// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/version_set.h" #define __STDC_FORMAT_MACROS #include #include #include #include #include #include #include #include #include "db/filename.h" #include "db/log_reader.h" #include "db/log_writer.h" #include "db/memtable.h" #include "db/merge_context.h" #include "db/table_cache.h" #include "db/compaction.h" #include "rocksdb/env.h" #include "rocksdb/merge_operator.h" #include "table/table_reader.h" #include "table/merger.h" #include "table/two_level_iterator.h" #include "table/format.h" #include "table/plain_table_factory.h" #include "table/meta_blocks.h" #include "util/coding.h" #include "util/logging.h" #include "util/stop_watch.h" namespace rocksdb { namespace { // Find File in FileLevel data structure // Within an index range defined by left and right int FindFileInRange(const InternalKeyComparator& icmp, const FileLevel& file_level, const Slice& key, uint32_t left, uint32_t right) { while (left < right) { uint32_t mid = (left + right) / 2; const FdWithKeyRange& f = file_level.files[mid]; if (icmp.InternalKeyComparator::Compare(f.largest_key, key) < 0) { // Key at "mid.largest" is < "target". Therefore all // files at or before "mid" are uninteresting. left = mid + 1; } else { // Key at "mid.largest" is >= "target". Therefore all files // after "mid" are uninteresting. right = mid; } } return right; } bool NewestFirstBySeqNo(FileMetaData* a, FileMetaData* b) { if (a->smallest_seqno != b->smallest_seqno) { return a->smallest_seqno > b->smallest_seqno; } if (a->largest_seqno != b->largest_seqno) { return a->largest_seqno > b->largest_seqno; } // Break ties by file number return a->fd.GetNumber() > b->fd.GetNumber(); } bool BySmallestKey(FileMetaData* a, FileMetaData* b, const InternalKeyComparator* cmp) { int r = cmp->Compare(a->smallest, b->smallest); if (r != 0) { return (r < 0); } // Break ties by file number return (a->fd.GetNumber() < b->fd.GetNumber()); } // Class to help choose the next file to search for the particular key. // Searches and returns files level by level. // We can search level-by-level since entries never hop across // levels. Therefore we are guaranteed that if we find data // in a smaller level, later levels are irrelevant (unless we // are MergeInProgress). class FilePicker { public: FilePicker( std::vector* files, const Slice& user_key, const Slice& ikey, autovector* file_levels, unsigned int num_levels, FileIndexer* file_indexer, const Comparator* user_comparator, const InternalKeyComparator* internal_comparator) : num_levels_(num_levels), curr_level_(-1), search_left_bound_(0), search_right_bound_(FileIndexer::kLevelMaxIndex), files_(files), file_levels_(file_levels), user_key_(user_key), ikey_(ikey), file_indexer_(file_indexer), user_comparator_(user_comparator), internal_comparator_(internal_comparator) { // Setup member variables to search first level. search_ended_ = !PrepareNextLevel(); if (!search_ended_) { // Prefetch Level 0 table data to avoid cache miss if possible. for (unsigned int i = 0; i < (*file_levels_)[0].num_files; ++i) { auto* r = (*file_levels_)[0].files[i].fd.table_reader; if (r) { r->Prepare(ikey); } } } } FdWithKeyRange* GetNextFile() { while (!search_ended_) { // Loops over different levels. while (curr_index_in_curr_level_ < curr_file_level_->num_files) { // Loops over all files in current level. FdWithKeyRange* f = &curr_file_level_->files[curr_index_in_curr_level_]; int cmp_largest = -1; // Do key range filtering of files or/and fractional cascading if: // (1) not all the files are in level 0, or // (2) there are more than 3 Level 0 files // If there are only 3 or less level 0 files in the system, we skip // the key range filtering. In this case, more likely, the system is // highly tuned to minimize number of tables queried by each query, // so it is unlikely that key range filtering is more efficient than // querying the files. if (num_levels_ > 1 || curr_file_level_->num_files > 3) { // Check if key is within a file's range. If search left bound and // right bound point to the same find, we are sure key falls in // range. assert( curr_level_ == 0 || curr_index_in_curr_level_ == start_index_in_curr_level_ || user_comparator_->Compare(user_key_, ExtractUserKey(f->smallest_key)) <= 0); int cmp_smallest = user_comparator_->Compare(user_key_, ExtractUserKey(f->smallest_key)); if (cmp_smallest >= 0) { cmp_largest = user_comparator_->Compare(user_key_, ExtractUserKey(f->largest_key)); } // Setup file search bound for the next level based on the // comparison results if (curr_level_ > 0) { file_indexer_->GetNextLevelIndex(curr_level_, curr_index_in_curr_level_, cmp_smallest, cmp_largest, &search_left_bound_, &search_right_bound_); } // Key falls out of current file's range if (cmp_smallest < 0 || cmp_largest > 0) { if (curr_level_ == 0) { ++curr_index_in_curr_level_; continue; } else { // Search next level. break; } } } #ifndef NDEBUG // Sanity check to make sure that the files are correctly sorted if (prev_file_) { if (curr_level_ != 0) { int comp_sign = internal_comparator_->Compare( prev_file_->largest_key, f->smallest_key); assert(comp_sign < 0); } else { // level == 0, the current file cannot be newer than the previous // one. Use compressed data structure, has no attribute seqNo assert(curr_index_in_curr_level_ > 0); assert(!NewestFirstBySeqNo(files_[0][curr_index_in_curr_level_], files_[0][curr_index_in_curr_level_-1])); } } prev_file_ = f; #endif if (curr_level_ > 0 && cmp_largest < 0) { // No more files to search in this level. search_ended_ = !PrepareNextLevel(); } else { ++curr_index_in_curr_level_; } return f; } // Start searching next level. search_ended_ = !PrepareNextLevel(); } // Search ended. return nullptr; } private: unsigned int num_levels_; unsigned int curr_level_; int search_left_bound_; int search_right_bound_; std::vector* files_; autovector* file_levels_; bool search_ended_; FileLevel* curr_file_level_; unsigned int curr_index_in_curr_level_; unsigned int start_index_in_curr_level_; Slice user_key_; Slice ikey_; FileIndexer* file_indexer_; const Comparator* user_comparator_; const InternalKeyComparator* internal_comparator_; #ifndef NDEBUG FdWithKeyRange* prev_file_; #endif // Setup local variables to search next level. // Returns false if there are no more levels to search. bool PrepareNextLevel() { curr_level_++; while (curr_level_ < num_levels_) { curr_file_level_ = &(*file_levels_)[curr_level_]; if (curr_file_level_->num_files == 0) { // When current level is empty, the search bound generated from upper // level must be [0, -1] or [0, FileIndexer::kLevelMaxIndex] if it is // also empty. assert(search_left_bound_ == 0); assert(search_right_bound_ == -1 || search_right_bound_ == FileIndexer::kLevelMaxIndex); // Since current level is empty, it will need to search all files in // the next level search_left_bound_ = 0; search_right_bound_ = FileIndexer::kLevelMaxIndex; curr_level_++; continue; } // Some files may overlap each other. We find // all files that overlap user_key and process them in order from // newest to oldest. In the context of merge-operator, this can occur at // any level. Otherwise, it only occurs at Level-0 (since Put/Deletes // are always compacted into a single entry). int32_t start_index; if (curr_level_ == 0) { // On Level-0, we read through all files to check for overlap. start_index = 0; } else { // On Level-n (n>=1), files are sorted. Binary search to find the // earliest file whose largest key >= ikey. Search left bound and // right bound are used to narrow the range. if (search_left_bound_ == search_right_bound_) { start_index = search_left_bound_; } else if (search_left_bound_ < search_right_bound_) { if (search_right_bound_ == FileIndexer::kLevelMaxIndex) { search_right_bound_ = curr_file_level_->num_files - 1; } start_index = FindFileInRange(*internal_comparator_, *curr_file_level_, ikey_, search_left_bound_, search_right_bound_); } else { // search_left_bound > search_right_bound, key does not exist in // this level. Since no comparision is done in this level, it will // need to search all files in the next level. search_left_bound_ = 0; search_right_bound_ = FileIndexer::kLevelMaxIndex; curr_level_++; continue; } } start_index_in_curr_level_ = start_index; curr_index_in_curr_level_ = start_index; #ifndef NDEBUG prev_file_ = nullptr; #endif return true; } // curr_level_ = num_levels_. So, no more levels to search. return false; } }; } // anonymous namespace static uint64_t TotalFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->fd.GetFileSize(); } return sum; } static uint64_t TotalCompensatedFileSize( const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->compensated_file_size; } return sum; } Version::~Version() { assert(refs_ == 0); // Remove from linked list prev_->next_ = next_; next_->prev_ = prev_; // Drop references to files for (int level = 0; level < num_levels_; level++) { for (size_t i = 0; i < files_[level].size(); i++) { FileMetaData* f = files_[level][i]; assert(f->refs > 0); f->refs--; if (f->refs <= 0) { if (f->table_reader_handle) { cfd_->table_cache()->ReleaseHandle(f->table_reader_handle); f->table_reader_handle = nullptr; } vset_->obsolete_files_.push_back(f); } } } delete[] files_; } int FindFile(const InternalKeyComparator& icmp, const FileLevel& file_level, const Slice& key) { return FindFileInRange(icmp, file_level, key, 0, file_level.num_files); } void DoGenerateFileLevel(FileLevel* file_level, const std::vector& files, Arena* arena) { assert(file_level); assert(files.size() >= 0); assert(arena); size_t num = files.size(); file_level->num_files = num; char* mem = arena->AllocateAligned(num * sizeof(FdWithKeyRange)); file_level->files = new (mem)FdWithKeyRange[num]; for (size_t i = 0; i < num; i++) { Slice smallest_key = files[i]->smallest.Encode(); Slice largest_key = files[i]->largest.Encode(); // Copy key slice to sequential memory size_t smallest_size = smallest_key.size(); size_t largest_size = largest_key.size(); mem = arena->AllocateAligned(smallest_size + largest_size); memcpy(mem, smallest_key.data(), smallest_size); memcpy(mem + smallest_size, largest_key.data(), largest_size); FdWithKeyRange& f = file_level->files[i]; f.fd = files[i]->fd; f.smallest_key = Slice(mem, smallest_size); f.largest_key = Slice(mem + smallest_size, largest_size); } } static bool AfterFile(const Comparator* ucmp, const Slice* user_key, const FdWithKeyRange* f) { // nullptr user_key occurs before all keys and is therefore never after *f return (user_key != nullptr && ucmp->Compare(*user_key, ExtractUserKey(f->largest_key)) > 0); } static bool BeforeFile(const Comparator* ucmp, const Slice* user_key, const FdWithKeyRange* f) { // nullptr user_key occurs after all keys and is therefore never before *f return (user_key != nullptr && ucmp->Compare(*user_key, ExtractUserKey(f->smallest_key)) < 0); } bool SomeFileOverlapsRange( const InternalKeyComparator& icmp, bool disjoint_sorted_files, const FileLevel& file_level, const Slice* smallest_user_key, const Slice* largest_user_key) { const Comparator* ucmp = icmp.user_comparator(); if (!disjoint_sorted_files) { // Need to check against all files for (size_t i = 0; i < file_level.num_files; i++) { const FdWithKeyRange* f = &(file_level.files[i]); if (AfterFile(ucmp, smallest_user_key, f) || BeforeFile(ucmp, largest_user_key, f)) { // No overlap } else { return true; // Overlap } } return false; } // Binary search over file list uint32_t index = 0; if (smallest_user_key != nullptr) { // Find the earliest possible internal key for smallest_user_key InternalKey small(*smallest_user_key, kMaxSequenceNumber,kValueTypeForSeek); index = FindFile(icmp, file_level, small.Encode()); } if (index >= file_level.num_files) { // beginning of range is after all files, so no overlap. return false; } return !BeforeFile(ucmp, largest_user_key, &file_level.files[index]); } // An internal iterator. For a given version/level pair, yields // information about the files in the level. For a given entry, key() // is the largest key that occurs in the file, and value() is an // 16-byte value containing the file number and file size, both // encoded using EncodeFixed64. class Version::LevelFileNumIterator : public Iterator { public: LevelFileNumIterator(const InternalKeyComparator& icmp, const FileLevel* flevel) : icmp_(icmp), flevel_(flevel), index_(flevel->num_files), current_value_(0, 0, 0) { // Marks as invalid } virtual bool Valid() const { return index_ < flevel_->num_files; } virtual void Seek(const Slice& target) { index_ = FindFile(icmp_, *flevel_, target); } virtual void SeekToFirst() { index_ = 0; } virtual void SeekToLast() { index_ = (flevel_->num_files == 0) ? 0 : flevel_->num_files - 1; } virtual void Next() { assert(Valid()); index_++; } virtual void Prev() { assert(Valid()); if (index_ == 0) { index_ = flevel_->num_files; // Marks as invalid } else { index_--; } } Slice key() const { assert(Valid()); return flevel_->files[index_].largest_key; } Slice value() const { assert(Valid()); auto file_meta = flevel_->files[index_]; current_value_ = file_meta.fd; return Slice(reinterpret_cast(¤t_value_), sizeof(FileDescriptor)); } virtual Status status() const { return Status::OK(); } private: const InternalKeyComparator icmp_; const FileLevel* flevel_; uint32_t index_; mutable FileDescriptor current_value_; }; class Version::LevelFileIteratorState : public TwoLevelIteratorState { public: LevelFileIteratorState(TableCache* table_cache, const ReadOptions& read_options, const EnvOptions& env_options, const InternalKeyComparator& icomparator, bool for_compaction, bool prefix_enabled) : TwoLevelIteratorState(prefix_enabled), table_cache_(table_cache), read_options_(read_options), env_options_(env_options), icomparator_(icomparator), for_compaction_(for_compaction) {} Iterator* NewSecondaryIterator(const Slice& meta_handle) override { if (meta_handle.size() != sizeof(FileDescriptor)) { return NewErrorIterator( Status::Corruption("FileReader invoked with unexpected value")); } else { const FileDescriptor* fd = reinterpret_cast(meta_handle.data()); return table_cache_->NewIterator( read_options_, env_options_, icomparator_, *fd, nullptr /* don't need reference to table*/, for_compaction_); } } bool PrefixMayMatch(const Slice& internal_key) override { return true; } private: TableCache* table_cache_; const ReadOptions read_options_; const EnvOptions& env_options_; const InternalKeyComparator& icomparator_; bool for_compaction_; }; Status Version::GetTableProperties(std::shared_ptr* tp, const FileMetaData* file_meta, const std::string* fname) { auto table_cache = cfd_->table_cache(); auto options = cfd_->options(); Status s = table_cache->GetTableProperties( vset_->storage_options_, cfd_->internal_comparator(), file_meta->fd, tp, true /* no io */); if (s.ok()) { return s; } // We only ignore error type `Incomplete` since it's by design that we // disallow table when it's not in table cache. if (!s.IsIncomplete()) { return s; } // 2. Table is not present in table cache, we'll read the table properties // directly from the properties block in the file. std::unique_ptr file; if (fname != nullptr) { s = options->env->NewRandomAccessFile( *fname, &file, vset_->storage_options_); } else { s = options->env->NewRandomAccessFile( TableFileName(vset_->options_->db_paths, file_meta->fd.GetNumber(), file_meta->fd.GetPathId()), &file, vset_->storage_options_); } if (!s.ok()) { return s; } TableProperties* raw_table_properties; // By setting the magic number to kInvalidTableMagicNumber, we can by // pass the magic number check in the footer. s = ReadTableProperties( file.get(), file_meta->fd.GetFileSize(), Footer::kInvalidTableMagicNumber /* table's magic number */, vset_->env_, options->info_log.get(), &raw_table_properties); if (!s.ok()) { return s; } RecordTick(options->statistics.get(), NUMBER_DIRECT_LOAD_TABLE_PROPERTIES); *tp = std::shared_ptr(raw_table_properties); return s; } Status Version::GetPropertiesOfAllTables(TablePropertiesCollection* props) { for (int level = 0; level < num_levels_; level++) { for (const auto& file_meta : files_[level]) { auto fname = TableFileName(vset_->options_->db_paths, file_meta->fd.GetNumber(), file_meta->fd.GetPathId()); // 1. If the table is already present in table cache, load table // properties from there. std::shared_ptr table_properties; Status s = GetTableProperties(&table_properties, file_meta, &fname); if (s.ok()) { props->insert({fname, table_properties}); } else { return s; } } } return Status::OK(); } void Version::AddIterators(const ReadOptions& read_options, const EnvOptions& soptions, std::vector* iters) { // Merge all level zero files together since they may overlap for (size_t i = 0; i < file_levels_[0].num_files; i++) { const auto& file = file_levels_[0].files[i]; iters->push_back(cfd_->table_cache()->NewIterator( read_options, soptions, cfd_->internal_comparator(), file.fd)); } // For levels > 0, we can use a concatenating iterator that sequentially // walks through the non-overlapping files in the level, opening them // lazily. for (int level = 1; level < num_levels_; level++) { if (file_levels_[level].num_files != 0) { iters->push_back(NewTwoLevelIterator(new LevelFileIteratorState( cfd_->table_cache(), read_options, soptions, cfd_->internal_comparator(), false /* for_compaction */, cfd_->options()->prefix_extractor != nullptr), new LevelFileNumIterator(cfd_->internal_comparator(), &file_levels_[level]))); } } } void Version::AddIterators(const ReadOptions& read_options, const EnvOptions& soptions, MergeIteratorBuilder* merge_iter_builder) { // Merge all level zero files together since they may overlap for (size_t i = 0; i < file_levels_[0].num_files; i++) { const auto& file = file_levels_[0].files[i]; merge_iter_builder->AddIterator(cfd_->table_cache()->NewIterator( read_options, soptions, cfd_->internal_comparator(), file.fd, nullptr, false, merge_iter_builder->GetArena())); } // For levels > 0, we can use a concatenating iterator that sequentially // walks through the non-overlapping files in the level, opening them // lazily. for (int level = 1; level < num_levels_; level++) { if (file_levels_[level].num_files != 0) { merge_iter_builder->AddIterator(NewTwoLevelIterator( new LevelFileIteratorState( cfd_->table_cache(), read_options, soptions, cfd_->internal_comparator(), false /* for_compaction */, cfd_->options()->prefix_extractor != nullptr), new LevelFileNumIterator(cfd_->internal_comparator(), &file_levels_[level]), merge_iter_builder->GetArena())); } } } // Callback from TableCache::Get() namespace { enum SaverState { kNotFound, kFound, kDeleted, kCorrupt, kMerge // saver contains the current merge result (the operands) }; struct Saver { SaverState state; const Comparator* ucmp; Slice user_key; bool* value_found; // Is value set correctly? Used by KeyMayExist std::string* value; const MergeOperator* merge_operator; // the merge operations encountered; MergeContext* merge_context; Logger* logger; Statistics* statistics; }; } // Called from TableCache::Get and Table::Get when file/block in which // key may exist are not there in TableCache/BlockCache respectively. In this // case we can't guarantee that key does not exist and are not permitted to do // IO to be certain.Set the status=kFound and value_found=false to let the // caller know that key may exist but is not there in memory static void MarkKeyMayExist(void* arg) { Saver* s = reinterpret_cast(arg); s->state = kFound; if (s->value_found != nullptr) { *(s->value_found) = false; } } static bool SaveValue(void* arg, const ParsedInternalKey& parsed_key, const Slice& v) { Saver* s = reinterpret_cast(arg); MergeContext* merge_contex = s->merge_context; std::string merge_result; // temporary area for merge results later assert(s != nullptr && merge_contex != nullptr); // TODO: Merge? if (s->ucmp->Compare(parsed_key.user_key, s->user_key) == 0) { // Key matches. Process it switch (parsed_key.type) { case kTypeValue: if (kNotFound == s->state) { s->state = kFound; s->value->assign(v.data(), v.size()); } else if (kMerge == s->state) { assert(s->merge_operator != nullptr); s->state = kFound; if (!s->merge_operator->FullMerge(s->user_key, &v, merge_contex->GetOperands(), s->value, s->logger)) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); s->state = kCorrupt; } } else { assert(false); } return false; case kTypeDeletion: if (kNotFound == s->state) { s->state = kDeleted; } else if (kMerge == s->state) { s->state = kFound; if (!s->merge_operator->FullMerge(s->user_key, nullptr, merge_contex->GetOperands(), s->value, s->logger)) { RecordTick(s->statistics, NUMBER_MERGE_FAILURES); s->state = kCorrupt; } } else { assert(false); } return false; case kTypeMerge: assert(s->state == kNotFound || s->state == kMerge); s->state = kMerge; merge_contex->PushOperand(v); return true; default: assert(false); break; } } // s->state could be Corrupt, merge or notfound return false; } Version::Version(ColumnFamilyData* cfd, VersionSet* vset, uint64_t version_number) : cfd_(cfd), internal_comparator_((cfd == nullptr) ? nullptr : &cfd->internal_comparator()), user_comparator_((cfd == nullptr) ? nullptr : internal_comparator_->user_comparator()), table_cache_((cfd == nullptr) ? nullptr : cfd->table_cache()), merge_operator_((cfd == nullptr) ? nullptr : cfd->options()->merge_operator.get()), info_log_((cfd == nullptr) ? nullptr : cfd->options()->info_log.get()), db_statistics_((cfd == nullptr) ? nullptr : cfd->options()->statistics.get()), // cfd is nullptr if Version is dummy num_levels_(cfd == nullptr ? 0 : cfd->NumberLevels()), num_non_empty_levels_(num_levels_), file_indexer_(cfd == nullptr ? nullptr : cfd->internal_comparator().user_comparator()), vset_(vset), next_(this), prev_(this), refs_(0), files_(new std::vector[num_levels_]), files_by_size_(num_levels_), next_file_to_compact_by_size_(num_levels_), compaction_score_(num_levels_), compaction_level_(num_levels_), version_number_(version_number), total_file_size_(0), total_raw_key_size_(0), total_raw_value_size_(0), num_non_deletions_(0) { if (cfd != nullptr && cfd->current() != nullptr) { total_file_size_ = cfd->current()->total_file_size_; total_raw_key_size_ = cfd->current()->total_raw_key_size_; total_raw_value_size_ = cfd->current()->total_raw_value_size_; num_non_deletions_ = cfd->current()->num_non_deletions_; } } void Version::Get(const ReadOptions& options, const LookupKey& k, std::string* value, Status* status, MergeContext* merge_context, bool* value_found) { Slice ikey = k.internal_key(); Slice user_key = k.user_key(); assert(status->ok() || status->IsMergeInProgress()); Saver saver; saver.state = status->ok()? kNotFound : kMerge; saver.ucmp = user_comparator_; saver.user_key = user_key; saver.value_found = value_found; saver.value = value; saver.merge_operator = merge_operator_; saver.merge_context = merge_context; saver.logger = info_log_; saver.statistics = db_statistics_; FilePicker fp(files_, user_key, ikey, &file_levels_, num_non_empty_levels_, &file_indexer_, user_comparator_, internal_comparator_); FdWithKeyRange* f = fp.GetNextFile(); while (f != nullptr) { *status = table_cache_->Get(options, *internal_comparator_, f->fd, ikey, &saver, SaveValue, MarkKeyMayExist); // TODO: examine the behavior for corrupted key if (!status->ok()) { return; } switch (saver.state) { case kNotFound: break; // Keep searching in other files case kFound: return; case kDeleted: *status = Status::NotFound(); // Use empty error message for speed return; case kCorrupt: *status = Status::Corruption("corrupted key for ", user_key); return; case kMerge: break; } f = fp.GetNextFile(); } if (kMerge == saver.state) { // merge_operands are in saver and we hit the beginning of the key history // do a final merge of nullptr and operands; if (merge_operator_->FullMerge(user_key, nullptr, saver.merge_context->GetOperands(), value, info_log_)) { *status = Status::OK(); } else { RecordTick(db_statistics_, NUMBER_MERGE_FAILURES); *status = Status::Corruption("could not perform end-of-key merge for ", user_key); } } else { *status = Status::NotFound(); // Use an empty error message for speed } } void Version::GenerateFileLevels() { file_levels_.resize(num_non_empty_levels_); for (int level = 0; level < num_non_empty_levels_; level++) { DoGenerateFileLevel(&file_levels_[level], files_[level], &arena_); } } void Version::PrepareApply(std::vector& size_being_compacted) { UpdateTemporaryStats(); ComputeCompactionScore(size_being_compacted); UpdateFilesBySize(); UpdateNumNonEmptyLevels(); file_indexer_.UpdateIndex(&arena_, num_non_empty_levels_, files_); GenerateFileLevels(); } bool Version::MaybeInitializeFileMetaData(FileMetaData* file_meta) { if (file_meta->num_entries > 0) { return false; } std::shared_ptr tp; Status s = GetTableProperties(&tp, file_meta); if (!s.ok()) { return false; } if (tp.get() == nullptr) return false; file_meta->num_entries = tp->num_entries; file_meta->num_deletions = GetDeletedKeys(tp->user_collected_properties); file_meta->raw_value_size = tp->raw_value_size; file_meta->raw_key_size = tp->raw_key_size; return true; } void Version::UpdateTemporaryStats() { static const int kDeletionWeightOnCompaction = 2; // incrementally update the average value size by // including newly added files into the global stats int init_count = 0; int total_count = 0; for (int level = 0; level < num_levels_; level++) { for (auto* file_meta : files_[level]) { if (MaybeInitializeFileMetaData(file_meta)) { // each FileMeta will be initialized only once. total_file_size_ += file_meta->fd.GetFileSize(); total_raw_key_size_ += file_meta->raw_key_size; total_raw_value_size_ += file_meta->raw_value_size; num_non_deletions_ += file_meta->num_entries - file_meta->num_deletions; init_count++; } total_count++; } } uint64_t average_value_size = GetAverageValueSize(); // compute the compensated size for (int level = 0; level < num_levels_; level++) { for (auto* file_meta : files_[level]) { // Here we only compute compensated_file_size for those file_meta // which compensated_file_size is uninitialized (== 0). if (file_meta->compensated_file_size == 0) { file_meta->compensated_file_size = file_meta->fd.GetFileSize() + file_meta->num_deletions * average_value_size * kDeletionWeightOnCompaction; } } } } void Version::ComputeCompactionScore( std::vector& size_being_compacted) { double max_score = 0; int max_score_level = 0; int num_levels_to_check = (cfd_->options()->compaction_style != kCompactionStyleUniversal && cfd_->options()->compaction_style != kCompactionStyleFIFO) ? NumberLevels() - 1 : 1; for (int level = 0; level < num_levels_to_check; level++) { double score; if (level == 0) { // We treat level-0 specially by bounding the number of files // instead of number of bytes for two reasons: // // (1) With larger write-buffer sizes, it is nice not to do too // many level-0 compactions. // // (2) The files in level-0 are merged on every read and // therefore we wish to avoid too many files when the individual // file size is small (perhaps because of a small write-buffer // setting, or very high compression ratios, or lots of // overwrites/deletions). int numfiles = 0; uint64_t total_size = 0; for (unsigned int i = 0; i < files_[level].size(); i++) { if (!files_[level][i]->being_compacted) { total_size += files_[level][i]->compensated_file_size; numfiles++; } } if (cfd_->options()->compaction_style == kCompactionStyleFIFO) { score = static_cast(total_size) / cfd_->options()->compaction_options_fifo.max_table_files_size; } else if (numfiles >= cfd_->options()->level0_stop_writes_trigger) { // If we are slowing down writes, then we better compact that first score = 1000000; } else if (numfiles >= cfd_->options()->level0_slowdown_writes_trigger) { score = 10000; } else { score = static_cast(numfiles) / cfd_->options()->level0_file_num_compaction_trigger; } } else { // Compute the ratio of current size to size limit. const uint64_t level_bytes = TotalCompensatedFileSize(files_[level]) - size_being_compacted[level]; score = static_cast(level_bytes) / cfd_->compaction_picker()->MaxBytesForLevel(level); if (max_score < score) { max_score = score; max_score_level = level; } } compaction_level_[level] = level; compaction_score_[level] = score; } // update the max compaction score in levels 1 to n-1 max_compaction_score_ = max_score; max_compaction_score_level_ = max_score_level; // sort all the levels based on their score. Higher scores get listed // first. Use bubble sort because the number of entries are small. for (int i = 0; i < NumberLevels() - 2; i++) { for (int j = i + 1; j < NumberLevels() - 1; j++) { if (compaction_score_[i] < compaction_score_[j]) { double score = compaction_score_[i]; int level = compaction_level_[i]; compaction_score_[i] = compaction_score_[j]; compaction_level_[i] = compaction_level_[j]; compaction_score_[j] = score; compaction_level_[j] = level; } } } } namespace { // Compator that is used to sort files based on their size // In normal mode: descending size bool CompareCompensatedSizeDescending(const Version::Fsize& first, const Version::Fsize& second) { return (first.file->compensated_file_size > second.file->compensated_file_size); } } // anonymous namespace void Version::UpdateNumNonEmptyLevels() { num_non_empty_levels_ = num_levels_; for (int i = num_levels_ - 1; i >= 0; i--) { if (files_[i].size() != 0) { return; } else { num_non_empty_levels_ = i; } } } void Version::UpdateFilesBySize() { if (cfd_->options()->compaction_style == kCompactionStyleFIFO || cfd_->options()->compaction_style == kCompactionStyleUniversal) { // don't need this return; } // No need to sort the highest level because it is never compacted. for (int level = 0; level < NumberLevels() - 1; level++) { const std::vector& files = files_[level]; auto& files_by_size = files_by_size_[level]; assert(files_by_size.size() == 0); // populate a temp vector for sorting based on size std::vector temp(files.size()); for (unsigned int i = 0; i < files.size(); i++) { temp[i].index = i; temp[i].file = files[i]; } // sort the top number_of_files_to_sort_ based on file size size_t num = Version::number_of_files_to_sort_; if (num > temp.size()) { num = temp.size(); } std::partial_sort(temp.begin(), temp.begin() + num, temp.end(), CompareCompensatedSizeDescending); assert(temp.size() == files.size()); // initialize files_by_size_ for (unsigned int i = 0; i < temp.size(); i++) { files_by_size.push_back(temp[i].index); } next_file_to_compact_by_size_[level] = 0; assert(files_[level].size() == files_by_size_[level].size()); } } void Version::Ref() { ++refs_; } bool Version::Unref() { assert(refs_ >= 1); --refs_; if (refs_ == 0) { delete this; return true; } return false; } bool Version::NeedsCompaction() const { // In universal compaction case, this check doesn't really // check the compaction condition, but checks num of files threshold // only. We are not going to miss any compaction opportunity // but it's likely that more compactions are scheduled but // ending up with nothing to do. We can improve it later. // TODO(sdong): improve this function to be accurate for universal // compactions. int num_levels_to_check = (cfd_->options()->compaction_style != kCompactionStyleUniversal && cfd_->options()->compaction_style != kCompactionStyleFIFO) ? NumberLevels() - 1 : 1; for (int i = 0; i < num_levels_to_check; i++) { if (compaction_score_[i] >= 1) { return true; } } return false; } bool Version::OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key) { return SomeFileOverlapsRange(cfd_->internal_comparator(), (level > 0), file_levels_[level], smallest_user_key, largest_user_key); } int Version::PickLevelForMemTableOutput( const Slice& smallest_user_key, const Slice& largest_user_key) { int level = 0; if (!OverlapInLevel(0, &smallest_user_key, &largest_user_key)) { // Push to next level if there is no overlap in next level, // and the #bytes overlapping in the level after that are limited. InternalKey start(smallest_user_key, kMaxSequenceNumber, kValueTypeForSeek); InternalKey limit(largest_user_key, 0, static_cast(0)); std::vector overlaps; int max_mem_compact_level = cfd_->options()->max_mem_compaction_level; while (max_mem_compact_level > 0 && level < max_mem_compact_level) { if (OverlapInLevel(level + 1, &smallest_user_key, &largest_user_key)) { break; } if (level + 2 >= num_levels_) { level++; break; } GetOverlappingInputs(level + 2, &start, &limit, &overlaps); const uint64_t sum = TotalFileSize(overlaps); if (sum > cfd_->compaction_picker()->MaxGrandParentOverlapBytes(level)) { break; } level++; } } return level; } // Store in "*inputs" all files in "level" that overlap [begin,end] // If hint_index is specified, then it points to a file in the // overlapping range. // The file_index returns a pointer to any file in an overlapping range. void Version::GetOverlappingInputs(int level, const InternalKey* begin, const InternalKey* end, std::vector* inputs, int hint_index, int* file_index) { inputs->clear(); Slice user_begin, user_end; if (begin != nullptr) { user_begin = begin->user_key(); } if (end != nullptr) { user_end = end->user_key(); } if (file_index) { *file_index = -1; } const Comparator* user_cmp = cfd_->internal_comparator().user_comparator(); if (begin != nullptr && end != nullptr && level > 0) { GetOverlappingInputsBinarySearch(level, user_begin, user_end, inputs, hint_index, file_index); return; } for (size_t i = 0; i < file_levels_[level].num_files; ) { FdWithKeyRange* f = &(file_levels_[level].files[i++]); const Slice file_start = ExtractUserKey(f->smallest_key); const Slice file_limit = ExtractUserKey(f->largest_key); if (begin != nullptr && user_cmp->Compare(file_limit, user_begin) < 0) { // "f" is completely before specified range; skip it } else if (end != nullptr && user_cmp->Compare(file_start, user_end) > 0) { // "f" is completely after specified range; skip it } else { inputs->push_back(files_[level][i-1]); if (level == 0) { // Level-0 files may overlap each other. So check if the newly // added file has expanded the range. If so, restart search. if (begin != nullptr && user_cmp->Compare(file_start, user_begin) < 0) { user_begin = file_start; inputs->clear(); i = 0; } else if (end != nullptr && user_cmp->Compare(file_limit, user_end) > 0) { user_end = file_limit; inputs->clear(); i = 0; } } else if (file_index) { *file_index = i-1; } } } } // Store in "*inputs" all files in "level" that overlap [begin,end] // Employ binary search to find at least one file that overlaps the // specified range. From that file, iterate backwards and // forwards to find all overlapping files. void Version::GetOverlappingInputsBinarySearch( int level, const Slice& user_begin, const Slice& user_end, std::vector* inputs, int hint_index, int* file_index) { assert(level > 0); int min = 0; int mid = 0; int max = files_[level].size() -1; bool foundOverlap = false; const Comparator* user_cmp = cfd_->internal_comparator().user_comparator(); // if the caller already knows the index of a file that has overlap, // then we can skip the binary search. if (hint_index != -1) { mid = hint_index; foundOverlap = true; } while (!foundOverlap && min <= max) { mid = (min + max)/2; FdWithKeyRange* f = &(file_levels_[level].files[mid]); const Slice file_start = ExtractUserKey(f->smallest_key); const Slice file_limit = ExtractUserKey(f->largest_key); if (user_cmp->Compare(file_limit, user_begin) < 0) { min = mid + 1; } else if (user_cmp->Compare(user_end, file_start) < 0) { max = mid - 1; } else { foundOverlap = true; break; } } // If there were no overlapping files, return immediately. if (!foundOverlap) { return; } // returns the index where an overlap is found if (file_index) { *file_index = mid; } ExtendOverlappingInputs(level, user_begin, user_end, inputs, mid); } // Store in "*inputs" all files in "level" that overlap [begin,end] // The midIndex specifies the index of at least one file that // overlaps the specified range. From that file, iterate backward // and forward to find all overlapping files. // Use FileLevel in searching, make it faster void Version::ExtendOverlappingInputs( int level, const Slice& user_begin, const Slice& user_end, std::vector* inputs, unsigned int midIndex) { const Comparator* user_cmp = cfd_->internal_comparator().user_comparator(); const FdWithKeyRange* files = file_levels_[level].files; #ifndef NDEBUG { // assert that the file at midIndex overlaps with the range assert(midIndex < file_levels_[level].num_files); const FdWithKeyRange* f = &files[midIndex]; const Slice fstart = ExtractUserKey(f->smallest_key); const Slice flimit = ExtractUserKey(f->largest_key); if (user_cmp->Compare(fstart, user_begin) >= 0) { assert(user_cmp->Compare(fstart, user_end) <= 0); } else { assert(user_cmp->Compare(flimit, user_begin) >= 0); } } #endif int startIndex = midIndex + 1; int endIndex = midIndex; int count __attribute__((unused)) = 0; // check backwards from 'mid' to lower indices for (int i = midIndex; i >= 0 ; i--) { const FdWithKeyRange* f = &files[i]; const Slice file_limit = ExtractUserKey(f->largest_key); if (user_cmp->Compare(file_limit, user_begin) >= 0) { startIndex = i; assert((count++, true)); } else { break; } } // check forward from 'mid+1' to higher indices for (unsigned int i = midIndex+1; i < file_levels_[level].num_files; i++) { const FdWithKeyRange* f = &files[i]; const Slice file_start = ExtractUserKey(f->smallest_key); if (user_cmp->Compare(file_start, user_end) <= 0) { assert((count++, true)); endIndex = i; } else { break; } } assert(count == endIndex - startIndex + 1); // insert overlapping files into vector for (int i = startIndex; i <= endIndex; i++) { FileMetaData* f = files_[level][i]; inputs->push_back(f); } } // Returns true iff the first or last file in inputs contains // an overlapping user key to the file "just outside" of it (i.e. // just after the last file, or just before the first file) // REQUIRES: "*inputs" is a sorted list of non-overlapping files bool Version::HasOverlappingUserKey( const std::vector* inputs, int level) { // If inputs empty, there is no overlap. // If level == 0, it is assumed that all needed files were already included. if (inputs->empty() || level == 0){ return false; } const Comparator* user_cmp = cfd_->internal_comparator().user_comparator(); const FileLevel& file_level = file_levels_[level]; const FdWithKeyRange* files = file_levels_[level].files; const size_t kNumFiles = file_level.num_files; // Check the last file in inputs against the file after it size_t last_file = FindFile(cfd_->internal_comparator(), file_level, inputs->back()->largest.Encode()); assert(0 <= last_file && last_file < kNumFiles); // File should exist! if (last_file < kNumFiles-1) { // If not the last file const Slice last_key_in_input = ExtractUserKey( files[last_file].largest_key); const Slice first_key_after = ExtractUserKey( files[last_file+1].smallest_key); if (user_cmp->Compare(last_key_in_input, first_key_after) == 0) { // The last user key in input overlaps with the next file's first key return true; } } // Check the first file in inputs against the file just before it size_t first_file = FindFile(cfd_->internal_comparator(), file_level, inputs->front()->smallest.Encode()); assert(0 <= first_file && first_file <= last_file); // File should exist! if (first_file > 0) { // If not first file const Slice& first_key_in_input = ExtractUserKey( files[first_file].smallest_key); const Slice& last_key_before = ExtractUserKey( files[first_file-1].largest_key); if (user_cmp->Compare(first_key_in_input, last_key_before) == 0) { // The first user key in input overlaps with the previous file's last key return true; } } return false; } int64_t Version::NumLevelBytes(int level) const { assert(level >= 0); assert(level < NumberLevels()); return TotalFileSize(files_[level]); } const char* Version::LevelSummary(LevelSummaryStorage* scratch) const { int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files["); for (int i = 0; i < NumberLevels(); i++) { int sz = sizeof(scratch->buffer) - len; int ret = snprintf(scratch->buffer + len, sz, "%d ", int(files_[i].size())); if (ret < 0 || ret >= sz) break; len += ret; } if (len > 0) { // overwrite the last space --len; } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]"); return scratch->buffer; } const char* Version::LevelFileSummary(FileSummaryStorage* scratch, int level) const { int len = snprintf(scratch->buffer, sizeof(scratch->buffer), "files_size["); for (const auto& f : files_[level]) { int sz = sizeof(scratch->buffer) - len; char sztxt[16]; AppendHumanBytes(f->fd.GetFileSize(), sztxt, 16); int ret = snprintf(scratch->buffer + len, sz, "#%" PRIu64 "(seq=%" PRIu64 ",sz=%s,%d) ", f->fd.GetNumber(), f->smallest_seqno, sztxt, static_cast(f->being_compacted)); if (ret < 0 || ret >= sz) break; len += ret; } // overwrite the last space (only if files_[level].size() is non-zero) if (files_[level].size() && len > 0) { --len; } snprintf(scratch->buffer + len, sizeof(scratch->buffer) - len, "]"); return scratch->buffer; } int64_t Version::MaxNextLevelOverlappingBytes() { uint64_t result = 0; std::vector overlaps; for (int level = 1; level < NumberLevels() - 1; level++) { for (const auto& f : files_[level]) { GetOverlappingInputs(level + 1, &f->smallest, &f->largest, &overlaps); const uint64_t sum = TotalFileSize(overlaps); if (sum > result) { result = sum; } } } return result; } void Version::AddLiveFiles(std::vector* live) { for (int level = 0; level < NumberLevels(); level++) { const std::vector& files = files_[level]; for (const auto& file : files) { live->push_back(file->fd); } } } std::string Version::DebugString(bool hex) const { std::string r; for (int level = 0; level < num_levels_; level++) { // E.g., // --- level 1 --- // 17:123['a' .. 'd'] // 20:43['e' .. 'g'] r.append("--- level "); AppendNumberTo(&r, level); r.append(" --- version# "); AppendNumberTo(&r, version_number_); r.append(" ---\n"); const std::vector& files = files_[level]; for (size_t i = 0; i < files.size(); i++) { r.push_back(' '); AppendNumberTo(&r, files[i]->fd.GetNumber()); r.push_back(':'); AppendNumberTo(&r, files[i]->fd.GetFileSize()); r.append("["); r.append(files[i]->smallest.DebugString(hex)); r.append(" .. "); r.append(files[i]->largest.DebugString(hex)); r.append("]\n"); } } return r; } // this is used to batch writes to the manifest file struct VersionSet::ManifestWriter { Status status; bool done; port::CondVar cv; ColumnFamilyData* cfd; VersionEdit* edit; explicit ManifestWriter(port::Mutex* mu, ColumnFamilyData* cfd, VersionEdit* e) : done(false), cv(mu), cfd(cfd), edit(e) {} }; // A helper class so we can efficiently apply a whole sequence // of edits to a particular state without creating intermediate // Versions that contain full copies of the intermediate state. class VersionSet::Builder { private: // Helper to sort v->files_ // kLevel0 -- NewestFirstBySeqNo // kLevelNon0 -- BySmallestKey struct FileComparator { enum SortMethod { kLevel0 = 0, kLevelNon0 = 1, } sort_method; const InternalKeyComparator* internal_comparator; bool operator()(FileMetaData* f1, FileMetaData* f2) const { switch (sort_method) { case kLevel0: return NewestFirstBySeqNo(f1, f2); case kLevelNon0: return BySmallestKey(f1, f2, internal_comparator); } assert(false); return false; } }; typedef std::set FileSet; struct LevelState { std::set deleted_files; FileSet* added_files; }; ColumnFamilyData* cfd_; Version* base_; LevelState* levels_; FileComparator level_zero_cmp_; FileComparator level_nonzero_cmp_; public: Builder(ColumnFamilyData* cfd) : cfd_(cfd), base_(cfd->current()) { base_->Ref(); levels_ = new LevelState[base_->NumberLevels()]; level_zero_cmp_.sort_method = FileComparator::kLevel0; level_nonzero_cmp_.sort_method = FileComparator::kLevelNon0; level_nonzero_cmp_.internal_comparator = &cfd->internal_comparator(); levels_[0].added_files = new FileSet(level_zero_cmp_); for (int level = 1; level < base_->NumberLevels(); level++) { levels_[level].added_files = new FileSet(level_nonzero_cmp_); } } ~Builder() { for (int level = 0; level < base_->NumberLevels(); level++) { const FileSet* added = levels_[level].added_files; std::vector to_unref; to_unref.reserve(added->size()); for (FileSet::const_iterator it = added->begin(); it != added->end(); ++it) { to_unref.push_back(*it); } delete added; for (uint32_t i = 0; i < to_unref.size(); i++) { FileMetaData* f = to_unref[i]; f->refs--; if (f->refs <= 0) { if (f->table_reader_handle) { cfd_->table_cache()->ReleaseHandle(f->table_reader_handle); f->table_reader_handle = nullptr; } delete f; } } } delete[] levels_; base_->Unref(); } void CheckConsistency(Version* v) { #ifndef NDEBUG // make sure the files are sorted correctly for (int level = 0; level < v->NumberLevels(); level++) { for (size_t i = 1; i < v->files_[level].size(); i++) { auto f1 = v->files_[level][i - 1]; auto f2 = v->files_[level][i]; if (level == 0) { assert(level_zero_cmp_(f1, f2)); assert(f1->largest_seqno > f2->largest_seqno); } else { assert(level_nonzero_cmp_(f1, f2)); // Make sure there is no overlap in levels > 0 if (cfd_->internal_comparator().Compare(f1->largest, f2->smallest) >= 0) { fprintf(stderr, "overlapping ranges in same level %s vs. %s\n", (f1->largest).DebugString().c_str(), (f2->smallest).DebugString().c_str()); abort(); } } } } #endif } void CheckConsistencyForDeletes(VersionEdit* edit, uint64_t number, int level) { #ifndef NDEBUG // a file to be deleted better exist in the previous version bool found = false; for (int l = 0; !found && l < base_->NumberLevels(); l++) { const std::vector& base_files = base_->files_[l]; for (unsigned int i = 0; i < base_files.size(); i++) { FileMetaData* f = base_files[i]; if (f->fd.GetNumber() == number) { found = true; break; } } } // if the file did not exist in the previous version, then it // is possibly moved from lower level to higher level in current // version for (int l = level+1; !found && l < base_->NumberLevels(); l++) { const FileSet* added = levels_[l].added_files; for (FileSet::const_iterator added_iter = added->begin(); added_iter != added->end(); ++added_iter) { FileMetaData* f = *added_iter; if (f->fd.GetNumber() == number) { found = true; break; } } } // maybe this file was added in a previous edit that was Applied if (!found) { const FileSet* added = levels_[level].added_files; for (FileSet::const_iterator added_iter = added->begin(); added_iter != added->end(); ++added_iter) { FileMetaData* f = *added_iter; if (f->fd.GetNumber() == number) { found = true; break; } } } if (!found) { fprintf(stderr, "not found %" PRIu64 "\n", number); } assert(found); #endif } // Apply all of the edits in *edit to the current state. void Apply(VersionEdit* edit) { CheckConsistency(base_); // Delete files const VersionEdit::DeletedFileSet& del = edit->deleted_files_; for (const auto& del_file : del) { const auto level = del_file.first; const auto number = del_file.second; levels_[level].deleted_files.insert(number); CheckConsistencyForDeletes(edit, number, level); } // Add new files for (const auto& new_file : edit->new_files_) { const int level = new_file.first; FileMetaData* f = new FileMetaData(new_file.second); f->refs = 1; levels_[level].deleted_files.erase(f->fd.GetNumber()); levels_[level].added_files->insert(f); } } // Save the current state in *v. void SaveTo(Version* v) { CheckConsistency(base_); CheckConsistency(v); for (int level = 0; level < base_->NumberLevels(); level++) { const auto& cmp = (level == 0) ? level_zero_cmp_ : level_nonzero_cmp_; // Merge the set of added files with the set of pre-existing files. // Drop any deleted files. Store the result in *v. const auto& base_files = base_->files_[level]; auto base_iter = base_files.begin(); auto base_end = base_files.end(); const auto& added_files = *levels_[level].added_files; v->files_[level].reserve(base_files.size() + added_files.size()); for (const auto& added : added_files) { // Add all smaller files listed in base_ for (auto bpos = std::upper_bound(base_iter, base_end, added, cmp); base_iter != bpos; ++base_iter) { MaybeAddFile(v, level, *base_iter); } MaybeAddFile(v, level, added); } // Add remaining base files for (; base_iter != base_end; ++base_iter) { MaybeAddFile(v, level, *base_iter); } } CheckConsistency(v); } void LoadTableHandlers() { for (int level = 0; level < cfd_->NumberLevels(); level++) { for (auto& file_meta : *(levels_[level].added_files)) { assert (!file_meta->table_reader_handle); cfd_->table_cache()->FindTable( base_->vset_->storage_options_, cfd_->internal_comparator(), file_meta->fd, &file_meta->table_reader_handle, false); if (file_meta->table_reader_handle != nullptr) { // Load table_reader file_meta->fd.table_reader = cfd_->table_cache()->GetTableReaderFromHandle( file_meta->table_reader_handle); } } } } void MaybeAddFile(Version* v, int level, FileMetaData* f) { if (levels_[level].deleted_files.count(f->fd.GetNumber()) > 0) { // File is deleted: do nothing } else { auto* files = &v->files_[level]; if (level > 0 && !files->empty()) { // Must not overlap assert(cfd_->internal_comparator().Compare( (*files)[files->size() - 1]->largest, f->smallest) < 0); } f->refs++; files->push_back(f); } } }; VersionSet::VersionSet(const std::string& dbname, const DBOptions* options, const EnvOptions& storage_options, Cache* table_cache) : column_family_set_(new ColumnFamilySet(dbname, options, storage_options, table_cache)), env_(options->env), dbname_(dbname), options_(options), next_file_number_(2), manifest_file_number_(0), // Filled by Recover() pending_manifest_file_number_(0), last_sequence_(0), prev_log_number_(0), current_version_number_(0), manifest_file_size_(0), storage_options_(storage_options), storage_options_compactions_(storage_options_) {} VersionSet::~VersionSet() { // we need to delete column_family_set_ because its destructor depends on // VersionSet column_family_set_.reset(); for (auto file : obsolete_files_) { delete file; } obsolete_files_.clear(); } void VersionSet::AppendVersion(ColumnFamilyData* column_family_data, Version* v) { // Make "v" current assert(v->refs_ == 0); Version* current = column_family_data->current(); assert(v != current); if (current != nullptr) { assert(current->refs_ > 0); current->Unref(); } column_family_data->SetCurrent(v); v->Ref(); // Append to linked list v->prev_ = column_family_data->dummy_versions()->prev_; v->next_ = column_family_data->dummy_versions(); v->prev_->next_ = v; v->next_->prev_ = v; } Status VersionSet::LogAndApply(ColumnFamilyData* column_family_data, VersionEdit* edit, port::Mutex* mu, Directory* db_directory, bool new_descriptor_log, const ColumnFamilyOptions* options) { mu->AssertHeld(); // column_family_data can be nullptr only if this is column_family_add. // in that case, we also need to specify ColumnFamilyOptions if (column_family_data == nullptr) { assert(edit->is_column_family_add_); assert(options != nullptr); } // queue our request ManifestWriter w(mu, column_family_data, edit); manifest_writers_.push_back(&w); while (!w.done && &w != manifest_writers_.front()) { w.cv.Wait(); } if (w.done) { return w.status; } if (column_family_data != nullptr && column_family_data->IsDropped()) { // if column family is dropped by the time we get here, no need to write // anything to the manifest manifest_writers_.pop_front(); // Notify new head of write queue if (!manifest_writers_.empty()) { manifest_writers_.front()->cv.Signal(); } return Status::OK(); } std::vector batch_edits; Version* v = nullptr; std::unique_ptr builder(nullptr); // process all requests in the queue ManifestWriter* last_writer = &w; assert(!manifest_writers_.empty()); assert(manifest_writers_.front() == &w); if (edit->IsColumnFamilyManipulation()) { // no group commits for column family add or drop LogAndApplyCFHelper(edit); batch_edits.push_back(edit); } else { v = new Version(column_family_data, this, current_version_number_++); builder.reset(new Builder(column_family_data)); for (const auto& writer : manifest_writers_) { if (writer->edit->IsColumnFamilyManipulation() || writer->cfd->GetID() != column_family_data->GetID()) { // no group commits for column family add or drop // also, group commits across column families are not supported break; } last_writer = writer; LogAndApplyHelper(column_family_data, builder.get(), v, last_writer->edit, mu); batch_edits.push_back(last_writer->edit); } builder->SaveTo(v); } // Initialize new descriptor log file if necessary by creating // a temporary file that contains a snapshot of the current version. uint64_t new_manifest_file_size = 0; Status s; assert(pending_manifest_file_number_ == 0); if (!descriptor_log_ || manifest_file_size_ > options_->max_manifest_file_size) { pending_manifest_file_number_ = NewFileNumber(); batch_edits.back()->SetNextFile(next_file_number_); new_descriptor_log = true; } else { pending_manifest_file_number_ = manifest_file_number_; } if (new_descriptor_log) { // if we're writing out new snapshot make sure to persist max column family if (column_family_set_->GetMaxColumnFamily() > 0) { edit->SetMaxColumnFamily(column_family_set_->GetMaxColumnFamily()); } } // Unlock during expensive operations. New writes cannot get here // because &w is ensuring that all new writes get queued. { std::vector size_being_compacted; if (!edit->IsColumnFamilyManipulation()) { size_being_compacted.resize(v->NumberLevels() - 1); // calculate the amount of data being compacted at every level column_family_data->compaction_picker()->SizeBeingCompacted( size_being_compacted); } mu->Unlock(); if (!edit->IsColumnFamilyManipulation() && options_->max_open_files == -1) { // unlimited table cache. Pre-load table handle now. // Need to do it out of the mutex. builder->LoadTableHandlers(); } // This is fine because everything inside of this block is serialized -- // only one thread can be here at the same time if (new_descriptor_log) { unique_ptr descriptor_file; s = env_->NewWritableFile( DescriptorFileName(dbname_, pending_manifest_file_number_), &descriptor_file, env_->OptimizeForManifestWrite(storage_options_)); if (s.ok()) { descriptor_file->SetPreallocationBlockSize( options_->manifest_preallocation_size); descriptor_log_.reset(new log::Writer(std::move(descriptor_file))); s = WriteSnapshot(descriptor_log_.get()); } } if (!edit->IsColumnFamilyManipulation()) { // This is cpu-heavy operations, which should be called outside mutex. v->PrepareApply(size_being_compacted); } // Write new record to MANIFEST log if (s.ok()) { for (auto& e : batch_edits) { std::string record; e->EncodeTo(&record); s = descriptor_log_->AddRecord(record); if (!s.ok()) { break; } } if (s.ok()) { if (options_->use_fsync) { StopWatch sw(env_, options_->statistics.get(), MANIFEST_FILE_SYNC_MICROS); s = descriptor_log_->file()->Fsync(); } else { StopWatch sw(env_, options_->statistics.get(), MANIFEST_FILE_SYNC_MICROS); s = descriptor_log_->file()->Sync(); } } if (!s.ok()) { Log(options_->info_log, "MANIFEST write: %s\n", s.ToString().c_str()); bool all_records_in = true; for (auto& e : batch_edits) { std::string record; e->EncodeTo(&record); if (!ManifestContains(pending_manifest_file_number_, record)) { all_records_in = false; break; } } if (all_records_in) { Log(options_->info_log, "MANIFEST contains log record despite error; advancing to new " "version to prevent mismatch between in-memory and logged state" " If paranoid is set, then the db is now in readonly mode."); s = Status::OK(); } } } // If we just created a new descriptor file, install it by writing a // new CURRENT file that points to it. if (s.ok() && new_descriptor_log) { s = SetCurrentFile(env_, dbname_, pending_manifest_file_number_, db_directory); if (s.ok() && pending_manifest_file_number_ > manifest_file_number_) { // delete old manifest file Log(options_->info_log, "Deleting manifest %" PRIu64 " current manifest %" PRIu64 "\n", manifest_file_number_, pending_manifest_file_number_); // we don't care about an error here, PurgeObsoleteFiles will take care // of it later env_->DeleteFile(DescriptorFileName(dbname_, manifest_file_number_)); } } if (s.ok()) { // find offset in manifest file where this version is stored. new_manifest_file_size = descriptor_log_->file()->GetFileSize(); } LogFlush(options_->info_log); mu->Lock(); } // Install the new version if (s.ok()) { if (edit->is_column_family_add_) { // no group commit on column family add assert(batch_edits.size() == 1); assert(options != nullptr); CreateColumnFamily(*options, edit); } else if (edit->is_column_family_drop_) { assert(batch_edits.size() == 1); column_family_data->SetDropped(); if (column_family_data->Unref()) { delete column_family_data; } } else { uint64_t max_log_number_in_batch = 0; for (auto& e : batch_edits) { if (e->has_log_number_) { max_log_number_in_batch = std::max(max_log_number_in_batch, e->log_number_); } } if (max_log_number_in_batch != 0) { assert(column_family_data->GetLogNumber() <= max_log_number_in_batch); column_family_data->SetLogNumber(max_log_number_in_batch); } AppendVersion(column_family_data, v); } manifest_file_number_ = pending_manifest_file_number_; manifest_file_size_ = new_manifest_file_size; prev_log_number_ = edit->prev_log_number_; } else { Log(options_->info_log, "Error in committing version %lu to [%s]", (unsigned long)v->GetVersionNumber(), column_family_data->GetName().c_str()); delete v; if (new_descriptor_log) { descriptor_log_.reset(); env_->DeleteFile( DescriptorFileName(dbname_, pending_manifest_file_number_)); } } pending_manifest_file_number_ = 0; // wake up all the waiting writers while (true) { ManifestWriter* ready = manifest_writers_.front(); manifest_writers_.pop_front(); if (ready != &w) { ready->status = s; ready->done = true; ready->cv.Signal(); } if (ready == last_writer) break; } // Notify new head of write queue if (!manifest_writers_.empty()) { manifest_writers_.front()->cv.Signal(); } return s; } void VersionSet::LogAndApplyCFHelper(VersionEdit* edit) { assert(edit->IsColumnFamilyManipulation()); edit->SetNextFile(next_file_number_); edit->SetLastSequence(last_sequence_); if (edit->is_column_family_drop_) { // if we drop column family, we have to make sure to save max column family, // so that we don't reuse existing ID edit->SetMaxColumnFamily(column_family_set_->GetMaxColumnFamily()); } } void VersionSet::LogAndApplyHelper(ColumnFamilyData* cfd, Builder* builder, Version* v, VersionEdit* edit, port::Mutex* mu) { mu->AssertHeld(); assert(!edit->IsColumnFamilyManipulation()); if (edit->has_log_number_) { assert(edit->log_number_ >= cfd->GetLogNumber()); assert(edit->log_number_ < next_file_number_); } if (!edit->has_prev_log_number_) { edit->SetPrevLogNumber(prev_log_number_); } edit->SetNextFile(next_file_number_); edit->SetLastSequence(last_sequence_); builder->Apply(edit); } Status VersionSet::Recover( const std::vector& column_families, bool read_only) { std::unordered_map cf_name_to_options; for (auto cf : column_families) { cf_name_to_options.insert({cf.name, cf.options}); } // keeps track of column families in manifest that were not found in // column families parameters. if those column families are not dropped // by subsequent manifest records, Recover() will return failure status std::unordered_map column_families_not_found; // Read "CURRENT" file, which contains a pointer to the current manifest file std::string manifest_filename; Status s = ReadFileToString( env_, CurrentFileName(dbname_), &manifest_filename ); if (!s.ok()) { return s; } if (manifest_filename.empty() || manifest_filename.back() != '\n') { return Status::Corruption("CURRENT file does not end with newline"); } // remove the trailing '\n' manifest_filename.resize(manifest_filename.size() - 1); FileType type; bool parse_ok = ParseFileName(manifest_filename, &manifest_file_number_, &type); if (!parse_ok || type != kDescriptorFile) { return Status::Corruption("CURRENT file corrupted"); } Log(options_->info_log, "Recovering from manifest file: %s\n", manifest_filename.c_str()); manifest_filename = dbname_ + "/" + manifest_filename; unique_ptr manifest_file; s = env_->NewSequentialFile(manifest_filename, &manifest_file, storage_options_); if (!s.ok()) { return s; } uint64_t manifest_file_size; s = env_->GetFileSize(manifest_filename, &manifest_file_size); if (!s.ok()) { return s; } bool have_log_number = false; bool have_prev_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; uint64_t last_sequence = 0; uint64_t log_number = 0; uint64_t prev_log_number = 0; uint32_t max_column_family = 0; std::unordered_map builders; // add default column family auto default_cf_iter = cf_name_to_options.find(kDefaultColumnFamilyName); if (default_cf_iter == cf_name_to_options.end()) { return Status::InvalidArgument("Default column family not specified"); } VersionEdit default_cf_edit; default_cf_edit.AddColumnFamily(kDefaultColumnFamilyName); default_cf_edit.SetColumnFamily(0); ColumnFamilyData* default_cfd = CreateColumnFamily(default_cf_iter->second, &default_cf_edit); builders.insert({0, new Builder(default_cfd)}); { VersionSet::LogReporter reporter; reporter.status = &s; log::Reader reader(std::move(manifest_file), &reporter, true /*checksum*/, 0 /*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (!s.ok()) { break; } // Not found means that user didn't supply that column // family option AND we encountered column family add // record. Once we encounter column family drop record, // we will delete the column family from // column_families_not_found. bool cf_in_not_found = column_families_not_found.find(edit.column_family_) != column_families_not_found.end(); // in builders means that user supplied that column family // option AND that we encountered column family add record bool cf_in_builders = builders.find(edit.column_family_) != builders.end(); // they can't both be true assert(!(cf_in_not_found && cf_in_builders)); ColumnFamilyData* cfd = nullptr; if (edit.is_column_family_add_) { if (cf_in_builders || cf_in_not_found) { s = Status::Corruption( "Manifest adding the same column family twice"); break; } auto cf_options = cf_name_to_options.find(edit.column_family_name_); if (cf_options == cf_name_to_options.end()) { column_families_not_found.insert( {edit.column_family_, edit.column_family_name_}); } else { cfd = CreateColumnFamily(cf_options->second, &edit); builders.insert({edit.column_family_, new Builder(cfd)}); } } else if (edit.is_column_family_drop_) { if (cf_in_builders) { auto builder = builders.find(edit.column_family_); assert(builder != builders.end()); delete builder->second; builders.erase(builder); cfd = column_family_set_->GetColumnFamily(edit.column_family_); if (cfd->Unref()) { delete cfd; cfd = nullptr; } else { // who else can have reference to cfd!? assert(false); } } else if (cf_in_not_found) { column_families_not_found.erase(edit.column_family_); } else { s = Status::Corruption( "Manifest - dropping non-existing column family"); break; } } else if (!cf_in_not_found) { if (!cf_in_builders) { s = Status::Corruption( "Manifest record referencing unknown column family"); break; } cfd = column_family_set_->GetColumnFamily(edit.column_family_); // this should never happen since cf_in_builders is true assert(cfd != nullptr); if (edit.max_level_ >= cfd->current()->NumberLevels()) { s = Status::InvalidArgument( "db has more levels than options.num_levels"); break; } // if it is not column family add or column family drop, // then it's a file add/delete, which should be forwarded // to builder auto builder = builders.find(edit.column_family_); assert(builder != builders.end()); builder->second->Apply(&edit); } if (cfd != nullptr) { if (edit.has_log_number_) { if (cfd->GetLogNumber() > edit.log_number_) { Log(options_->info_log, "MANIFEST corruption detected, but ignored - Log numbers in " "records NOT monotonically increasing"); } else { cfd->SetLogNumber(edit.log_number_); have_log_number = true; } } if (edit.has_comparator_ && edit.comparator_ != cfd->user_comparator()->Name()) { s = Status::InvalidArgument( cfd->user_comparator()->Name(), "does not match existing comparator " + edit.comparator_); break; } } if (edit.has_prev_log_number_) { prev_log_number = edit.prev_log_number_; have_prev_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_max_column_family_) { max_column_family = edit.max_column_family_; } if (edit.has_last_sequence_) { last_sequence = edit.last_sequence_; have_last_sequence = true; } } } if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); } else if (!have_log_number) { s = Status::Corruption("no meta-lognumber entry in descriptor"); } else if (!have_last_sequence) { s = Status::Corruption("no last-sequence-number entry in descriptor"); } if (!have_prev_log_number) { prev_log_number = 0; } column_family_set_->UpdateMaxColumnFamily(max_column_family); MarkFileNumberUsed(prev_log_number); MarkFileNumberUsed(log_number); } // there were some column families in the MANIFEST that weren't specified // in the argument. This is OK in read_only mode if (read_only == false && column_families_not_found.size() > 0) { std::string list_of_not_found; for (const auto& cf : column_families_not_found) { list_of_not_found += ", " + cf.second; } list_of_not_found = list_of_not_found.substr(2); s = Status::InvalidArgument( "You have to open all column families. Column families not opened: " + list_of_not_found); } if (s.ok()) { for (auto cfd : *column_family_set_) { auto builders_iter = builders.find(cfd->GetID()); assert(builders_iter != builders.end()); auto builder = builders_iter->second; if (options_->max_open_files == -1) { // unlimited table cache. Pre-load table handle now. // Need to do it out of the mutex. builder->LoadTableHandlers(); } Version* v = new Version(cfd, this, current_version_number_++); builder->SaveTo(v); // Install recovered version std::vector size_being_compacted(v->NumberLevels() - 1); cfd->compaction_picker()->SizeBeingCompacted(size_being_compacted); v->PrepareApply(size_being_compacted); AppendVersion(cfd, v); } manifest_file_size_ = manifest_file_size; next_file_number_ = next_file + 1; last_sequence_ = last_sequence; prev_log_number_ = prev_log_number; Log(options_->info_log, "Recovered from manifest file:%s succeeded," "manifest_file_number is %lu, next_file_number is %lu, " "last_sequence is %lu, log_number is %lu," "prev_log_number is %lu," "max_column_family is %u\n", manifest_filename.c_str(), (unsigned long)manifest_file_number_, (unsigned long)next_file_number_, (unsigned long)last_sequence_, (unsigned long)log_number, (unsigned long)prev_log_number_, column_family_set_->GetMaxColumnFamily()); for (auto cfd : *column_family_set_) { Log(options_->info_log, "Column family [%s] (ID %u), log number is %" PRIu64 "\n", cfd->GetName().c_str(), cfd->GetID(), cfd->GetLogNumber()); } } for (auto builder : builders) { delete builder.second; } return s; } Status VersionSet::ListColumnFamilies(std::vector* column_families, const std::string& dbname, Env* env) { // these are just for performance reasons, not correcntes, // so we're fine using the defaults EnvOptions soptions; // Read "CURRENT" file, which contains a pointer to the current manifest file std::string current; Status s = ReadFileToString(env, CurrentFileName(dbname), ¤t); if (!s.ok()) { return s; } if (current.empty() || current[current.size()-1] != '\n') { return Status::Corruption("CURRENT file does not end with newline"); } current.resize(current.size() - 1); std::string dscname = dbname + "/" + current; unique_ptr file; s = env->NewSequentialFile(dscname, &file, soptions); if (!s.ok()) { return s; } std::map column_family_names; // default column family is always implicitly there column_family_names.insert({0, kDefaultColumnFamilyName}); VersionSet::LogReporter reporter; reporter.status = &s; log::Reader reader(std::move(file), &reporter, true /*checksum*/, 0 /*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (!s.ok()) { break; } if (edit.is_column_family_add_) { if (column_family_names.find(edit.column_family_) != column_family_names.end()) { s = Status::Corruption("Manifest adding the same column family twice"); break; } column_family_names.insert( {edit.column_family_, edit.column_family_name_}); } else if (edit.is_column_family_drop_) { if (column_family_names.find(edit.column_family_) == column_family_names.end()) { s = Status::Corruption( "Manifest - dropping non-existing column family"); break; } column_family_names.erase(edit.column_family_); } } column_families->clear(); if (s.ok()) { for (const auto& iter : column_family_names) { column_families->push_back(iter.second); } } return s; } #ifndef ROCKSDB_LITE Status VersionSet::ReduceNumberOfLevels(const std::string& dbname, const Options* options, const EnvOptions& storage_options, int new_levels) { if (new_levels <= 1) { return Status::InvalidArgument( "Number of levels needs to be bigger than 1"); } ColumnFamilyOptions cf_options(*options); std::shared_ptr tc(NewLRUCache( options->max_open_files - 10, options->table_cache_numshardbits, options->table_cache_remove_scan_count_limit)); VersionSet versions(dbname, options, storage_options, tc.get()); Status status; std::vector dummy; ColumnFamilyDescriptor dummy_descriptor(kDefaultColumnFamilyName, ColumnFamilyOptions(*options)); dummy.push_back(dummy_descriptor); status = versions.Recover(dummy); if (!status.ok()) { return status; } Version* current_version = versions.GetColumnFamilySet()->GetDefault()->current(); int current_levels = current_version->NumberLevels(); if (current_levels <= new_levels) { return Status::OK(); } // Make sure there are file only on one level from // (new_levels-1) to (current_levels-1) int first_nonempty_level = -1; int first_nonempty_level_filenum = 0; for (int i = new_levels - 1; i < current_levels; i++) { int file_num = current_version->NumLevelFiles(i); if (file_num != 0) { if (first_nonempty_level < 0) { first_nonempty_level = i; first_nonempty_level_filenum = file_num; } else { char msg[255]; snprintf(msg, sizeof(msg), "Found at least two levels containing files: " "[%d:%d],[%d:%d].\n", first_nonempty_level, first_nonempty_level_filenum, i, file_num); return Status::InvalidArgument(msg); } } } std::vector* old_files_list = current_version->files_; // we need to allocate an array with the old number of levels size to // avoid SIGSEGV in WriteSnapshot() // however, all levels bigger or equal to new_levels will be empty std::vector* new_files_list = new std::vector[current_levels]; for (int i = 0; i < new_levels - 1; i++) { new_files_list[i] = old_files_list[i]; } if (first_nonempty_level > 0) { new_files_list[new_levels - 1] = old_files_list[first_nonempty_level]; } delete[] current_version->files_; current_version->files_ = new_files_list; current_version->num_levels_ = new_levels; VersionEdit ve; port::Mutex dummy_mutex; MutexLock l(&dummy_mutex); return versions.LogAndApply(versions.GetColumnFamilySet()->GetDefault(), &ve, &dummy_mutex, nullptr, true); } Status VersionSet::DumpManifest(Options& options, std::string& dscname, bool verbose, bool hex) { // Open the specified manifest file. unique_ptr file; Status s = options.env->NewSequentialFile(dscname, &file, storage_options_); if (!s.ok()) { return s; } bool have_prev_log_number = false; bool have_next_file = false; bool have_last_sequence = false; uint64_t next_file = 0; uint64_t last_sequence = 0; uint64_t prev_log_number = 0; int count = 0; std::unordered_map comparators; std::unordered_map builders; // add default column family VersionEdit default_cf_edit; default_cf_edit.AddColumnFamily(kDefaultColumnFamilyName); default_cf_edit.SetColumnFamily(0); ColumnFamilyData* default_cfd = CreateColumnFamily(ColumnFamilyOptions(options), &default_cf_edit); builders.insert({0, new Builder(default_cfd)}); { VersionSet::LogReporter reporter; reporter.status = &s; log::Reader reader(std::move(file), &reporter, true/*checksum*/, 0/*initial_offset*/); Slice record; std::string scratch; while (reader.ReadRecord(&record, &scratch) && s.ok()) { VersionEdit edit; s = edit.DecodeFrom(record); if (!s.ok()) { break; } // Write out each individual edit if (verbose) { printf("*************************Edit[%d] = %s\n", count, edit.DebugString(hex).c_str()); } count++; bool cf_in_builders = builders.find(edit.column_family_) != builders.end(); if (edit.has_comparator_) { comparators.insert({edit.column_family_, edit.comparator_}); } ColumnFamilyData* cfd = nullptr; if (edit.is_column_family_add_) { if (cf_in_builders) { s = Status::Corruption( "Manifest adding the same column family twice"); break; } cfd = CreateColumnFamily(ColumnFamilyOptions(options), &edit); builders.insert({edit.column_family_, new Builder(cfd)}); } else if (edit.is_column_family_drop_) { if (!cf_in_builders) { s = Status::Corruption( "Manifest - dropping non-existing column family"); break; } auto builder_iter = builders.find(edit.column_family_); delete builder_iter->second; builders.erase(builder_iter); comparators.erase(edit.column_family_); cfd = column_family_set_->GetColumnFamily(edit.column_family_); assert(cfd != nullptr); cfd->Unref(); delete cfd; cfd = nullptr; } else { if (!cf_in_builders) { s = Status::Corruption( "Manifest record referencing unknown column family"); break; } cfd = column_family_set_->GetColumnFamily(edit.column_family_); // this should never happen since cf_in_builders is true assert(cfd != nullptr); // if it is not column family add or column family drop, // then it's a file add/delete, which should be forwarded // to builder auto builder = builders.find(edit.column_family_); assert(builder != builders.end()); builder->second->Apply(&edit); } if (cfd != nullptr && edit.has_log_number_) { cfd->SetLogNumber(edit.log_number_); } if (edit.has_prev_log_number_) { prev_log_number = edit.prev_log_number_; have_prev_log_number = true; } if (edit.has_next_file_number_) { next_file = edit.next_file_number_; have_next_file = true; } if (edit.has_last_sequence_) { last_sequence = edit.last_sequence_; have_last_sequence = true; } if (edit.has_max_column_family_) { column_family_set_->UpdateMaxColumnFamily(edit.max_column_family_); } } } file.reset(); if (s.ok()) { if (!have_next_file) { s = Status::Corruption("no meta-nextfile entry in descriptor"); printf("no meta-nextfile entry in descriptor"); } else if (!have_last_sequence) { printf("no last-sequence-number entry in descriptor"); s = Status::Corruption("no