// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "rocksdb/write_buffer_manager.h" #include "test_util/testharness.h" namespace ROCKSDB_NAMESPACE { class WriteBufferManagerTest : public testing::Test {}; #ifndef ROCKSDB_LITE const size_t kSizeDummyEntry = 256 * 1024; TEST_F(WriteBufferManagerTest, ShouldFlush) { // A write buffer manager of size 10MB std::unique_ptr wbf( new WriteBufferManager(10 * 1024 * 1024)); wbf->ReserveMem(8 * 1024 * 1024); ASSERT_FALSE(wbf->ShouldFlush()); // 90% of the hard limit will hit the condition wbf->ReserveMem(1 * 1024 * 1024); ASSERT_TRUE(wbf->ShouldFlush()); // Scheduling for freeing will release the condition wbf->ScheduleFreeMem(1 * 1024 * 1024); ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(2 * 1024 * 1024); ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(4 * 1024 * 1024); // 11MB total, 6MB mutable. hard limit still hit ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(2 * 1024 * 1024); // 11MB total, 4MB mutable. hard limit stills but won't flush because more // than half data is already being flushed. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(4 * 1024 * 1024); // 15 MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->FreeMem(7 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); // change size: 8M limit, 7M mutable limit wbf->SetBufferSize(8 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(2 * 1024 * 1024); // 8MB total, 6MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->FreeMem(2 * 1024 * 1024); // 6MB total, 6MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(1 * 1024 * 1024); // 7MB total, 7MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); wbf->ReserveMem(1 * 1024 * 1024); // 8MB total, 8MB mutable. ASSERT_TRUE(wbf->ShouldFlush()); wbf->ScheduleFreeMem(1 * 1024 * 1024); wbf->FreeMem(1 * 1024 * 1024); // 7MB total, 7MB mutable. ASSERT_FALSE(wbf->ShouldFlush()); } TEST_F(WriteBufferManagerTest, CacheCost) { constexpr std::size_t kMetaDataChargeOverhead = 10000; LRUCacheOptions co; // 1GB cache co.capacity = 1024 * 1024 * 1024; co.num_shard_bits = 4; co.metadata_charge_policy = kDontChargeCacheMetadata; std::shared_ptr cache = NewLRUCache(co); // A write buffer manager of size 50MB std::unique_ptr wbf( new WriteBufferManager(50 * 1024 * 1024, cache)); // Allocate 333KB will allocate 512KB, memory_used_ = 333KB wbf->ReserveMem(333 * 1024); // 2 dummy entries are added for size 333 KB ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 2 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 2 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 2 * 256 * 1024 + kMetaDataChargeOverhead); // Allocate another 512KB, memory_used_ = 845KB wbf->ReserveMem(512 * 1024); // 2 more dummy entries are added for size 512 KB // since ceil((memory_used_ - dummy_entries_in_cache_usage) % kSizeDummyEntry) // = 2 ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead); // Allocate another 10MB, memory_used_ = 11085KB wbf->ReserveMem(10 * 1024 * 1024); // 40 more entries are added for size 10 * 1024 * 1024 KB ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead); // Free 1MB, memory_used_ = 10061KB // It will not cause any change in cache cost // since memory_used_ > dummy_entries_in_cache_usage * (3/4) wbf->FreeMem(1 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead); ASSERT_FALSE(wbf->ShouldFlush()); // Allocate another 41MB, memory_used_ = 52045KB wbf->ReserveMem(41 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 204 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 204 * 256 * 1024 + kMetaDataChargeOverhead); ASSERT_TRUE(wbf->ShouldFlush()); ASSERT_TRUE(wbf->ShouldFlush()); // Schedule free 20MB, memory_used_ = 52045KB // It will not cause any change in memory_used and cache cost wbf->ScheduleFreeMem(20 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 204 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 204 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 204 * 256 * 1024 + kMetaDataChargeOverhead); // Still need flush as the hard limit hits ASSERT_TRUE(wbf->ShouldFlush()); // Free 20MB, memory_used_ = 31565KB // It will releae 80 dummy entries from cache since // since memory_used_ < dummy_entries_in_cache_usage * (3/4) // and floor((dummy_entries_in_cache_usage - memory_used_) % kSizeDummyEntry) // = 80 wbf->FreeMem(20 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 124 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 124 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 124 * 256 * 1024 + kMetaDataChargeOverhead); ASSERT_FALSE(wbf->ShouldFlush()); // Free 16KB, memory_used_ = 31549KB // It will not release any dummy entry since memory_used_ >= // dummy_entries_in_cache_usage * (3/4) wbf->FreeMem(16 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 124 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 