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What does RocksDB do in write path?

* Write to WAL
 Write to Memtable



Why is write path complex?

* Writing to WAL and memtable are not fully parallelizable
e Batching write (group commit)

* Pipelining

* Two-Phase-Commit (2PC)

* Unordered write



Where is it?
Function DBImpl: :WriteImpl()
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The write queue: class WriteThread
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Enqueue: WriteThread: :JoinBatchGroup()
/w_change()
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Enqueue: WriteThread: :JoinBatchGroup()
/%_exchange()
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Enqueue: WriteThread: :JoinBatchGroup()

newest_writer_ Writer @

state

Spinning and Wait

WriteThread: :AwaitState() wiriter @
Writer @

Value when woken up:
STATE_GROUP_LEADER
STATE_MEMTABLE WRITER LEADER
STATE_PARALLEL MEMTABLE WRITER
STATE_COMPLETED

Writer @



WriteThread: :EnterAsBatchGrouplLeader()
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WriteThread: :EnterAsBatchGrouplLeader()
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WriteThread: :EnterAsBatchGrouplLeader()
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WriteThread: :EnterAsBatchGrouplLeader()

newest_writer

Writer Terminal Conditions:
1. Max group size
2. Merge Operands

—— Form Group
Writer

Writer
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Pre-process: DBImpl: :PreprocessWrite()

* Switch memtable when needed: DBImp1l: :SwitchMemtable()
 total log size
 write buffer_manager ->ShouldFlush()
 Memtable full: !'flush scheduler .Empty()

* Trim memtable history: trim _history scheduler .Empty()
* Throttling: checking write controller



DBImpl: :SwitchMemtable()

e Create new WAL file

* Create a new memtable
* Flush old WAL file buffer (to OS page cache)
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Write to WAL

* Normal case: DBImpl: :WriteToWAL()

* Unordered write: DBImpl: :WriteImpIWALONnly ()
(write thread queuing is done there)

 two write queues : ConcurrentWriteToWAL()
(synchronize through log write mutex )
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Memtable Writes: Three Modes

* Mode 1: group leader writes for all in the group
e Mode 2: concurrent memtable write
* Mode 3: unordered write: writes and return



Mode 1: Group leader writes for all
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Mode 2: Concurrent memtable writes

Write WAL Insert to

Ll 'Y For writer 1,2,3 Memtable
Wal \ Make
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Mode 2: Concurrent memtable writes

Concurrent memTable
+

Concurrent Arena

Write WAL Insert to

Writer 1 For writer 1,2,3 Memtable ﬂ
Wal WELE
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Mode 3: Unordered Write
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Pipelined Write (With Mode 1)
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WriteBatchInternal::InsertInto()

* Go through every entry in the write batch:
* CallMemTable: :Add ()

* MemTableInserter: :CheckMemtableFull()
* Check memtable full
* Check memtable history trimming condition



Two-Phase-Commit

Write Committed

Write Prepared

Write UnPrepared

Before Prepare

1. Prepare Entry to WAL
2. Write to memtable
3. Add uncommitted segNum to

tracking data structure
WriteImpl(
disable memtable = false,
add_prepared_callback)

Prepare Prepare Entry to WAL

1. Prepare Entry to WAL
2. Write to memtable
3. Add uncommitted segNum to
tracking data structure
WriteImpl(
disable memtable = false,
add_prepared_callback)

Write to memtable
Commit Entry to WAL

Commit

Commit Entry to WAL:
WriteImpl(

disable memtable = true,
update_commit_map_with_aux_batch

)

Commit Entry to WAL:
WriteImpl(

disable memtable = true,
update commit map with aux ba
tch)




What’s write_callback used for?

Optimistic Transaction’s legacy conflict resolving
mechanism.

OptimisticTransaction: :CommitWithSerialValidate()
How should we deal with it?



Recap: Write Path
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