RocksDB Brownbag:
Write Paths

Siying Dong
9/11/2020

What does RocksDB do in write path?

* Write to WAL
 Write to Memtable

Why is write path complex?

* Writing to WAL and memtable are not fully parallelizable
e Batching write (group commit)

* Pipelining

* Two-Phase-Commit (2PC)

* Unordered write

Where is it?
Function DBImpl: :WriteImpl()

Writer 1

\ 4

Finish & Wakeup

Writer 2

engueue

Writer 3

enqueue

Writer 4

\ 4

enqueue

\ 4

Writer 1 Writer 2

enqueue

Writer 3

enqueue

Finish & Wakeup

Deque

Form Write Group
(Write 2, 3, 4)

A 4

Pre-process

A

y

Write t

o WAL

\

Write to Memtables

v

Writer 4

A 4

enqueue

Writer 1

' |

Writer 2

engueue

Finish & Wakeup Deque

Writer 3

enqueue

Form Wri
(Write

te Group
2, 3,4)

A

y

Pre-process

A

y

Write to WAL

\ 4

Write to Memtables

v

\ 4

enqueue

Writer 4

\ Writer 5

enqueue

Writer 6

enqueue

Writer 1 Writer 2

engueue

' |

Finish & Wakeup Deque

Writer 3

enqueue

Form Write Group
(Write 2, 3, 4)

\ 4

Pre-process

\ 4

Write to WAL

\ 4

Write to Memtables

\ 4

Finish & Wakeup

\ 4

enqueue

Writer 4

\ Writer 5

enqueue

Writer 6

enqueue

¥
d Deque

>

Execute

Writer 1 ‘ Writer 2

Writer 3

engueue

\ 4

Finish & Wakeup

Form Write Growsg
(Write 2, 3, 4)

\ 4

Pre-process

\ 4

Write to WAL

\ 4

Write to Memtables

\ 4

Finish & Wakeup

A

y

enqueue

Writer 4

\ 4

writer s

enqueue

y
d Deque

1 Execute

The write queue: class WriteThread

newest_writer

Writer

Writer

Writer

Enqueue: WriteThread: :JoinBatchGroup()
/w_change()

newest_writer

Writer

Writer

Writer

Enqueue: WriteThread: :JoinBatchGroup()
/%_exchange()

newest_writer

Writer

Writer

Writer

Enqueue: WriteThread: :JoinBatchGroup()

newest_writer_ Writer @

state

Spinning and Wait

WriteThread: :AwaitState() wiriter @
Writer @

Value when woken up:
STATE_GROUP_LEADER
STATE_MEMTABLE WRITER LEADER
STATE_PARALLEL MEMTABLE WRITER
STATE_COMPLETED

Writer @

WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer

Writer

Writer <+— oldest

WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer

Writer

Writer

WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer

Writer

Writer

WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer

Writer

Writer

WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer Terminal Conditions:
1. Max group size
2. Merge Operands

—— Form Group
Writer

Writer

Writer 1 Writer 2

engueue

' |

Finish & Wakeup Deque

Writer 3

enqueue

Form Write Group
(Write 2, 3, 4)

.

7|

< Pre-process D
-

Write to WAL

\ 4

Write to Memtables

\ 4

Finish & Wakeup

\ 4

enqueue

Writer 4

\ Writer 5

enqueue

L 4

v

Writer 6

Deque

Execute

enqueue

Pre-process: DBImpl: :PreprocessWrite()

* Switch memtable when needed: DBImp1l: :SwitchMemtable()
 total log size
 write buffer_manager ->ShouldFlush()
 Memtable full: !'flush scheduler .Empty()

* Trim memtable history: trim _history scheduler .Empty()
* Throttling: checking write controller

DBImpl: :SwitchMemtable()

e Create new WAL file

* Create a new memtable
* Flush old WAL file buffer (to OS page cache)

Writer 1

\ 4

Finish & Wakeup

Writer 2

engueue

Deque

Writer 3

enqueue

Form Write Group
(Write 2, 3, 4)