124 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 124 * 256 * 1024 + kMetaDataChargeOverhead); // Free 20MB, memory_used_ = 11069KB // It will releae 80 dummy entries from cache // since memory_used_ < dummy_entries_in_cache_usage * (3/4) // and floor((dummy_entries_in_cache_usage - memory_used_) % kSizeDummyEntry) // = 80 wbf->FreeMem(20 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead); // Free 1MB, memory_used_ = 10045KB // It will not cause any change in cache cost // since memory_used_ > dummy_entries_in_cache_usage * (3/4) wbf->FreeMem(1 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead); // Reserve 512KB, memory_used_ = 10557KB // It will not casue any change in cache cost // since memory_used_ > dummy_entries_in_cache_usage * (3/4) // which reflects the benefit of saving dummy entry insertion on memory // reservation after delay decrease wbf->ReserveMem(512 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 44 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 44 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 44 * 256 * 1024 + kMetaDataChargeOverhead); // Destory write buffer manger should free everything wbf.reset(); ASSERT_EQ(cache->GetPinnedUsage(), 0); } TEST_F(WriteBufferManagerTest, NoCapCacheCost) { constexpr std::size_t kMetaDataChargeOverhead = 10000; // 1GB cache std::shared_ptr cache = NewLRUCache(1024 * 1024 * 1024, 4); // A write buffer manager of size 256MB std::unique_ptr wbf(new WriteBufferManager(0, cache)); // Allocate 10MB, memory_used_ = 10240KB // It will allocate 40 dummy entries wbf->ReserveMem(10 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 40 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 40 * 256 * 1024 + kMetaDataChargeOverhead); ASSERT_FALSE(wbf->ShouldFlush()); // Free 9MB, memory_used_ = 1024KB // It will free 36 dummy entries wbf->FreeMem(9 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead); // Free 160KB gradually, memory_used_ = 864KB // It will not cause any change // since memory_used_ > dummy_entries_in_cache_usage * 3/4 for (int i = 0; i < 40; i++) { wbf->FreeMem(4 * 1024); } ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 4 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 4 * 256 * 1024); ASSERT_LT(cache->GetPinnedUsage(), 4 * 256 * 1024 + kMetaDataChargeOverhead); } TEST_F(WriteBufferManagerTest, CacheFull) { constexpr std::size_t kMetaDataChargeOverhead = 20000; // 12MB cache size with strict capacity LRUCacheOptions lo; lo.capacity = 12 * 1024 * 1024; lo.num_shard_bits = 0; lo.strict_capacity_limit = true; std::shared_ptr cache = NewLRUCache(lo); std::unique_ptr wbf(new WriteBufferManager(0, cache)); // Allocate 10MB, memory_used_ = 10240KB wbf->ReserveMem(10 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 40 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 40 * kSizeDummyEntry); ASSERT_LT(cache->GetPinnedUsage(), 40 * kSizeDummyEntry + kMetaDataChargeOverhead); // Allocate 10MB, memory_used_ = 20480KB // Some dummy entry insertion will fail due to full cache wbf->ReserveMem(10 * 1024 * 1024); ASSERT_GE(cache->GetPinnedUsage(), 40 * kSizeDummyEntry); ASSERT_LE(cache->GetPinnedUsage(), 12 * 1024 * 1024); ASSERT_LT(wbf->dummy_entries_in_cache_usage(), 80 * kSizeDummyEntry); // Free 15MB after encoutering cache full, memory_used_ = 5120KB wbf->FreeMem(15 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 20 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 20 * kSizeDummyEntry); ASSERT_LT(cache->GetPinnedUsage(), 20 * kSizeDummyEntry + kMetaDataChargeOverhead); // Reserve 15MB, creating cache full again, memory_used_ = 20480KB wbf->ReserveMem(15 * 1024 * 1024); ASSERT_LE(cache->GetPinnedUsage(), 12 * 1024 * 1024); ASSERT_LT(wbf->dummy_entries_in_cache_usage(), 80 * kSizeDummyEntry); // Increase capacity so next insert will fully succeed cache->SetCapacity(40 * 1024 * 1024); // Allocate 10MB, memory_used_ = 30720KB wbf->ReserveMem(10 * 1024 * 1024); ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 120 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 120 * kSizeDummyEntry); ASSERT_LT(cache->GetPinnedUsage(), 120 * kSizeDummyEntry + kMetaDataChargeOverhead); // Gradually release 20 MB // It ended up sequentially releasing 32, 24, 18 dummy entries when // memory_used_ decreases to 22528KB, 16384KB, 11776KB. // In total, it releases 74 dummy entries for (int i = 0; i < 40; i++) { wbf->FreeMem(512 * 1024); } ASSERT_EQ(wbf->dummy_entries_in_cache_usage(), 46 * kSizeDummyEntry); ASSERT_GE(cache->GetPinnedUsage(), 46 * kSizeDummyEntry); ASSERT_LT(cache->GetPinnedUsage(), 46 * kSizeDummyEntry + kMetaDataChargeOverhead); } #endif // ROCKSDB_LITE } // namespace ROCKSDB_NAMESPACE int main(int argc, char** argv) { ::testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }