// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The representation of a DBImpl consists of a set of Versions. The // newest version is called "current". Older versions may be kept // around to provide a consistent view to live iterators. // // Each Version keeps track of a set of Table files per level. The // entire set of versions is maintained in a VersionSet. // // Version,VersionSet are thread-compatible, but require external // synchronization on all accesses. #pragma once #include #include #include #include #include #include #include #include #include #include "db/column_family.h" #include "db/compaction.h" #include "db/compaction_picker.h" #include "db/dbformat.h" #include "db/file_indexer.h" #include "db/log_reader.h" #include "db/range_del_aggregator.h" #include "db/read_callback.h" #include "db/table_cache.h" #include "db/version_builder.h" #include "db/version_edit.h" #include "db/write_controller.h" #include "monitoring/instrumented_mutex.h" #include "options/db_options.h" #include "port/port.h" #include "rocksdb/env.h" namespace rocksdb { namespace log { class Writer; } class Compaction; class InternalIterator; class LogBuffer; class LookupKey; class MemTable; class Version; class VersionSet; class WriteBufferManager; class MergeContext; class ColumnFamilySet; class TableCache; class MergeIteratorBuilder; // Return the smallest index i such that file_level.files[i]->largest >= key. // Return file_level.num_files if there is no such file. // REQUIRES: "file_level.files" contains a sorted list of // non-overlapping files. extern int FindFile(const InternalKeyComparator& icmp, const LevelFilesBrief& file_level, const Slice& key); // Returns true iff some file in "files" overlaps the user key range // [*smallest,*largest]. // smallest==nullptr represents a key smaller than all keys in the DB. // largest==nullptr represents a key largest than all keys in the DB. // REQUIRES: If disjoint_sorted_files, file_level.files[] // contains disjoint ranges in sorted order. extern bool SomeFileOverlapsRange(const InternalKeyComparator& icmp, bool disjoint_sorted_files, const LevelFilesBrief& file_level, const Slice* smallest_user_key, const Slice* largest_user_key); // Generate LevelFilesBrief from vector // Would copy smallest_key and largest_key data to sequential memory // arena: Arena used to allocate the memory extern void DoGenerateLevelFilesBrief(LevelFilesBrief* file_level, const std::vector& files, Arena* arena); class VersionStorageInfo { public: VersionStorageInfo(const InternalKeyComparator* internal_comparator, const Comparator* user_comparator, int num_levels, CompactionStyle compaction_style, VersionStorageInfo* src_vstorage, bool _force_consistency_checks); ~VersionStorageInfo(); void Reserve(int level, size_t size) { files_[level].reserve(size); } void AddFile(int level, FileMetaData* f, Logger* info_log = nullptr); void SetFinalized(); // Update num_non_empty_levels_. void UpdateNumNonEmptyLevels(); void GenerateFileIndexer() { file_indexer_.UpdateIndex(&arena_, num_non_empty_levels_, files_); } // Update the accumulated stats from a file-meta. void UpdateAccumulatedStats(FileMetaData* file_meta); // Decrease the current stat from a to-be-deleted file-meta void RemoveCurrentStats(FileMetaData* file_meta); void ComputeCompensatedSizes(); // Updates internal structures that keep track of compaction scores // We use compaction scores to figure out which compaction to do next // REQUIRES: db_mutex held!! // TODO find a better way to pass compaction_options_fifo. void ComputeCompactionScore(const ImmutableCFOptions& immutable_cf_options, const MutableCFOptions& mutable_cf_options); // Estimate est_comp_needed_bytes_ void EstimateCompactionBytesNeeded( const MutableCFOptions& mutable_cf_options); // This computes files_marked_for_compaction_ and is called by // ComputeCompactionScore() void ComputeFilesMarkedForCompaction(); // This computes ttl_expired_files_ and is called by // ComputeCompactionScore() void ComputeExpiredTtlFiles(const ImmutableCFOptions& ioptions); // This computes bottommost_files_marked_for_compaction_ and is called by // ComputeCompactionScore() or UpdateOldestSnapshot(). // // Among bottommost files (assumes they've already been computed), marks the // ones that have keys that would be eliminated if recompacted, according to // the seqnum of the oldest existing snapshot. Must be called every time // oldest snapshot changes as that is when bottom-level files can become // eligible for compaction. // // REQUIRES: DB mutex held void ComputeBottommostFilesMarkedForCompaction(); // Generate level_files_brief_ from files_ void GenerateLevelFilesBrief(); // Sort all files for this version based on their file size and // record results in files_by_compaction_pri_. The largest files are listed // first. void UpdateFilesByCompactionPri(CompactionPri compaction_pri); void GenerateLevel0NonOverlapping(); bool level0_non_overlapping() const { return level0_non_overlapping_; } // Check whether each file in this version is bottommost (i.e., nothing in its // key-range could possibly exist in an older file/level). // REQUIRES: This version has not been saved void GenerateBottommostFiles(); // Updates the oldest snapshot and related internal state, like the bottommost // files marked for compaction. // REQUIRES: DB mutex held void UpdateOldestSnapshot(SequenceNumber oldest_snapshot_seqnum); int MaxInputLevel() const; int MaxOutputLevel(bool allow_ingest_behind) const; // Return level number that has idx'th highest score int CompactionScoreLevel(int idx) const { return compaction_level_[idx]; } // Return idx'th highest score double CompactionScore(int idx) const { return compaction_score_[idx]; } void GetOverlappingInputs( int level, const InternalKey* begin, // nullptr means before all keys const InternalKey* end, // nullptr means after all keys std::vector* inputs, int hint_index = -1, // index of overlap file int* file_index = nullptr, // return index of overlap file bool expand_range = true) // if set, returns files which overlap the const; // range and overlap each other. If false, // then just files intersecting the range void GetCleanInputsWithinInterval( int level, const InternalKey* begin, // nullptr means before all keys const InternalKey* end, // nullptr means after all keys std::vector* inputs, int hint_index = -1, // index of overlap file int* file_index = nullptr) // return index of overlap file const; void GetOverlappingInputsRangeBinarySearch( int level, // level > 0 const Slice& begin, // nullptr means before all keys const Slice& end, // nullptr means after all keys std::vector* inputs, int hint_index, // index of overlap file int* file_index, // return index of overlap file bool within_interval = false) // if set, force the inputs within interval const; void ExtendFileRangeOverlappingInterval( int level, const Slice& begin, // nullptr means before all keys const Slice& end, // nullptr means after all keys unsigned int index, // start extending from this index int* startIndex, // return the startIndex of input range int* endIndex) // return the endIndex of input range const; void ExtendFileRangeWithinInterval( int level, const Slice& begin, // nullptr means before all keys const Slice& end, // nullptr means after all keys unsigned int index, // start extending from this index int* startIndex, // return the startIndex of input range int* endIndex) // return the endIndex of input range const; // Returns true iff some file in the specified level overlaps // some part of [*smallest_user_key,*largest_user_key]. // smallest_user_key==NULL represents a key smaller than all keys in the DB. // largest_user_key==NULL represents a key largest than all keys in the DB. bool OverlapInLevel(int level, const Slice* smallest_user_key, const Slice* largest_user_key); // Returns true iff the first or last file in inputs contains // an overlapping user key to the file "just outside" of it (i.e. // just after the last file, or just before the first file) // REQUIRES: "*inputs" is a sorted list of non-overlapping files bool HasOverlappingUserKey(const std::vector* inputs, int level); int num_levels() const { return num_levels_; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) int num_non_empty_levels() const { assert(finalized_); return num_non_empty_levels_; } // REQUIRES: This version has been finalized. // (CalculateBaseBytes() is called) // This may or may not return number of level files. It is to keep backward // compatible behavior in universal compaction. int l0_delay_trigger_count() const { return l0_delay_trigger_count_; } void set_l0_delay_trigger_count(int v) { l0_delay_trigger_count_ = v; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) int NumLevelFiles(int level) const { assert(finalized_); return static_cast(files_[level].size()); } // Return the combined file size of all files at the specified level. uint64_t NumLevelBytes(int level) const; // REQUIRES: This version has been saved (see VersionSet::SaveTo) const std::vector& LevelFiles(int level) const { return files_[level]; } const rocksdb::LevelFilesBrief& LevelFilesBrief(int level) const { assert(level < static_cast(level_files_brief_.size())); return level_files_brief_[level]; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) const std::vector& FilesByCompactionPri(int level) const { assert(finalized_); return files_by_compaction_pri_[level]; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) // REQUIRES: DB mutex held during access const autovector>& FilesMarkedForCompaction() const { assert(finalized_); return files_marked_for_compaction_; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) // REQUIRES: DB mutex held during access const autovector>& ExpiredTtlFiles() const { assert(finalized_); return expired_ttl_files_; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) // REQUIRES: DB mutex held during access const autovector>& BottommostFilesMarkedForCompaction() const { assert(finalized_); return bottommost_files_marked_for_compaction_; } int base_level() const { return base_level_; } // REQUIRES: lock is held // Set the index that is used to offset into files_by_compaction_pri_ to find // the next compaction candidate file. void SetNextCompactionIndex(int level, int index) { next_file_to_compact_by_size_[level] = index; } // REQUIRES: lock is held int NextCompactionIndex(int level) const { return next_file_to_compact_by_size_[level]; } // REQUIRES: This version has been saved (see VersionSet::SaveTo) const FileIndexer& file_indexer() const { assert(finalized_); return file_indexer_; } // Only the first few entries of files_by_compaction_pri_ are sorted. // There is no need to sort all the files because it is likely // that on a running system, we need to look at only the first // few largest files because a new version is created every few // seconds/minutes (because of concurrent compactions). static const size_t kNumberFilesToSort = 50; // Return a human-readable short (single-line) summary of the number // of files per level. Uses *scratch as backing store. struct LevelSummaryStorage { char buffer[1000]; }; struct FileSummaryStorage { char buffer[3000]; }; const char* LevelSummary(LevelSummaryStorage* scratch) const; // Return a human-readable short (single-line) summary of files // in a specified level. Uses *scratch as backing store. const char* LevelFileSummary(FileSummaryStorage* scratch, int level) const; // Return the maximum overlapping data (in bytes) at next level for any // file at a level >= 1. int64_t MaxNextLevelOverlappingBytes(); // Return a human readable string that describes this version's contents. std::string DebugString(bool hex = false) const; uint64_t GetAverageValueSize() const { if (accumulated_num_non_deletions_ == 0) { return 0; } assert(accumulated_raw_key_size_ + accumulated_raw_value_size_ > 0); assert(accumulated_file_size_ > 0); return accumulated_raw_value_size_ / accumulated_num_non_deletions_ * accumulated_file_size_ / (accumulated_raw_key_size_ + accumulated_raw_value_size_); } uint64_t GetEstimatedActiveKeys() const; double GetEstimatedCompressionRatioAtLevel(int level) const; // re-initializes the index that is used to offset into // files_by_compaction_pri_ // to find the next compaction candidate file. void ResetNextCompactionIndex(int level) { next_file_to_compact_by_size_[level] = 0; } const InternalKeyComparator* InternalComparator() { return internal_comparator_; } // Returns maximum total bytes of data on a given level. uint64_t MaxBytesForLevel(int level) const; // Must be called after any change to MutableCFOptions. void CalculateBaseBytes(const ImmutableCFOptions& ioptions, const MutableCFOptions& options); // Returns an estimate of the amount of live data in bytes. uint64_t EstimateLiveDataSize() const; uint64_t estimated_compaction_needed_bytes() const { return estimated_compaction_needed_bytes_; } void TEST_set_estimated_compaction_needed_bytes(uint64_t v) { estimated_compaction_needed_bytes_ = v; } bool force_consistency_checks() const { return force_consistency_checks_; } // Returns whether any key in [`smallest_key`, `largest_key`] could appear in // an older L0 file than `last_l0_idx` or in a greater level than `last_level` // // @param last_level Level after which we check for overlap // @param last_l0_idx If `last_level == 0`, index of L0 file after which we // check for overlap; otherwise, must be -1 bool RangeMightExistAfterSortedRun(const Slice& smallest_key, const Slice& largest_key, int last_level, int last_l0_idx); private: const InternalKeyComparator* internal_comparator_; const Comparator* user_comparator_; int num_levels_; // Number of levels int num_non_empty_levels_; // Number of levels. Any level larger than it // is guaranteed to be empty. // Per-level max bytes std::vector level_max_bytes_; // A short brief metadata of files per level autovector level_files_brief_; FileIndexer file_indexer_; Arena arena_; // Used to allocate space for file_levels_ CompactionStyle compaction_style_; // List of files per level, files in each level are arranged // in increasing order of keys std::vector* files_; // Level that L0 data should be compacted to. All levels < base_level_ should // be empty. -1 if it is not level-compaction so it's not applicable. int base_level_; // A list for the