// Copyright (c) 2014, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. #ifndef GFLAGS #include int main() { fprintf(stderr, "Please install gflags to run this test\n"); return 1; } #else #define __STDC_FORMAT_MACROS #include #include #include #include #include #include "table/meta_blocks.h" #include "table/cuckoo_table_builder.h" #include "table/cuckoo_table_reader.h" #include "table/cuckoo_table_factory.h" #include "util/arena.h" #include "util/random.h" #include "util/testharness.h" #include "util/testutil.h" using GFLAGS::ParseCommandLineFlags; using GFLAGS::SetUsageMessage; DEFINE_string(file_dir, "", "Directory where the files will be created" " for benchmark. Added for using tmpfs."); DEFINE_bool(enable_perf, false, "Run Benchmark Tests too."); namespace rocksdb { extern const uint64_t kCuckooTableMagicNumber; extern const uint64_t kMaxNumHashTable; namespace { const uint32_t kNumHashFunc = 10; // Methods, variables related to Hash functions. std::unordered_map> hash_map; void AddHashLookups(const std::string& s, uint64_t bucket_id, uint32_t num_hash_fun) { std::vector v; for (uint32_t i = 0; i < num_hash_fun; i++) { v.push_back(bucket_id + i); } hash_map[s] = v; } uint64_t GetSliceHash(const Slice& s, uint32_t index, uint64_t max_num_buckets) { return hash_map[s.ToString()][index]; } // Methods, variables for checking key and values read. struct ValuesToAssert { ValuesToAssert(const std::string& key, const Slice& value) : expected_user_key(key), expected_value(value), call_count(0) {} std::string expected_user_key; Slice expected_value; int call_count; }; bool AssertValues(void* assert_obj, const ParsedInternalKey& k, const Slice& v) { ValuesToAssert *ptr = reinterpret_cast(assert_obj); ASSERT_EQ(ptr->expected_value.ToString(), v.ToString()); ASSERT_EQ(ptr->expected_user_key, k.user_key.ToString()); ++ptr->call_count; return false; } } // namespace class CuckooReaderTest { public: CuckooReaderTest() { options.allow_mmap_reads = true; env = options.env; env_options = EnvOptions(options); } void SetUp(int num_items) { this->num_items = num_items; hash_map.clear(); keys.clear(); keys.resize(num_items); user_keys.clear(); user_keys.resize(num_items); values.clear(); values.resize(num_items); } std::string NumToStr(int64_t i) { return std::string(reinterpret_cast(&i), sizeof(i)); } void CreateCuckooFileAndCheckReader() { unique_ptr writable_file; ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options)); CuckooTableBuilder builder( writable_file.get(), 0.9, kNumHashFunc, 100, GetSliceHash); ASSERT_OK(builder.status()); for (uint32_t key_idx = 0; key_idx < num_items; ++key_idx) { builder.Add(Slice(keys[key_idx]), Slice(values[key_idx])); ASSERT_OK(builder.status()); ASSERT_EQ(builder.NumEntries(), key_idx + 1); } ASSERT_OK(builder.Finish()); ASSERT_EQ(num_items, builder.NumEntries()); file_size = builder.FileSize(); ASSERT_OK(writable_file->Close()); // Check reader now. unique_ptr read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); CuckooTableReader reader( options, std::move(read_file), file_size, GetSliceHash); ASSERT_OK(reader.status()); for (uint32_t i = 0; i < num_items; ++i) { ValuesToAssert v(user_keys[i], values[i]); ASSERT_OK(reader.Get( ReadOptions(), Slice(keys[i]), &v, AssertValues, nullptr)); ASSERT_EQ(1, v.call_count); } } void UpdateKeys(bool with_zero_seqno) { for (uint32_t i = 0; i < num_items; i++) { ParsedInternalKey ikey(user_keys[i], with_zero_seqno ? 0 : i + 1000, kTypeValue); keys[i].clear(); AppendInternalKey(&keys[i], ikey); } } void CheckIterator() { unique_ptr read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); CuckooTableReader reader( options, std::move(read_file), file_size, GetSliceHash); ASSERT_OK(reader.status()); Iterator* it = reader.NewIterator(ReadOptions(), nullptr); ASSERT_OK(it->status()); ASSERT_TRUE(!it->Valid()); it->SeekToFirst(); int cnt = 0; while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); ++cnt; it->Next(); } ASSERT_EQ(static_cast(cnt), num_items); it->SeekToLast(); cnt = num_items - 