\ 4

Pre-process

(

Write to WAL

=

D

Write to Memtables

\ 4

Finish & Wakeup

\ 4

enqueue

Writer 4

\ Writer 5

enqueue

L 4

v

Writer 6

Deque

Execute

enqueue

Write to WAL

* Normal case: DBImpl: :WriteToWAL()

* Unordered write: DBImpl: :WriteImpIWALONnly ()
(write thread queuing is done there)

 two write queues : ConcurrentWriteToWAL()
(synchronize through log write mutex)

\ 4

Writer 1 Writer 2

engueue

Finish & Wakeup Deque

Writer 3 Writer 4

enqueue

\ 4

enqueue

Form Write Group
(Write 2, 3, 4)

\ 4

Pre-process

\ 4

Write to WAL

<Write to Memtables

- -

-

\

Finish & Wakeup

Deque Deque

\ Writer 5

enqueue

>

L 4

d Deque

Execute

Writer 6

enqueue

Memtable Writes: Three Modes

* Mode 1: group leader writes for all in the group
e Mode 2: concurrent memtable write
* Mode 3: unordered write: writes and return

Mode 1: Group leader writes for all

Write WAL Insert to Insert to Insert to Make

Writer 1 . Memtable ; Memtable ; Memtable Writes
For writer 1,2,3

Wai for writer 1 | for writer 2 | for writer 3 Visible

wait

Writer 2

Writer 3

Mode 2: Concurrent memtable writes

Write WAL Insert to

Ll 'Y For writer 1,2,3 Memtable
Wal \ Make
| A Insert to Writes
Writer 2 Memtable W visible
wait
Wake-up Insert to

Writer 3

Memtable

Mode 2: Concurrent memtable writes

Concurrent memTable
+

Concurrent Arena

Write WAL Insert to

Writer 1 For writer 1,2,3 Memtable ﬂ
Wal WELE
| Insert to Writes
Writer 2 Memtable Visible
wait
Wake-up Insert to

Writer 3

Memtable

Mode 3: Unordered Write

Make

Write WAL 1 [l

Memtable

Writer 1

Visible

Make Insert to
Writer 2 Write WAL 1,2 Memtable
Visible
Make Insert to
Writer 3 Write WALgm 1,2,3 Memtable

Visible

Pipelined Write (With Mode 1)

Write WAL Insert to
Writer 1 A Memtable

For writer 1,2,3 for writer 1, 2, 3

Writer 2 ey ait
Wake-u

; Wake-up

Writer 3 W A1

Insert to

Writer 4 erte. WAL wait Memtable
For writer 4, 5 for writer 4, 5

Wake-up

\

Writer 5
Wake-up

Wake-up

Writer 6 Write WAL \VElL

WriteBatchInternal::InsertInto()

* Go through every entry in the write batch:
* CallMemTable: :Add ()

* MemTableInserter: :CheckMemtableFull()
* Check memtable full
* Check memtable history trimming condition

Two-Phase-Commit

Write Committed

Write Prepared

Write UnPrepared

Before Prepare

1. Prepare Entry to WAL
2. Write to memtable
3. Add uncommitted segNum to

tracking data structure
WriteImpl(
disable memtable = false,
add_prepared_callback)

Prepare Prepare Entry to WAL

1. Prepare Entry to WAL
2. Write to memtable
3. Add uncommitted segNum to
tracking data structure
WriteImpl(
disable memtable = false,
add_prepared_callback)

Write to memtable
Commit Entry to WAL

Commit

Commit Entry to WAL:
WriteImpl(

disable memtable = true,
update_commit_map_with_aux_batch

)

Commit Entry to WAL:
WriteImpl(

disable memtable = true,
update commit map with aux ba
tch)

What’s write_callback used for?

Optimistic Transaction’s legacy conflict resolving
mechanism.

OptimisticTransaction: :CommitWithSerialValidate()
How should we deal with it?

Recap: Write Path

Writer 1

; erter 2 Writer 3
enqueue

Finish & Wakeup Deque

Form Wri
(Write

te Group
2,3,4)

A

y

Pre-process

A

y

Write to WAL

A

y

Write to Memtables

\

y

Finish &

Wakeup

Writer 4

\Wmers

enqueue

Writer 6

enqueue

\ 4

Deque

o

Execute

V} v

