_SINGLE_DELETE = 8, HAS_MERGE = 16, }; struct BatchContentClassifier : public WriteBatch::Handler { uint32_t content_flags = 0; Status PutCF(uint32_t, const Slice&, const Slice&) override { content_flags |= ContentFlags::HAS_PUT; return Status::OK(); } Status DeleteCF(uint32_t, const Slice&) override { content_flags |= ContentFlags::HAS_DELETE; return Status::OK(); } Status SingleDeleteCF(uint32_t, const Slice&) override { content_flags |= ContentFlags::HAS_SINGLE_DELETE; return Status::OK(); } Status MergeCF(uint32_t, const Slice&, const Slice&) override { content_flags |= ContentFlags::HAS_MERGE; return Status::OK(); } }; } // anon namespace struct SavePoint { size_t size; // size of rep_ int count; // count of elements in rep_ uint32_t content_flags; }; struct SavePoints { std::stack stack; }; WriteBatch::WriteBatch(size_t reserved_bytes) : save_points_(nullptr), content_flags_(0), rep_() { rep_.reserve((reserved_bytes > WriteBatchInternal::kHeader) ? reserved_bytes : WriteBatchInternal::kHeader); rep_.resize(WriteBatchInternal::kHeader); } WriteBatch::WriteBatch(const std::string& rep) : save_points_(nullptr), content_flags_(ContentFlags::DEFERRED), rep_(rep) {} WriteBatch::WriteBatch(const WriteBatch& src) : save_points_(src.save_points_), content_flags_(src.content_flags_.load(std::memory_order_relaxed)), rep_(src.rep_) {} WriteBatch::WriteBatch(WriteBatch&& src) : save_points_(std::move(src.save_points_)), content_flags_(src.content_flags_.load(std::memory_order_relaxed)), rep_(std::move(src.rep_)) {} WriteBatch& WriteBatch::operator=(const WriteBatch& src) { if (&src != this) { this->~WriteBatch(); new (this) WriteBatch(src); } return *this; } WriteBatch& WriteBatch::operator=(WriteBatch&& src) { if (&src != this) { this->~WriteBatch(); new (this) WriteBatch(std::move(src)); } return *this; } WriteBatch::~WriteBatch() { delete save_points_; } WriteBatch::Handler::~Handler() { } void WriteBatch::Handler::LogData(const Slice& blob) { // If the user has not specified something to do with blobs, then we ignore // them. } bool WriteBatch::Handler::Continue() { return true; } void WriteBatch::Clear() { rep_.clear(); rep_.resize(WriteBatchInternal::kHeader); content_flags_.store(0, std::memory_order_relaxed); if (save_points_ != nullptr) { while (!save_points_->stack.empty()) { save_points_->stack.pop(); } } } int WriteBatch::Count() const { return WriteBatchInternal::Count(this); } uint32_t WriteBatch::ComputeContentFlags() const { auto rv = content_flags_.load(std::memory_order_relaxed); if ((rv & ContentFlags::DEFERRED) != 0) { BatchContentClassifier classifier; Iterate(&classifier); rv = classifier.content_flags; // this method is conceptually const, because it is performing a lazy // computation that doesn't affect the abstract state of the batch. // content_flags_ is marked mutable so that we can perform the // following assignment content_flags_.store(rv, std::memory_order_relaxed); } return rv; } bool WriteBatch::HasPut() const { return (ComputeContentFlags() & ContentFlags::HAS_PUT) != 0; } bool WriteBatch::HasDelete() const { return (ComputeContentFlags() & ContentFlags::HAS_DELETE) != 0; } bool WriteBatch::HasSingleDelete() const { return (ComputeContentFlags() & ContentFlags::HAS_SINGLE_DELETE) != 0; } bool WriteBatch::HasMerge() const { return (ComputeContentFlags() & ContentFlags::HAS_MERGE) != 0; } Status ReadRecordFromWriteBatch(Slice* input, char* tag, uint32_t* column_family, Slice* key, Slice* value, Slice* blob) { assert(key != nullptr && value != nullptr); *tag = (*input)[0]; input->remove_prefix(1); *column_family = 0; // default switch (*tag) { case kTypeColumnFamilyValue: if (!GetVarint32(input, column_family)) { return Status::Corruption("bad WriteBatch Put"); } // intentional fallthrough case kTypeValue: if (!GetLengthPrefixedSlice(input, key) || !GetLengthPrefixedSlice(input, value)) { return Status::Corruption("bad WriteBatch Put"); } break; case kTypeColumnFamilyDeletion: case kTypeColumnFamilySingleDeletion: if (!GetVarint32(input, column_family)) { return Status::Corruption("bad WriteBatch Delete"); } // intentional fallthrough case kTypeDeletion: case kTypeSingleDeletion: if (!GetLengthPrefixedSlice(input, key)) { return Status::Corruption("bad WriteBatch Delete"); } break; case kTypeColumnFamilyMerge: if (!GetVarint32(input, column_family)) { return Status::Corruption("bad WriteBatch Merge"); } // intentional fallthrough case kTypeMerge: if (!GetLengthPrefixedSlice(input, key) || !GetLengthPrefixedSlice(input, value)) { return Status::Corruption("bad WriteBatch Merge"); } break; case kTypeLogData: assert(blob != nullptr); if (!GetLengthPrefixedSlice(input, blob)) { return Status::Corruption("bad WriteBatch Blob"); } break; default: return Status::Corruption("unknown WriteBatch tag"); } return Status::OK(); } Status WriteBatch::Iterate(Handler* handler) const { Slice input(rep_); if (input.size() < WriteBatchInternal::kHeader) { return Status::Corruption("malformed WriteBatch (too small)"); } input.remove_prefix(WriteBatchInternal::kHeader); Slice key, value, blob; int found = 0; Status s; while (s.ok() && !input.empty() && handler->Continue()) { char tag = 0; uint32_t column_family = 0; // default s = ReadRecordFromWriteBatch(&input, &tag, &column_family, &key, &value, &blob); if (!s.ok()) { return s; } switch (tag) { case kTypeColumnFamilyValue: case kTypeValue: assert(content_flags_.load(std::memory_order_relaxed) & (ContentFlags::DEFERRED | ContentFlags::HAS_PUT)); s = handler->PutCF(column_family, key, value); found++; break; case kTypeColumnFamilyDeletion: case kTypeDeletion: assert(content_flags_.load(std::memory_order_relaxed) & (ContentFlags::DEFERRED | ContentFlags::HAS_DELETE)); s = handler->DeleteCF(column_family, key); found++; break; case kTypeColumnFamilySingleDeletion: case kTypeSingleDeletion: assert(content_flags_.load(std::memory_order_relaxed) & (ContentFlags::DEFERRED | ContentFlags::HAS_SINGLE_DELETE)); s = handler->SingleDeleteCF(column_family, key); found++; break; case kTypeColumnFamilyMerge: case kTypeMerge: assert(content_flags_.load(std::memory_order_relaxed) & (ContentFlags::DEFERRED | ContentFlags::HAS_MERGE)); s = handler->MergeCF(column_family, key, value); found++; break; case kTypeLogData: handler->LogData(blob); break; default: return Status::Corruption("unknown WriteBatch tag"); } } if (!s.ok()) { return s; } if (found != WriteBatchInternal::Count(this)) { return Status::Corruption("WriteBatch has wrong count"); } else { return Status::OK(); } } int WriteBatchInternal::Count(const WriteBatch* b) { return DecodeFixed32(b->rep_.data() + 8); } void WriteBatchInternal::SetCount(WriteBatch* b, int n) { EncodeFixed32(&b->rep_[8], n); } SequenceNumber WriteBatchInternal::Sequence(const WriteBatch* b) { return SequenceNumber(DecodeFixed64(b->rep_.data())); } void WriteBatchInternal::SetSequence(WriteBatch* b, SequenceNumber seq) { EncodeFixed64(&b->rep_[0], seq); } size_t WriteBatchInternal::GetFirstOffset(WriteBatch* b) { return WriteBatchInternal::kHeader; } void WriteBatchInternal::Put(WriteBatch* b, uint32_t column_family_id, const Slice& key, const Slice& value) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeValue)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyValue)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSlice(&b->rep_, key); PutLengthPrefixedSlice(&b->rep_, value); b->content_flags_.store( b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_PUT, std::memory_order_relaxed); } void WriteBatch::Put(ColumnFamilyHandle* column_family, const Slice& key, const Slice& value) { WriteBatchInternal::Put(this, GetColumnFamilyID(column_family), key, value); } void WriteBatchInternal::Put(WriteBatch* b, uint32_t column_family_id, const SliceParts& key, const SliceParts& value) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeValue)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyValue)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSliceParts(&b->rep_, key); PutLengthPrefixedSliceParts(&b->rep_, value); b->content_flags_.store( b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_PUT, std::memory_order_relaxed); } void WriteBatch::Put(ColumnFamilyHandle* column_family, const SliceParts& key, const SliceParts& value) { WriteBatchInternal::Put(this, GetColumnFamilyID(column_family), key, value); } void WriteBatchInternal::Delete(WriteBatch* b, uint32_t column_family_id, const Slice& key) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeDeletion)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyDeletion)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSlice(&b->rep_, key); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_DELETE, std::memory_order_relaxed); } void WriteBatch::Delete(ColumnFamilyHandle* column_family, const Slice& key) { WriteBatchInternal::Delete(this, GetColumnFamilyID(column_family), key); } void WriteBatchInternal::Delete(WriteBatch* b, uint32_t column_family_id, const SliceParts& key) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeDeletion)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyDeletion)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSliceParts(&b->rep_, key); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_DELETE, std::memory_order_relaxed); } void WriteBatch::Delete(ColumnFamilyHandle* column_family, const SliceParts& key) { WriteBatchInternal::Delete(this, GetColumnFamilyID(column_family), key); } void WriteBatchInternal::SingleDelete(WriteBatch* b, uint32_t column_family_id, const Slice& key) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeSingleDeletion)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilySingleDeletion)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSlice(&b->rep_, key); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_SINGLE_DELETE, std::memory_order_relaxed); } void WriteBatch::SingleDelete(ColumnFamilyHandle* column_family, const Slice& key) { WriteBatchInternal::SingleDelete(this, GetColumnFamilyID(column_family), key); } void WriteBatchInternal::SingleDelete(WriteBatch* b, uint32_t column_family_id, const SliceParts& key) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeSingleDeletion)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilySingleDeletion)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSliceParts(&b->rep_, key); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_SINGLE_DELETE, std::memory_order_relaxed); } void WriteBatch::SingleDelete(ColumnFamilyHandle* column_family, const SliceParts& key) { WriteBatchInternal::SingleDelete(this, GetColumnFamilyID(column_family), key); } void WriteBatchInternal::Merge(WriteBatch* b, uint32_t column_family_id, const Slice& key, const Slice& value) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeMerge)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyMerge)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSlice(&b->rep_, key); PutLengthPrefixedSlice(&b->rep_, value); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_MERGE, std::memory_order_relaxed); } void WriteBatch::Merge(ColumnFamilyHandle* column_family, const Slice& key, const Slice& value) { WriteBatchInternal::Merge(this, GetColumnFamilyID(column_family), key, value); } void WriteBatchInternal::Merge(WriteBatch* b, uint32_t column_family_id, const SliceParts& key, const SliceParts& value) { WriteBatchInternal::SetCount(b, WriteBatchInternal::Count(b) + 1); if (column_family_id == 0) { b->rep_.push_back(static_cast(kTypeMerge)); } else { b->rep_.push_back(static_cast(kTypeColumnFamilyMerge)); PutVarint32(&b->rep_, column_family_id); } PutLengthPrefixedSliceParts(&b->rep_, key); PutLengthPrefixedSliceParts(&b->rep_, value); b->content_flags_.store(b->content_flags_.load(std::memory_order_relaxed) | ContentFlags::HAS_MERGE, std::memory_order_relaxed); } void WriteBatch::Merge(ColumnFamilyHandle* column_family, const SliceParts& key, const SliceParts& value) { WriteBatchInternal::Merge(this, GetColumnFamilyID(column_family), key, value); } void WriteBatch::PutLogData(const Slice& blob) { rep_.push_back(static_cast(kTypeLogData)); PutLengthPrefixedSlice(&rep_, blob); } void WriteBatch::SetSavePoint() { if (save_points_ == nullptr) { save_points_ = new SavePoints(); } // Record length and count of current batch of writes. save_points_->stack.push(SavePoint{ GetDataSize(), Count(), content_flags_.load(std::memory_order_relaxed)}); } Status WriteBatch::RollbackToSavePoint() { if (save_points_ == nullptr || save_points_->stack.size() == 0) { return Status::NotFound(); } // Pop the most recent savepoint off the stack SavePoint savepoint = save_points_->stack.top(); save_points_->stack.pop(); assert(savepoint.size <= rep_.size()); assert(savepoint.count <= Count()); if (savepoint.size == rep_.size()) { // No changes to rollback } else if (savepoint.size == 0) { // Rollback everything Clear(); } else { rep_.resize(savepoint.size); WriteBatchInternal::SetCount(this, savepoint.count); content_flags_.store(savepoint.content_flags, std::memory_order_relaxed); } return Status::OK(); } namespace { class MemTableInserter : public WriteBatch::Handler { public: SequenceNumber sequence_; ColumnFamilyMemTables* const cf_mems_; FlushScheduler* const flush_scheduler_; const bool ignore_missing_column_families_; const uint64_t log_number_; DBImpl* db_; const bool dont_filter_deletes_; const bool concurrent_memtable_writes_; // cf_mems should not be shared with concurrent inserters MemTableInserter(SequenceNumber sequence, ColumnFamilyMemTables* cf_mems, FlushScheduler* flush_scheduler, bool ignore_missing_column_families, uint64_t log_number, DB* db, const bool dont_filter_deletes, bool concurrent_memtable_writes) : sequence_(sequence), cf_mems_(cf_mems), flush_scheduler_(flush_scheduler), ignore_missing_column_families_(ignore_missing_column_families), log_number_(log_number), db_(reinterpret_cast(db)), dont_filter_deletes_(dont_filter_deletes), concurrent_memtable_writes_(concurrent_memtable_writes) { assert(cf_mems_); if (!dont_filter_deletes_) { assert(db_); } } bool SeekToColumnFamily(uint32_t column_family_id, Status* s) { // If we are in a concurrent mode, it is the caller's responsibility // to clone the original ColumnFamilyMemTables so that each thread // has its own instance. Otherwise, it must be guaranteed that there // is no concurrent access bool found = cf_mems_->Seek(column_family_id); if (!found) { if (ignore_missing_column_families_) { *s = Status::OK(); } else { *s = Status::InvalidArgument( "Invalid column family specified in write batch"); } return false; } if (log_number_ != 0 && log_number_ < cf_mems_->GetLogNumber()) { // This is true only in recovery environment (log_number_ is always 0 in // non-recovery, regular write code-path) // * If log_number_ < cf_mems_->GetLogNumber(), this means that column // family already contains updates from this log. We can't apply updates // twice because of update-in-place or merge workloads -- ignore the // update *s = Status::OK(); return false; } return true; } virtual Status PutCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { Status seek_status; if (!SeekToColumnFamily(column_family_id, &seek_status)) { ++sequence_; return seek_status; } MemTable* mem = cf_mems_->GetMemTable(); auto* moptions = mem->GetMemTableOptions(); if (!moptions->inplace_update_support) { mem->Add(sequence_, kTypeValue, key, value, concurrent_memtable_writes_); } else if (moptions->inplace_callback == nullptr) { assert(!concurrent_memtable_writes_); mem->Update(sequence_, key, value); RecordTick(moptions->statistics, NUMBER_KEYS_UPDATED); } else { assert(!concurrent_memtable_writes_); if (mem->UpdateCallback(sequence_, key, value)) { } else { // key not found in memtable. Do sst get, update, add SnapshotImpl read_from_snapshot; read_from_snapshot.number_ = sequence_; ReadOptions ropts; ropts.snapshot = &read_from_snapshot; std::string prev_value; std::string merged_value; auto cf_handle = cf_mems_->GetColumnFamilyHandle(); if (cf_handle == nullptr) { cf_handle = db_->DefaultColumnFamily(); } Status s = db_->Get(ropts, cf_handle, key, &prev_value); char* prev_buffer = const_cast(prev_value.c_str()); uint32_t prev_size = static_cast(prev_value.size()); auto status = moptions->inplace_callback(s.ok() ? prev_buffer : nullptr, s.ok() ? &prev_size : nullptr, value, &merged_value); if (status == UpdateStatus::UPDATED_INPLACE) { // prev_value is updated in-place with final value. mem->Add(sequence_, kTypeValue, key, Slice(prev_buffer, prev_size)); RecordTick(moptions->statistics, NUMBER_KEYS_WRITTEN); } else if (status == UpdateStatus::UPDATED) { // merged_value contains the final value. mem->Add(sequence_, kTypeValue, key, Slice(merged_value)); RecordTick(moptions->statistics, NUMBER_KEYS_WRITTEN); } } } // Since all Puts are logged in trasaction logs (if enabled), always bump // sequence number. Even if the update eventually fails and does not result // in memtable add/update. sequence_++; CheckMemtableFull(); return Status::OK(); } Status DeleteImpl(uint32_t column_family_id, const Slice& key, ValueType delete_type) { Status seek_status; if (!SeekToColumnFamily(column_family_id, &seek_status)) { ++sequence_; return seek_status; } MemTable* mem = cf_mems_->GetMemTable(); auto* moptions = mem->GetMemTableOptions(); if (!dont_filter_deletes_ && moptions->filter_deletes) { assert(!concurrent_memtable_writes_); SnapshotImpl read_from_snapshot; read_from_snapshot.number_ = sequence_; ReadOptions ropts; ropts.snapshot = &read_from_snapshot; std::string value; auto cf_handle = cf_mems_->GetColumnFamilyHandle(); if (cf_handle == nullptr) { cf_handle = db_->DefaultColumnFamily(); } if (!db_->KeyMayExist(ropts, cf_handle, key, &value)) { RecordTick(moptions->statistics, NUMBER_FILTERED_DELETES); return Status::OK(); } } mem->Add(sequence_, delete_type, key, Slice(), concurrent_memtable_writes_); sequence_++; CheckMemtableFull(); return Status::OK(); } virtual Status DeleteCF(uint32_t column_family_id, const Slice& key) override { return DeleteImpl(column_family_id, key, kTypeDeletion); } virtual Status SingleDeleteCF(uint32_t column_family_id, const Slice& key) override { return DeleteImpl(column_family_id, key, kTypeSingleDeletion); } virtual Status MergeCF(uint32_t column_family_id, const Slice& key, const Slice& value) override { assert(!concurrent_memtable_writes_); Status seek_status; if (!SeekToColumnFamily(column_family_id, &seek_status)) { ++sequence_; return seek_status; } MemTable* mem = cf_mems_->GetMemTable(); auto* moptions = mem->GetMemTableOptions(); bool perform_merge = false; if (moptions->max_successive_merges > 0 && db_ != nullptr) { LookupKey lkey(key, sequence_); // Count the number of successive merges at the head // of the key in the memtable size_t num_merges = mem->CountSuccessiveMergeEntries(lkey); if (num_merges >= moptions->max_successive_merges) { perform_merge = true; } } if (perform_merge) { // 1) Get the existing value std::string get_value; // Pass in the sequence number so that we also include previous merge // operations in the same batch. SnapshotImpl read_from_snapshot; read_from_snapshot.number_ = sequence_; ReadOptions read_options; read_options.snapshot = &read_from_snapshot; auto cf_handle = cf_mems_->GetColumnFamilyHandle(); if (cf_handle == nullptr) { cf_handle = db_->DefaultColumnFamily(); } db_->Get(read_options, cf_handle, key, &get_value); Slice get_value_slice = Slice(get_value); // 2) Apply this merge auto merge_operator = moptions->merge_operator; assert(merge_operator); std::deque operands; operands.push_front(value.ToString()); std::string new_value; bool merge_success = false; { StopWatchNano timer(Env::Default(), moptions->statistics != nullptr); PERF_TIMER_GUARD(merge_operator_time_nanos); merge_success = merge_operator->FullMerge( key, &get_value_slice, operands, &new_value, moptions->info_log); RecordTick(moptions->statistics, MERGE_OPERATION_TOTAL_TIME, timer.ElapsedNanos()); } if (!merge_success) { // Failed to merge! RecordTick(moptions->statistics, NUMBER_MERGE_FAILURES); // Store the delta in memtable perform_merge = false; } else { // 3) Add value to memtable mem->Add(sequence_, kTypeValue, key, new_value); } } if (!perform_merge) { // Add merge operator to memtable mem->Add(sequence_, kTypeMerge, key, value); } sequence_++; CheckMemtableFull(); return Status::OK(); } void CheckMemtableFull() { if (flush_scheduler_ != nullptr) { auto* cfd = cf_mems_->current(); assert(cfd != nullptr); if (cfd->mem()->ShouldScheduleFlush() && cfd->mem()->MarkFlushScheduled()) { // MarkFlushScheduled only returns true if we are the one that // should take action, so no need to dedup further flush_scheduler_->ScheduleFlush(cfd); } } } }; } // namespace // This function can only be called in these conditions: // 1) During Recovery() // 2) During Write(), in a single-threaded write thread // 3) During Write(), in a concurrent context where memtables has been cloned // The reason is that it calls memtables->Seek(), which has a stateful cache Status WriteBatchInternal::InsertInto( const autovector& writers, SequenceNumber sequence, ColumnFamilyMemTables* memtables, FlushScheduler* flush_scheduler, bool ignore_missing_column_families, uint64_t log_number, DB* db, const bool dont_filter_deletes, bool concurrent_memtable_writes) { MemTableInserter inserter(sequence, memtables, flush_scheduler, ignore_missing_column_families, log_number, db, dont_filter_deletes, concurrent_memtable_writes); for (size_t i = 0; i < writers.size(); i++) { if (!writers[i]->CallbackFailed()) { writers[i]->status = writers[i]->batch->Iterate(&inserter); if (!writers[i]->status.ok()) { return writers[i]->status; } } } return Status::OK(); } Status WriteBatchInternal::InsertInto(const WriteBatch* batch, ColumnFamilyMemTables* memtables, FlushScheduler* flush_scheduler, bool ignore_missing_column_families, uint64_t log_number, DB* db, const bool dont_filter_deletes, bool concurrent_memtable_writes) { MemTableInserter inserter(WriteBatchInternal::Sequence(batch), memtables, flush_scheduler, ignore_missing_column_families, log_number, db, dont_filter_deletes, concurrent_memtable_writes); return batch->Iterate(&inserter); } void WriteBatchInternal::SetContents(WriteBatch* b, const Slice& contents) { assert(contents.size() >= WriteBatchInternal::kHeader); b->rep_.assign(contents.data(), contents.size()); b->content_flags_.store(ContentFlags::DEFERRED, std::memory_order_relaxed); } void WriteBatchInternal::Append(WriteBatch* dst, const WriteBatch* src) { SetCount(dst, Count(dst) + Count(src)); assert(src->rep_.size() >= WriteBatchInternal::kHeader); dst->rep_.append(src->rep_.data() + WriteBatchInternal::kHeader, src->rep_.size() - WriteBatchInternal::kHeader); dst->content_flags_.store( dst->content_flags_.load(std::memory_order_relaxed) | src->content_flags_.load(std::memory_order_relaxed), std::memory_order_relaxed); } size_t WriteBatchInternal::AppendedByteSize(size_t leftByteSize, size_t rightByteSize) { if (leftByteSize == 0 || rightByteSize == 0) { return leftByteSize + rightByteSize; } else { return leftByteSize + rightByteSize - WriteBatchInternal::kHeader; } } } // namespace rocksdb