last-sequence-number entry in descriptor"); } if (!have_prev_log_number) { prev_log_number = 0; } } if (s.ok()) { for (auto cfd : *column_family_set_) { auto builders_iter = builders.find(cfd->GetID()); assert(builders_iter != builders.end()); auto builder = builders_iter->second; Version* v = new Version(cfd, this, current_version_number_++); builder->SaveTo(v); std::vector size_being_compacted(v->NumberLevels() - 1); cfd->compaction_picker()->SizeBeingCompacted(size_being_compacted); v->PrepareApply(size_being_compacted); delete builder; printf("--------------- Column family \"%s\" (ID %u) --------------\n", cfd->GetName().c_str(), (unsigned int)cfd->GetID()); printf("log number: %lu\n", (unsigned long)cfd->GetLogNumber()); auto comparator = comparators.find(cfd->GetID()); if (comparator != comparators.end()) { printf("comparator: %s\n", comparator->second.c_str()); } else { printf("comparator: \n"); } printf("%s \n", v->DebugString(hex).c_str()); delete v; } next_file_number_ = next_file + 1; last_sequence_ = last_sequence; prev_log_number_ = prev_log_number; printf( "next_file_number %lu last_sequence " "%lu prev_log_number %lu max_column_family %u\n", (unsigned long)next_file_number_, (unsigned long)last_sequence, (unsigned long)prev_log_number, column_family_set_->GetMaxColumnFamily()); } return s; } #endif // ROCKSDB_LITE void VersionSet::MarkFileNumberUsed(uint64_t number) { if (next_file_number_ <= number) { next_file_number_ = number + 1; } } Status VersionSet::WriteSnapshot(log::Writer* log) { // TODO: Break up into multiple records to reduce memory usage on recovery? // WARNING: This method doesn't hold a mutex!! // This is done without DB mutex lock held, but only within single-threaded // LogAndApply. Column family manipulations can only happen within LogAndApply // (the same single thread), so we're safe to iterate. for (auto cfd : *column_family_set_) { { // Store column family info VersionEdit edit; if (cfd->GetID() != 0) { // default column family is always there, // no need to explicitly write it edit.AddColumnFamily(cfd->GetName()); edit.SetColumnFamily(cfd->GetID()); } edit.SetComparatorName( cfd->internal_comparator().user_comparator()->Name()); std::string record; edit.EncodeTo(&record); Status s = log->AddRecord(record); if (!s.ok()) { return s; } } { // Save files VersionEdit edit; edit.SetColumnFamily(cfd->GetID()); for (int level = 0; level < cfd->NumberLevels(); level++) { for (const auto& f : cfd->current()->files_[level]) { edit.AddFile(level, f->fd.GetNumber(), f->fd.GetPathId(), f->fd.GetFileSize(), f->smallest, f->largest, f->smallest_seqno, f->largest_seqno); } } edit.SetLogNumber(cfd->GetLogNumber()); std::string record; edit.EncodeTo(&record); Status s = log->AddRecord(record); if (!s.ok()) { return s; } } } return Status::OK(); } // Opens the mainfest file and reads all records // till it finds the record we are looking for. bool VersionSet::ManifestContains(uint64_t manifest_file_number, const std::string& record) const { std::string fname = DescriptorFileName(dbname_, manifest_file_number); Log(options_->info_log, "ManifestContains: checking %s\n", fname.c_str()); unique_ptr file; Status s = env_->NewSequentialFile(fname, &file, storage_options_); if (!s.ok()) { Log(options_->info_log, "ManifestContains: %s\n", s.ToString().c_str()); Log(options_->info_log, "ManifestContains: is unable to reopen the manifest file %s", fname.c_str()); return false; } log::Reader reader(std::move(file), nullptr, true/*checksum*/, 0); Slice r; std::string scratch; bool result = false; while (reader.ReadRecord(&r, &scratch)) { if (r == Slice(record)) { result = true; break; } } Log(options_->info_log, "ManifestContains: result = %d\n", result ? 1 : 0); return result; } uint64_t VersionSet::ApproximateOffsetOf(Version* v, const InternalKey& ikey) { uint64_t result = 0; for (int level = 0; level < v->NumberLevels(); level++) { const std::vector& files = v->files_[level]; for (size_t i = 0; i < files.size(); i++) { if (v->cfd_->internal_comparator().Compare(files[i]->largest, ikey) <= 0) { // Entire file is before "ikey", so just add the file size result += files[i]->fd.GetFileSize(); } else if (v->cfd_->internal_comparator().Compare(files[i]->smallest, ikey) > 0) { // Entire file is after "ikey", so ignore if (level > 0) { // Files other than level 0 are sorted by meta->smallest, so // no further files in this level will contain data for // "ikey". break; } } else { // "ikey" falls in the range for this table. Add the // approximate offset of "ikey" within the table. TableReader* table_reader_ptr; Iterator* iter = v->cfd_->table_cache()->NewIterator( ReadOptions(), storage_options_, v->cfd_->internal_comparator(), files[i]->fd, &table_reader_ptr); if (table_reader_ptr != nullptr) { result += table_reader_ptr->ApproximateOffsetOf(ikey.Encode()); } delete iter; } } } return result; } void VersionSet::AddLiveFiles(std::vector* live_list) { // pre-calculate space requirement int64_t total_files = 0; for (auto cfd : *column_family_set_) { Version* dummy_versions = cfd->dummy_versions(); for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) { for (int level = 0; level < v->NumberLevels(); level++) { total_files += v->files_[level].size(); } } } // just one time extension to the right size live_list->reserve(live_list->size() + total_files); for (auto cfd : *column_family_set_) { Version* dummy_versions = cfd->dummy_versions(); for (Version* v = dummy_versions->next_; v != dummy_versions; v = v->next_) { for (int level = 0; level < v->NumberLevels(); level++) { for (const auto& f : v->files_[level]) { live_list->push_back(f->fd); } } } } } Iterator* VersionSet::MakeInputIterator(Compaction* c) { auto cfd = c->column_family_data(); ReadOptions read_options; read_options.verify_checksums = cfd->options()->verify_checksums_in_compaction; read_options.fill_cache = false; // Level-0 files have to be merged together. For other levels, // we will make a concatenating iterator per level. // TODO(opt): use concatenating iterator for level-0 if there is no overlap const int space = (c->level() == 0 ? c->input_levels(0)->num_files + 1 : 2); Iterator** list = new Iterator*[space]; int num = 0; for (int which = 0; which < 2; which++) { if (c->input_levels(which)->num_files != 0) { if (c->level(which) == 0) { const FileLevel* flevel = c->input_levels(which); for (size_t i = 0; i < flevel->num_files; i++) { list[num++] = cfd->table_cache()->NewIterator( read_options, storage_options_compactions_, cfd->internal_comparator(), flevel->files[i].fd, nullptr, true /* for compaction */); } } else { // Create concatenating iterator for the files from this level list[num++] = NewTwoLevelIterator(new Version::LevelFileIteratorState( cfd->table_cache(), read_options, storage_options_, cfd->internal_comparator(), true /* for_compaction */, false /* prefix enabled */), new Version::LevelFileNumIterator(cfd->internal_comparator(), c->input_levels(which))); } } } assert(num <= space); Iterator* result = NewMergingIterator( &c->column_family_data()->internal_comparator(), list, num); delete[] list; return result; } // verify that the files listed in this compaction are present // in the current version bool VersionSet::VerifyCompactionFileConsistency(Compaction* c) { #ifndef NDEBUG Version* version = c->column_family_data()->current(); if (c->input_version() != version) { Log(options_->info_log, "[%s] VerifyCompactionFileConsistency version mismatch", c->column_family_data()->GetName().c_str()); } // verify files in level int level = c->level(); for (int i = 0; i < c->num_input_files(0); i++) { uint64_t number = c->input(0, i)->fd.GetNumber(); // look for this file in the current version bool found = false; for (unsigned int j = 0; j < version->files_[level].size(); j++) { FileMetaData* f = version->files_[level][j]; if (f->fd.GetNumber() == number) { found = true; break; } } if (!found) { return false; // input files non existant in current version } } // verify level+1 files level++; for (int i = 0; i < c->num_input_files(1); i++) { uint64_t number = c->input(1, i)->fd.GetNumber(); // look for this file in the current version bool found = false; for (unsigned int j = 0; j < version->files_[level].size(); j++) { FileMetaData* f = version->files_[level][j]; if (f->fd.GetNumber() == number) { found = true; break; } } if (!found) { return false; // input files non existant in current version } } #endif return true; // everything good } Status VersionSet::GetMetadataForFile(uint64_t number, int* filelevel, FileMetaData** meta, ColumnFamilyData** cfd) { for (auto cfd_iter : *column_family_set_) { Version* version = cfd_iter->current(); for (int level = 0; level < version->NumberLevels(); level++) { for (const auto& file : version->files_[level]) { if (file->fd.GetNumber() == number) { *meta = file; *filelevel = level; *cfd = cfd_iter; return Status::OK(); } } } } return Status::NotFound("File not present in any level"); } void VersionSet::GetLiveFilesMetaData(std::vector* metadata) { for (auto cfd : *column_family_set_) { for (int level = 0; level < cfd->NumberLevels(); level++) { for (const auto& file : cfd->current()->files_[level]) { LiveFileMetaData filemetadata; filemetadata.column_family_name = cfd->GetName(); uint32_t path_id = file->fd.GetPathId(); if (path_id < options_->db_paths.size()) { filemetadata.db_path = options_->db_paths[path_id].path; } else { assert(!options_->db_paths.empty()); filemetadata.db_path = options_->db_paths.back().path; } filemetadata.name = MakeTableFileName("", file->fd.GetNumber()); filemetadata.level = level; filemetadata.size = file->fd.GetFileSize(); filemetadata.smallestkey = file->smallest.user_key().ToString(); filemetadata.largestkey = file->largest.user_key().ToString(); filemetadata.smallest_seqno = file->smallest_seqno; filemetadata.largest_seqno = file->largest_seqno; metadata->push_back(filemetadata); } } } } void VersionSet::GetObsoleteFiles(std::vector* files) { files->insert(files->end(), obsolete_files_.begin(), obsolete_files_.end()); obsolete_files_.clear(); } ColumnFamilyData* VersionSet::CreateColumnFamily( const ColumnFamilyOptions& options, VersionEdit* edit) { assert(edit->is_column_family_add_); Version* dummy_versions = new Version(nullptr, this); auto new_cfd = column_family_set_->CreateColumnFamily( edit->column_family_name_, edit->column_family_, dummy_versions, options); Version* v = new Version(new_cfd, this, current_version_number_++); AppendVersion(new_cfd, v); new_cfd->CreateNewMemtable(); new_cfd->SetLogNumber(edit->log_number_); return new_cfd; } } // namespace rocksdb