1; ASSERT_TRUE(it->Valid()); while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); --cnt; it->Prev(); } ASSERT_EQ(cnt, -1); cnt = num_items / 2; it->Seek(keys[cnt]); while (it->Valid()) { ASSERT_OK(it->status()); ASSERT_TRUE(Slice(keys[cnt]) == it->key()); ASSERT_TRUE(Slice(values[cnt]) == it->value()); ++cnt; it->Next(); } ASSERT_EQ(static_cast(cnt), num_items); delete it; Arena arena; it = reader.NewIterator(ReadOptions(), &arena); ASSERT_OK(it->status()); ASSERT_TRUE(!it->Valid()); it->Seek(keys[num_items/2]); ASSERT_TRUE(it->Valid()); ASSERT_OK(it->status()); ASSERT_TRUE(keys[num_items/2] == it->key()); ASSERT_TRUE(values[num_items/2] == it->value()); ASSERT_OK(it->status()); it->~Iterator(); } std::vector keys; std::vector user_keys; std::vector values; uint64_t num_items; std::string fname; uint64_t file_size; Options options; Env* env; EnvOptions env_options; }; TEST(CuckooReaderTest, WhenKeyExists) { SetUp(kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_WhenKeyExists"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values. AddHashLookups(user_keys[i], i, kNumHashFunc); } CreateCuckooFileAndCheckReader(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); // Test with collision. Make all hash values collide. hash_map.clear(); for (uint32_t i = 0; i < num_items; i++) { AddHashLookups(user_keys[i], 0, kNumHashFunc); } UpdateKeys(false); CreateCuckooFileAndCheckReader(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); } TEST(CuckooReaderTest, CheckIterator) { SetUp(2*kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_CheckIterator"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], 0, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Give disjoint hash values, in reverse order. AddHashLookups(user_keys[i], num_items-i-1, kNumHashFunc); } CreateCuckooFileAndCheckReader(); CheckIterator(); // Last level file. UpdateKeys(true); CreateCuckooFileAndCheckReader(); CheckIterator(); } TEST(CuckooReaderTest, WhenKeyNotFound) { // Add keys with colliding hash values. SetUp(kNumHashFunc); fname = test::TmpDir() + "/CuckooReader_WhenKeyNotFound"; for (uint64_t i = 0; i < num_items; i++) { user_keys[i] = "key" + NumToStr(i); ParsedInternalKey ikey(user_keys[i], i + 1000, kTypeValue); AppendInternalKey(&keys[i], ikey); values[i] = "value" + NumToStr(i); // Make all hash values collide. AddHashLookups(user_keys[i], 0, kNumHashFunc); } CreateCuckooFileAndCheckReader(); unique_ptr read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); CuckooTableReader reader( options, std::move(read_file), file_size, GetSliceHash); ASSERT_OK(reader.status()); // Search for a key with colliding hash values. std::string not_found_user_key = "key" + NumToStr(num_items); std::string not_found_key; AddHashLookups(not_found_user_key, 0, kNumHashFunc); ParsedInternalKey ikey(not_found_user_key, 1000, kTypeValue); AppendInternalKey(¬_found_key, ikey); ValuesToAssert v("", ""); ASSERT_OK(reader.Get( ReadOptions(), Slice(not_found_key), &v, AssertValues, nullptr)); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); // Search for a key with an independent hash value. std::string not_found_user_key2 = "key" + NumToStr(num_items + 1); AddHashLookups(not_found_user_key2, kNumHashFunc, kNumHashFunc); ParsedInternalKey ikey2(not_found_user_key2, 1000, kTypeValue); std::string not_found_key2; AppendInternalKey(¬_found_key2, ikey2); ASSERT_OK(reader.Get( ReadOptions(), Slice(not_found_key2), &v, AssertValues, nullptr)); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); // Test read with corrupted key. Slice corrupt_key("corrupt_ikey"); ASSERT_TRUE(!ParseInternalKey(corrupt_key, &ikey)); ASSERT_TRUE(reader.Get( ReadOptions(), corrupt_key, &v, AssertValues, nullptr).IsCorruption()); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); // Test read with key of invalid length. IterKey k; k.SetInternalKey("very_long_key", 0, kTypeValue); ASSERT_TRUE(reader.Get( ReadOptions(), k.GetKey(), &v, AssertValues, nullptr).IsInvalidArgument()); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); k.Clear(); k.SetInternalKey("s", 