// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors #include <dirent.h> #include <errno.h> #include <fcntl.h> #if defined(OS_LINUX) #include <linux/fs.h> #endif #include <pthread.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #if defined(OS_LINUX) || defined(OS_SOLARIS) || defined(OS_ANDROID) #include <sys/statfs.h> #include <sys/syscall.h> #include <sys/sysmacros.h> #endif #include <sys/statvfs.h> #include <sys/time.h> #include <sys/types.h> #include <time.h> #include <algorithm> // Get nano time includes #if defined(OS_LINUX) || defined(OS_FREEBSD) #elif defined(__MACH__) #include <mach/clock.h> #include <mach/mach.h> #else #include <chrono> #endif #include <deque> #include <set> #include <vector> #include "env/io_posix.h" #include "env/posix_logger.h" #include "monitoring/iostats_context_imp.h" #include "monitoring/thread_status_updater.h" #include "port/port.h" #include "rocksdb/options.h" #include "rocksdb/slice.h" #include "util/coding.h" #include "util/compression_context_cache.h" #include "util/logging.h" #include "util/random.h" #include "util/string_util.h" #include "util/sync_point.h" #include "util/thread_local.h" #include "util/threadpool_imp.h" #if !defined(TMPFS_MAGIC) #define TMPFS_MAGIC 0x01021994 #endif #if !defined(XFS_SUPER_MAGIC) #define XFS_SUPER_MAGIC 0x58465342 #endif #if !defined(EXT4_SUPER_MAGIC) #define EXT4_SUPER_MAGIC 0xEF53 #endif namespace rocksdb { namespace { ThreadStatusUpdater* CreateThreadStatusUpdater() { return new ThreadStatusUpdater(); } inline mode_t GetDBFileMode(bool allow_non_owner_access) { return allow_non_owner_access ? 0644 : 0600; } // list of pathnames that are locked static std::set<std::string> lockedFiles; static port::Mutex mutex_lockedFiles; static int LockOrUnlock(int fd, bool lock) { errno = 0; struct flock f; memset(&f, 0, sizeof(f)); f.l_type = (lock ? F_WRLCK : F_UNLCK); f.l_whence = SEEK_SET; f.l_start = 0; f.l_len = 0; // Lock/unlock entire file int value = fcntl(fd, F_SETLK, &f); return value; } class PosixFileLock : public FileLock { public: int fd_; std::string filename; }; int cloexec_flags(int flags, const EnvOptions* options) { // If the system supports opening the file with cloexec enabled, // do so, as this avoids a race condition if a db is opened around // the same time that a child process is forked #ifdef O_CLOEXEC if (options == nullptr || options->set_fd_cloexec) { flags |= O_CLOEXEC; } #endif return flags; } class PosixEnv : public Env { public: PosixEnv(); virtual ~PosixEnv() { for (const auto tid : threads_to_join_) { pthread_join(tid, nullptr); } for (int pool_id = 0; pool_id < Env::Priority::TOTAL; ++pool_id) { thread_pools_[pool_id].JoinAllThreads(); } // Delete the thread_status_updater_ only when the current Env is not // Env::Default(). This is to avoid the free-after-use error when // Env::Default() is destructed while some other child threads are // still trying to update thread status. if (this != Env::Default()) { delete thread_status_updater_; } } void SetFD_CLOEXEC(int fd, const EnvOptions* options) { if ((options == nullptr || options->set_fd_cloexec) && fd > 0) { fcntl(fd, F_SETFD, fcntl(fd, F_GETFD) | FD_CLOEXEC); } } virtual Status NewSequentialFile(const std::string& fname, std::unique_ptr<SequentialFile>* result, const EnvOptions& options) override { result->reset(); int fd = -1; int flags = cloexec_flags(O_RDONLY, &options); FILE* file = nullptr; if (options.use_direct_reads && !options.use_mmap_reads) { #ifdef ROCKSDB_LITE return Status::IOError(fname, "Direct I/O not supported in RocksDB lite"); #endif // !ROCKSDB_LITE #if !defined(OS_MACOSX) && !defined(OS_OPENBSD) && !defined(OS_SOLARIS) flags |= O_DIRECT; #endif } do { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, GetDBFileMode(allow_non_owner_access_)); } while (fd < 0 && errno == EINTR); if (fd < 0) { return IOError("While opening a file for sequentially reading", fname, errno); } SetFD_CLOEXEC(fd, &options); if (options.use_direct_reads && !options.use_mmap_reads) { #ifdef OS_MACOSX if (fcntl(fd, F_NOCACHE, 1) == -1) { close(fd); return IOError("While fcntl NoCache", fname, errno); } #endif } else { do { IOSTATS_TIMER_GUARD(open_nanos); file = fdopen(fd, "r"); } while (file == nullptr && errno == EINTR); if (file == nullptr) { close(fd); return IOError("While opening file for sequentially read", fname, errno); } } result->reset(new PosixSequentialFile(fname, file, fd, options)); return Status::OK(); } virtual Status NewRandomAccessFile(const std::string& fname, std::unique_ptr<RandomAccessFile>* result, const EnvOptions& options) override { result->reset(); Status s; int fd; int flags = cloexec_flags(O_RDONLY, &options); if (options.use_direct_reads && !options.use_mmap_reads) { #ifdef ROCKSDB_LITE return Status::IOError(fname, "Direct I/O not supported in RocksDB lite"); #endif // !ROCKSDB_LITE #if !defined(OS_MACOSX) && !defined(OS_OPENBSD) && !defined(OS_SOLARIS) flags |= O_DIRECT; TEST_SYNC_POINT_CALLBACK("NewRandomAccessFile:O_DIRECT", &flags); #endif } do { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, GetDBFileMode(allow_non_owner_access_)); } while (fd < 0 && errno == EINTR); if (fd < 0) { return IOError("While open a file for random read", fname, errno); } SetFD_CLOEXEC(fd, &options); if (options.use_mmap_reads && sizeof(void*) >= 8) { // Use of mmap for random reads has been removed because it // kills performance when storage is fast. // Use mmap when virtual address-space is plentiful. uint64_t size; s = GetFileSize(fname, &size); if (s.ok()) { void* base = mmap(nullptr, size, PROT_READ, MAP_SHARED, fd, 0); if (base != MAP_FAILED) { result->reset(new PosixMmapReadableFile(fd, fname, base, size, options)); } else { s = IOError("while mmap file for read", fname, errno); close(fd); } } } else { if (options.use_direct_reads && !options.use_mmap_reads) { #ifdef OS_MACOSX if (fcntl(fd, F_NOCACHE, 1) == -1) { close(fd); return IOError("while fcntl NoCache", fname, errno); } #endif } result->reset(new PosixRandomAccessFile(fname, fd, options)); } return s; } virtual Status OpenWritableFile(const std::string& fname, std::unique_ptr<WritableFile>* result, const EnvOptions& options, bool reopen = false) { result->reset(); Status s; int fd = -1; int flags = (reopen) ? (O_CREAT | O_APPEND) : (O_CREAT | O_TRUNC); // Direct IO mode with O_DIRECT flag or F_NOCAHCE (MAC OSX) if (options.use_direct_writes && !options.use_mmap_writes) { // Note: we should avoid O_APPEND here due to ta the following bug: // POSIX requires that opening a file with the O_APPEND flag should // have no affect on the location at which pwrite() writes data. // However, on Linux, if a file is opened with O_APPEND, pwrite() // appends data to the end of the file, regardless of the value of // offset. // More info here: https://linux.die.net/man/2/pwrite #ifdef ROCKSDB_LITE return Status::IOError(fname, "Direct I/O not supported in RocksDB lite"); #endif // ROCKSDB_LITE flags |= O_WRONLY; #if !defined(OS_MACOSX) && !defined(OS_OPENBSD) && !defined(OS_SOLARIS) flags |= O_DIRECT; #endif TEST_SYNC_POINT_CALLBACK("NewWritableFile:O_DIRECT", &flags); } else if (options.use_mmap_writes) { // non-direct I/O flags |= O_RDWR; } else { flags |= O_WRONLY; } flags = cloexec_flags(flags, &options); do { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, GetDBFileMode(allow_non_owner_access_)); } while (fd < 0 && errno == EINTR); if (fd < 0) { s = IOError("While open a file for appending", fname, errno); return s; } SetFD_CLOEXEC(fd, &options); if (options.use_mmap_writes) { if (!checkedDiskForMmap_) { // this will be executed once in the program's lifetime. // do not use mmapWrite on non ext-3/xfs/tmpfs systems. if (!SupportsFastAllocate(fname)) { forceMmapOff_ = true; } checkedDiskForMmap_ = true; } } if (options.use_mmap_writes && !forceMmapOff_) { result->reset(new PosixMmapFile(fname, fd, page_size_, options)); } else if (options.use_direct_writes && !options.use_mmap_writes) { #ifdef OS_MACOSX if (fcntl(fd, F_NOCACHE, 1) == -1) { close(fd); s = IOError("While fcntl NoCache an opened file for appending", fname, errno); return s; } #elif defined(OS_SOLARIS) if (directio(fd, DIRECTIO_ON) == -1) { if (errno != ENOTTY) { // ZFS filesystems don't support DIRECTIO_ON close(fd); s = IOError("While calling directio()", fname, errno); return s; } } #endif result->reset(new PosixWritableFile(fname, fd, options)); } else { // disable mmap writes EnvOptions no_mmap_writes_options = options; no_mmap_writes_options.use_mmap_writes = false; result->reset(new PosixWritableFile(fname, fd, no_mmap_writes_options)); } return s; } virtual Status NewWritableFile(const std::string& fname, std::unique_ptr<WritableFile>* result, const EnvOptions& options) override { return OpenWritableFile(fname, result, options, false); } virtual Status ReopenWritableFile(const std::string& fname, std::unique_ptr<WritableFile>* result, const EnvOptions& options) override { return OpenWritableFile(fname, result, options, true); } virtual Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, std::unique_ptr<WritableFile>* result, const EnvOptions& options) override { result->reset(); Status s; int fd = -1; int flags = 0; // Direct IO mode with O_DIRECT flag or F_NOCAHCE (MAC OSX) if (options.use_direct_writes && !options.use_mmap_writes) { #ifdef ROCKSDB_LITE return Status::IOError(fname, "Direct I/O not supported in RocksDB lite"); #endif // !ROCKSDB_LITE flags |= O_WRONLY; #if !defined(OS_MACOSX) && !defined(OS_OPENBSD) && !defined(OS_SOLARIS) flags |= O_DIRECT; #endif TEST_SYNC_POINT_CALLBACK("NewWritableFile:O_DIRECT", &flags); } else if (options.use_mmap_writes) { // mmap needs O_RDWR mode flags |= O_RDWR; } else { flags |= O_WRONLY; } flags = cloexec_flags(flags, &options); do { IOSTATS_TIMER_GUARD(open_nanos); fd = open(old_fname.c_str(), flags, GetDBFileMode(allow_non_owner_access_)); } while (fd < 0 && errno == EINTR); if (fd < 0) { s = IOError("while reopen file for write", fname, errno); return s; } SetFD_CLOEXEC(fd, &options); // rename into place if (rename(old_fname.c_str(), fname.c_str()) != 0) { s = IOError("while rename file to " + fname, old_fname, errno); close(fd); return s; } if (options.use_mmap_writes) { if (!checkedDiskForMmap_) { // this will be executed once in the program's lifetime. // do not use mmapWrite on non ext-3/xfs/tmpfs systems. if (!SupportsFastAllocate(fname)) { forceMmapOff_ = true; } checkedDiskForMmap_ = true; } } if (options.use_mmap_writes && !forceMmapOff_) { result->reset(new PosixMmapFile(fname, fd, page_size_, options)); } else if (options.use_direct_writes && !options.use_mmap_writes) { #ifdef OS_MACOSX if (fcntl(fd, F_NOCACHE, 1) == -1) { close(fd); s = IOError("while fcntl NoCache for reopened file for append", fname, errno); return s; } #elif defined(OS_SOLARIS) if (directio(fd, DIRECTIO_ON) == -1) { if (errno != ENOTTY) { // ZFS filesystems don't support DIRECTIO_ON close(fd); s = IOError("while calling directio()", fname, errno); return s; } } #endif result->reset(new PosixWritableFile(fname, fd, options)); } else { // disable mmap writes EnvOptions no_mmap_writes_options = options; no_mmap_writes_options.use_mmap_writes = false; result->reset(new PosixWritableFile(fname, fd, no_mmap_writes_options)); } return s; } virtual Status NewRandomRWFile(const std::string& fname, std::unique_ptr<RandomRWFile>* result, const EnvOptions& options) override { int fd = -1; int flags = cloexec_flags(O_RDWR, &options); while (fd < 0) { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, GetDBFileMode(allow_non_owner_access_)); if (fd < 0) { // Error while opening the file if (errno == EINTR) { continue; } return IOError("While open file for random read/write", fname, errno); } } SetFD_CLOEXEC(fd, &options); result->reset(new PosixRandomRWFile(fname, fd, options)); return Status::OK(); } virtual Status NewMemoryMappedFileBuffer( const std::string& fname, std::unique_ptr<MemoryMappedFileBuffer>* result) override { int fd = -1; Status status; int flags = cloexec_flags(O_RDWR, nullptr); while (fd < 0) { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, 0644); if (fd < 0) { // Error while opening the file if (errno == EINTR) { continue; } status = IOError("While open file for raw mmap buffer access", fname, errno); break; } } uint64_t size; if (status.ok()) { status = GetFileSize(fname, &size); } void* base = nullptr; if (status.ok()) { base = mmap(nullptr, static_cast<size_t>(size), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (base == MAP_FAILED) { status = IOError("while mmap file for read", fname, errno); } } if (status.ok()) { result->reset( new PosixMemoryMappedFileBuffer(base, static_cast<size_t>(size))); } if (fd >= 0) { // don't need to keep it open after mmap has been called close(fd); } return status; } virtual Status NewDirectory(const std::string& name, std::unique_ptr<Directory>* result) override { result->reset(); int fd; int flags = cloexec_flags(0, nullptr); { IOSTATS_TIMER_GUARD(open_nanos); fd = open(name.c_str(), flags); } if (fd < 0) { return IOError("While open directory", name, errno); } else { result->reset(new PosixDirectory(fd)); } return Status::OK(); } virtual Status FileExists(const std::string& fname) override { int result = access(fname.c_str(), F_OK); if (result == 0) { return Status::OK(); } int err = errno; switch (err) { case EACCES: case ELOOP: case ENAMETOOLONG: case ENOENT: case ENOTDIR: return Status::NotFound(); default: assert(err == EIO || err == ENOMEM); return Status::IOError("Unexpected error(" + ToString(err) + ") accessing file `" + fname + "' "); } } virtual Status GetChildren(const std::string& dir, std::vector<std::string>* result) override { result->clear(); DIR* d = opendir(dir.c_str()); if (d == nullptr) { switch (errno) { case EACCES: case ENOENT: case ENOTDIR: return Status::NotFound(); default: return IOError("While opendir", dir, errno); } } struct dirent* entry; while ((entry = readdir(d)) != nullptr) { result->push_back(entry->d_name); } closedir(d); return Status::OK(); } virtual Status DeleteFile(const std::string& fname) override { Status result; if (unlink(fname.c_str()) != 0) { result = IOError("while unlink() file", fname, errno); } return result; }; virtual Status CreateDir(const std::string& name) override { Status result; if (mkdir(name.c_str(), 0755) != 0) { result = IOError("While mkdir", name, errno); } return result; }; virtual Status CreateDirIfMissing(const std::string& name) override { Status result; if (mkdir(name.c_str(), 0755) != 0) { if (errno != EEXIST) { result = IOError("While mkdir if missing", name, errno); } else if (!DirExists(name)) { // Check that name is actually a // directory. // Message is taken from mkdir result = Status::IOError("`"+name+"' exists but is not a directory"); } } return result; }; virtual Status DeleteDir(const std::string& name) override { Status result; if (rmdir(name.c_str()) != 0) { result = IOError("file rmdir", name, errno); } return result; }; virtual Status GetFileSize(const std::string& fname, uint64_t* size) override { Status s; struct stat sbuf; if (stat(fname.c_str(), &sbuf) != 0) { *size = 0; s = IOError("while stat a file for size", fname, errno); } else { *size = sbuf.st_size; } return s; } virtual Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) override { struct stat s; if (stat(fname.c_str(), &s) !=0) { return IOError("while stat a file for modification time", fname, errno); } *file_mtime = static_cast<uint64_t>(s.st_mtime); return Status::OK(); } virtual Status RenameFile(const std::string& src, const std::string& target) override { Status result; if (rename(src.c_str(), target.c_str()) != 0) { result = IOError("While renaming a file to " + target, src, errno); } return result; } virtual Status LinkFile(const std::string& src, const std::string& target) override { Status result; if (link(src.c_str(), target.c_str()) != 0) { if (errno == EXDEV) { return Status::NotSupported("No cross FS links allowed"); } result = IOError("while link file to " + target, src, errno); } return result; } Status NumFileLinks(const std::string& fname, uint64_t* count) override { struct stat s; if (stat(fname.c_str(), &s) != 0) { return IOError("while stat a file for num file links", fname, errno); } *count = static_cast<uint64_t>(s.st_nlink); return Status::OK(); } virtual Status AreFilesSame(const std::string& first, const std::string& second, bool* res) override { struct stat statbuf[2]; if (stat(first.c_str(), &statbuf[0]) != 0) { return IOError("stat file", first, errno); } if (stat(second.c_str(), &statbuf[1]) != 0) { return IOError("stat file", second, errno); } if (major(statbuf[0].st_dev) != major(statbuf[1].st_dev) || minor(statbuf[0].st_dev) != minor(statbuf[1].st_dev) || statbuf[0].st_ino != statbuf[1].st_ino) { *res = false; } else { *res = true; } return Status::OK(); } virtual Status LockFile(const std::string& fname, FileLock** lock) override { *lock = nullptr; Status result; mutex_lockedFiles.Lock(); // If it already exists in the lockedFiles set, then it is already locked, // and fail this lock attempt. Otherwise, insert it into lockedFiles. // This check is needed because fcntl() does not detect lock conflict // if the fcntl is issued by the same thread that earlier acquired // this lock. // We must do this check *before* opening the file: // Otherwise, we will open a new file descriptor. Locks are associated with // a process, not a file descriptor and when *any* file descriptor is closed, // all locks the process holds for that *file* are released if (lockedFiles.insert(fname).second == false) { mutex_lockedFiles.Unlock(); errno = ENOLCK; return IOError("lock ", fname, errno); } int fd; int flags = cloexec_flags(O_RDWR | O_CREAT, nullptr); { IOSTATS_TIMER_GUARD(open_nanos); fd = open(fname.c_str(), flags, 0644); } if (fd < 0) { result = IOError("while open a file for lock", fname, errno); } else if (LockOrUnlock(fd, true) == -1) { // if there is an error in locking, then remove the pathname from lockedfiles lockedFiles.erase(fname); result = IOError("While lock file", fname, errno); close(fd); } else { SetFD_CLOEXEC(fd, nullptr); PosixFileLock* my_lock = new PosixFileLock; my_lock->fd_ = fd; my_lock->filename = fname; *lock = my_lock; } mutex_lockedFiles.Unlock(); return result; } virtual Status UnlockFile(FileLock* lock) override { PosixFileLock* my_lock = reinterpret_cast<PosixFileLock*>(lock); Status result; mutex_lockedFiles.Lock(); // If we are unlocking, then verify that we had locked it earlier, // it should already exist in lockedFiles. Remove it from lockedFiles. if (lockedFiles.erase(my_lock->filename) != 1) { errno = ENOLCK; result = IOError("unlock", my_lock->filename, errno); } else if (LockOrUnlock(my_lock->fd_, false) == -1) { result = IOError("unlock", my_lock->filename, errno); } close(my_lock->fd_); delete my_lock; mutex_lockedFiles.Unlock(); return result; } virtual void Schedule(void (*function)(void* arg1), void* arg, Priority pri = LOW, void* tag = nullptr, void (*unschedFunction)(void* arg) = nullptr) override; virtual int UnSchedule(void* arg, Priority pri) override; virtual void StartThread(void (*function)(void* arg), void* arg) override; virtual void WaitForJoin() override; virtual unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const override; virtual Status GetTestDirectory(std::string* result) override { const char* env = getenv("TEST_TMPDIR"); if (env && env[0] != '\0') { *result = env; } else { char buf[100]; snprintf(buf, sizeof(buf), "/tmp/rocksdbtest-%d", int(geteuid())); *result = buf; } // Directory may already exist CreateDir(*result); return Status::OK(); } virtual Status GetThreadList( std::vector<ThreadStatus>* thread_list) override { assert(thread_status_updater_); return thread_status_updater_->GetThreadList(thread_list); } static uint64_t gettid(pthread_t tid) { uint64_t thread_id = 0; memcpy(&thread_id, &tid, std::min(sizeof(thread_id), sizeof(tid))); return thread_id; } static uint64_t gettid() { pthread_t tid = pthread_self(); return gettid(tid); } virtual uint64_t GetThreadID() const override { return gettid(pthread_self()); } virtual Status GetFreeSpace(const std::string& fname, uint64_t* free_space) override { struct statvfs sbuf; if (statvfs(fname.c_str(), &sbuf) < 0) { return IOError("While doing statvfs", fname, errno); } *free_space = ((uint64_t)sbuf.f_bsize * sbuf.f_bfree); return Status::OK(); } virtual Status NewLogger(const std::string& fname, std::shared_ptr<Logger>* result) override { FILE* f; { IOSTATS_TIMER_GUARD(open_nanos); f = fopen(fname.c_str(), "w" #ifdef __GLIBC_PREREQ #if __GLIBC_PREREQ(2, 7) "e" // glibc extension to enable O_CLOEXEC #endif #endif ); } if (f == nullptr) { result->reset(); return IOError("when fopen a file for new logger", fname, errno); } else { int fd = fileno(f); #ifdef ROCKSDB_FALLOCATE_PRESENT fallocate(fd, FALLOC_FL_KEEP_SIZE, 0, 4 * 1024); #endif SetFD_CLOEXEC(fd, nullptr); result->reset(new PosixLogger(f, &PosixEnv::gettid, this)); return Status::OK(); } } virtual uint64_t NowMicros() override { struct timeval tv; gettimeofday(&tv, nullptr); return static_cast<uint64_t>(tv.tv_sec) * 1000000 + tv.tv_usec; } virtual uint64_t NowNanos() override { #if defined(OS_LINUX) || defined(OS_FREEBSD) || defined(OS_AIX) struct timespec ts; clock_gettime(CLOCK_MONOTONIC, &ts); return static_cast<uint64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec; #elif defined(OS_SOLARIS) return gethrtime(); #elif defined(__MACH__) clock_serv_t cclock; mach_timespec_t ts; host_get_clock_service(mach_host_self(), CALENDAR_CLOCK, &cclock); clock_get_time(cclock, &ts); mach_port_deallocate(mach_task_self(), cclock); return static_cast<uint64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec; #else return std::chrono::duration_cast<std::chrono::nanoseconds>( std::chrono::steady_clock::now().time_since_epoch()).count(); #endif } virtual uint64_t NowCPUNanos() override { #if defined(OS_LINUX) || defined(OS_FREEBSD) || defined(OS_AIX) struct timespec ts; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts); return static_cast<uint64_t>(ts.tv_sec) * 1000000000 + ts.tv_nsec; #endif return 0; } virtual void SleepForMicroseconds(int micros) override { usleep(micros); } virtual Status GetHostName(char* name, uint64_t len) override { int ret = gethostname(name, static_cast<size_t>(len)); if (ret < 0) { if (errno == EFAULT || errno == EINVAL) return Status::InvalidArgument(strerror(errno)); else return IOError("GetHostName", name, errno); } return Status::OK(); } virtual Status GetCurrentTime(int64_t* unix_time) override { time_t ret = time(nullptr); if (ret == (time_t) -1) { return IOError("GetCurrentTime", "", errno); } *unix_time = (int64_t) ret; return Status::OK(); } virtual Status GetAbsolutePath(const std::string& db_path, std::string* output_path) override { if (!db_path.empty() && db_path[0] == '/') { *output_path = db_path; return Status::OK(); } char the_path[256]; char* ret = getcwd(the_path, 256); if (ret == nullptr) { return Status::IOError(strerror(errno)); } *output_path = ret; return Status::OK(); } // Allow increasing the number of worker threads. virtual void SetBackgroundThreads(int num, Priority pri) override { assert(pri >= Priority::BOTTOM && pri <= Priority::HIGH); thread_pools_[pri].SetBackgroundThreads(num); } virtual int GetBackgroundThreads(Priority pri) override { assert(pri >= Priority::BOTTOM && pri <= Priority::HIGH); return thread_pools_[pri].GetBackgroundThreads(); } virtual Status SetAllowNonOwnerAccess(bool allow_non_owner_access) override { allow_non_owner_access_ = allow_non_owner_access; return Status::OK(); } // Allow increasing the number of worker threads. virtual void IncBackgroundThreadsIfNeeded(int num, Priority pri) override { assert(pri >= Priority::BOTTOM && pri <= Priority::HIGH); thread_pools_[pri].IncBackgroundThreadsIfNeeded(num); } virtual void LowerThreadPoolIOPriority(Priority pool = LOW) override { assert(pool >= Priority::BOTTOM && pool <= Priority::HIGH); #ifdef OS_LINUX thread_pools_[pool].LowerIOPriority(); #else (void)pool; #endif } virtual void LowerThreadPoolCPUPriority(Priority pool = LOW) override { assert(pool >= Priority::BOTTOM && pool <= Priority::HIGH); #ifdef OS_LINUX thread_pools_[pool].LowerCPUPriority(); #else (void)pool; #endif } virtual std::string TimeToString(uint64_t secondsSince1970) override { const time_t seconds = (time_t)secondsSince1970; struct tm t; int maxsize = 64; std::string dummy; dummy.reserve(maxsize); dummy.resize(maxsize); char* p = &dummy[0]; localtime_r(&seconds, &t); snprintf(p, maxsize, "%04d/%02d/%02d-%02d:%02d:%02d ", t.tm_year + 1900, t.tm_mon + 1, t.tm_mday, t.tm_hour, t.tm_min, t.tm_sec); return dummy; } EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const override { EnvOptions optimized = env_options; optimized.use_mmap_writes = false; optimized.use_direct_writes = false; optimized.bytes_per_sync = db_options.wal_bytes_per_sync; // TODO(icanadi) it's faster if fallocate_with_keep_size is false, but it // breaks TransactionLogIteratorStallAtLastRecord unit test. Fix the unit // test and make this false optimized.fallocate_with_keep_size = true; optimized.writable_file_max_buffer_size = db_options.writable_file_max_buffer_size; return optimized; } EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const override { EnvOptions optimized = env_options; optimized.use_mmap_writes = false; optimized.use_direct_writes = false; optimized.fallocate_with_keep_size = true; return optimized; } private: bool checkedDiskForMmap_; bool forceMmapOff_; // do we override Env options? // Returns true iff the named directory exists and is a directory. virtual bool DirExists(const std::string& dname) { struct stat statbuf; if (stat(dname.c_str(), &statbuf) == 0) { return S_ISDIR(statbuf.st_mode); } return false; // stat() failed return false } bool SupportsFastAllocate(const std::string& path) { #ifdef ROCKSDB_FALLOCATE_PRESENT struct statfs s; if (statfs(path.c_str(), &s)){ return false; } switch (s.f_type) { case EXT4_SUPER_MAGIC: return true; case XFS_SUPER_MAGIC: return true; case TMPFS_MAGIC: return true; default: return false; } #else (void)path; return false; #endif } size_t page_size_; std::vector<ThreadPoolImpl> thread_pools_; pthread_mutex_t mu_; std::vector<pthread_t> threads_to_join_; // If true, allow non owner read access for db files. Otherwise, non-owner // has no access to db files. bool allow_non_owner_access_; }; PosixEnv::PosixEnv() : checkedDiskForMmap_(false), forceMmapOff_(false), page_size_(getpagesize()), thread_pools_(Priority::TOTAL), allow_non_owner_access_(true) { ThreadPoolImpl::PthreadCall("mutex_init", pthread_mutex_init(&mu_, nullptr)); for (int pool_id = 0; pool_id < Env::Priority::TOTAL; ++pool_id) { thread_pools_[pool_id].SetThreadPriority( static_cast<Env::Priority>(pool_id)); // This allows later initializing the thread-local-env of each thread. thread_pools_[pool_id].SetHostEnv(this); } thread_status_updater_ = CreateThreadStatusUpdater(); } void PosixEnv::Schedule(void (*function)(void* arg1), void* arg, Priority pri, void* tag, void (*unschedFunction)(void* arg)) { assert(pri >= Priority::BOTTOM && pri <= Priority::HIGH); thread_pools_[pri].Schedule(function, arg, tag, unschedFunction); } int PosixEnv::UnSchedule(void* arg, Priority pri) { return thread_pools_[pri].UnSchedule(arg); } unsigned int PosixEnv::GetThreadPoolQueueLen(Priority pri) const { assert(pri >= Priority::BOTTOM && pri <= Priority::HIGH); return thread_pools_[pri].GetQueueLen(); } struct StartThreadState { void (*user_function)(void*); void* arg; }; static void* StartThreadWrapper(void* arg) { StartThreadState* state = reinterpret_cast<StartThreadState*>(arg); state->user_function(state->arg); delete state; return nullptr; } void PosixEnv::StartThread(void (*function)(void* arg), void* arg) { pthread_t t; StartThreadState* state = new StartThreadState; state->user_function = function; state->arg = arg; ThreadPoolImpl::PthreadCall( "start thread", pthread_create(&t, nullptr, &StartThreadWrapper, state)); ThreadPoolImpl::PthreadCall("lock", pthread_mutex_lock(&mu_)); threads_to_join_.push_back(t); ThreadPoolImpl::PthreadCall("unlock", pthread_mutex_unlock(&mu_)); } void PosixEnv::WaitForJoin() { for (const auto tid : threads_to_join_) { pthread_join(tid, nullptr); } threads_to_join_.clear(); } } // namespace std::string Env::GenerateUniqueId() { std::string uuid_file = "/proc/sys/kernel/random/uuid"; Status s = FileExists(uuid_file); if (s.ok()) { std::string uuid; s = ReadFileToString(this, uuid_file, &uuid); if (s.ok()) { return uuid; } } // Could not read uuid_file - generate uuid using "nanos-random" Random64 r(time(nullptr)); uint64_t random_uuid_portion = r.Uniform(std::numeric_limits<uint64_t>::max()); uint64_t nanos_uuid_portion = NowNanos(); char uuid2[200]; snprintf(uuid2, 200, "%lx-%lx", (unsigned long)nanos_uuid_portion, (unsigned long)random_uuid_portion); return uuid2; } // // Default Posix Env // Env* Env::Default() { // The following function call initializes the singletons of ThreadLocalPtr // right before the static default_env. This guarantees default_env will // always being destructed before the ThreadLocalPtr singletons get // destructed as C++ guarantees that the destructions of static variables // is in the reverse order of their constructions. // // Since static members are destructed in the reverse order // of their construction, having this call here guarantees that // the destructor of static PosixEnv will go first, then the // the singletons of ThreadLocalPtr. ThreadLocalPtr::InitSingletons(); CompressionContextCache::InitSingleton(); INIT_SYNC_POINT_SINGLETONS(); static PosixEnv default_env; return &default_env; } } // namespace rocksdb