0, kTypeValue); ASSERT_TRUE(reader.Get( ReadOptions(), k.GetKey(), &v, AssertValues, nullptr).IsInvalidArgument()); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); // Test read when key is unused key. std::string unused_key = reader.GetTableProperties()->user_collected_properties.at( CuckooTablePropertyNames::kEmptyKey); // Add hash values that map to empty buckets. AddHashLookups(ExtractUserKey(unused_key).ToString(), kNumHashFunc, kNumHashFunc); ASSERT_OK(reader.Get( ReadOptions(), Slice(unused_key), &v, AssertValues, nullptr)); ASSERT_EQ(0, v.call_count); ASSERT_OK(reader.status()); } // Performance tests namespace { bool DoNothing(void* arg, const ParsedInternalKey& k, const Slice& v) { // Deliberately empty. return false; } bool CheckValue(void* cnt_ptr, const ParsedInternalKey& k, const Slice& v) { ++*reinterpret_cast(cnt_ptr); std::string expected_value; AppendInternalKey(&expected_value, k); ASSERT_EQ(0, v.compare(Slice(&expected_value[0], v.size()))); return false; } // Create last level file as we are interested in measuring performance of // last level file only. void BM_CuckooRead(uint64_t num, uint32_t key_length, uint32_t value_length, uint64_t num_reads, double hash_ratio) { assert(value_length <= key_length); assert(8 <= key_length); std::vector keys; Options options; options.allow_mmap_reads = true; Env* env = options.env; EnvOptions env_options = EnvOptions(options); uint64_t file_size; if (FLAGS_file_dir.empty()) { FLAGS_file_dir = test::TmpDir(); } std::string fname = FLAGS_file_dir + "/cuckoo_read_benchmark"; unique_ptr writable_file; ASSERT_OK(env->NewWritableFile(fname, &writable_file, env_options)); CuckooTableBuilder builder( writable_file.get(), hash_ratio, kMaxNumHashTable, 1000, GetSliceMurmurHash); ASSERT_OK(builder.status()); for (uint64_t key_idx = 0; key_idx < num; ++key_idx) { // Value is just a part of key. std::string new_key(reinterpret_cast(&key_idx), sizeof(key_idx)); new_key = std::string(key_length - new_key.size(), 'k') + new_key; ParsedInternalKey ikey(new_key, 0, kTypeValue); std::string full_key; AppendInternalKey(&full_key, ikey); builder.Add(Slice(full_key), Slice(&full_key[0], value_length)); ASSERT_EQ(builder.NumEntries(), key_idx + 1); ASSERT_OK(builder.status()); keys.push_back(full_key); } ASSERT_OK(builder.Finish()); ASSERT_EQ(num, builder.NumEntries()); file_size = builder.FileSize(); ASSERT_OK(writable_file->Close()); unique_ptr read_file; ASSERT_OK(env->NewRandomAccessFile(fname, &read_file, env_options)); CuckooTableReader reader( options, std::move(read_file), file_size, GetSliceMurmurHash); ASSERT_OK(reader.status()); const UserCollectedProperties user_props = reader.GetTableProperties()->user_collected_properties; const uint32_t num_hash_fun = *reinterpret_cast( user_props.at(CuckooTablePropertyNames::kNumHashTable).data()); fprintf(stderr, "With %" PRIu64 " items and hash table ratio %f, number of" " hash functions used: %u.\n", num, hash_ratio, num_hash_fun); ReadOptions r_options; for (auto& key : keys) { int cnt = 0; ASSERT_OK(reader.Get(r_options, Slice(key), &cnt, CheckValue, nullptr)); ASSERT_EQ(1, cnt); } // Shuffle Keys. std::random_shuffle(keys.begin(), keys.end()); uint64_t time_now = env->NowMicros(); reader.NewIterator(ReadOptions(), nullptr); fprintf(stderr, "Time taken for preparing iterator for %" PRIu64 " items: %" PRIu64 " ms.\n", num, (env->NowMicros() - time_now)/1000); time_now = env->NowMicros(); for (uint64_t i = 0; i < num_reads; ++i) { reader.Get(r_options, Slice(keys[i % num]), nullptr, DoNothing, nullptr); } fprintf(stderr, "Time taken per op is %.3fus\n", (env->NowMicros() - time_now)*1.0/num_reads); } } // namespace. TEST(CuckooReaderTest, Performance) { // In all these tests, num_reads = 10*num_items. if (!FLAGS_enable_perf) { return; } BM_CuckooRead(100000, 8, 4, 1000000, 0.9); BM_CuckooRead(1000000, 8, 4, 10000000, 0.9); BM_CuckooRead(1000000, 8, 4, 10000000, 0.7); BM_CuckooRead(10000000, 8, 4, 100000000, 0.9); BM_CuckooRead(10000000, 8, 4, 100000000, 0.7); } } // namespace rocksdb int main(int argc, char** argv) { ParseCommandLineFlags(&argc, &argv, true); rocksdb::test::RunAllTests(); return 0; } #endif // GFLAGS.