same set of files that are stored in files_, // but files in each level are now sorted based on file // size. The file with the largest size is at the front. // This vector stores the index of the file from files_. std::vector> files_by_compaction_pri_; // If true, means that files in L0 have keys with non overlapping ranges bool level0_non_overlapping_; // An index into files_by_compaction_pri_ that specifies the first // file that is not yet compacted std::vector next_file_to_compact_by_size_; // Only the first few entries of files_by_compaction_pri_ are sorted. // There is no need to sort all the files because it is likely // that on a running system, we need to look at only the first // few largest files because a new version is created every few // seconds/minutes (because of concurrent compactions). static const size_t number_of_files_to_sort_ = 50; // This vector contains list of files marked for compaction and also not // currently being compacted. It is protected by DB mutex. It is calculated in // ComputeCompactionScore() autovector> files_marked_for_compaction_; autovector> expired_ttl_files_; // These files are considered bottommost because none of their keys can exist // at lower levels. They are not necessarily all in the same level. The marked // ones are eligible for compaction because they contain duplicate key // versions that are no longer protected by snapshot. These variables are // protected by DB mutex and are calculated in `GenerateBottommostFiles()` and // `ComputeBottommostFilesMarkedForCompaction()`. autovector> bottommost_files_; autovector> bottommost_files_marked_for_compaction_; // Threshold for needing to mark another bottommost file. Maintain it so we // can quickly check when releasing a snapshot whether more bottommost files // became eligible for compaction. It's defined as the min of the max nonzero // seqnums of unmarked bottommost files. SequenceNumber bottommost_files_mark_threshold_ = kMaxSequenceNumber; // Monotonically increases as we release old snapshots. Zero indicates no // snapshots have been released yet. When no snapshots remain we set it to the // current seqnum, which needs to be protected as a snapshot can still be // created that references it. SequenceNumber oldest_snapshot_seqnum_ = 0; // Level that should be compacted next and its compaction score. // Score < 1 means compaction is not strictly needed. These fields // are initialized by Finalize(). // The most critical level to be compacted is listed first // These are used to pick the best compaction level std::vector compaction_score_; std::vector compaction_level_; int l0_delay_trigger_count_ = 0; // Count used to trigger slow down and stop // for number of L0 files. // the following are the sampled temporary stats. // the current accumulated size of sampled files. uint64_t accumulated_file_size_; // the current accumulated size of all raw keys based on the sampled files. uint64_t accumulated_raw_key_size_; // the current accumulated size of all raw keys based on the sampled files. uint64_t accumulated_raw_value_size_; // total number of non-deletion entries uint64_t accumulated_num_non_deletions_; // total number of deletion entries uint64_t accumulated_num_deletions_; // current number of non_deletion entries uint64_t current_num_non_deletions_; // current number of deletion entries uint64_t current_num_deletions_; // current number of file samples uint64_t current_num_samples_; // Estimated bytes needed to be compacted until all levels' size is down to // target sizes. uint64_t estimated_compaction_needed_bytes_; bool finalized_; // If set to true, we will run consistency checks even if RocksDB // is compiled in release mode bool force_consistency_checks_; friend class Version; friend class VersionSet; // No copying allowed VersionStorageInfo(const VersionStorageInfo&) = delete; void operator=(const VersionStorageInfo&) = delete; }; class Version { public: // Append to *iters a sequence of iterators that will // yield the contents of this Version when merged together. // REQUIRES: This version has been saved (see VersionSet::SaveTo) void AddIterators(const ReadOptions&, const EnvOptions& soptions, MergeIteratorBuilder* merger_iter_builder, RangeDelAggregator* range_del_agg); void AddIteratorsForLevel(const ReadOptions&, const EnvOptions& soptions, MergeIteratorBuilder* merger_iter_builder, int level, RangeDelAggregator* range_del_agg); Status OverlapWithLevelIterator(const ReadOptions&, const EnvOptions&, const Slice& smallest_user_key, const Slice& largest_user_key, int level, bool* overlap); // Lookup the value for key. If found, store it in *val and // return OK. Else return a non-OK status. // Uses *operands to store merge_operator operations to apply later. // // If the ReadOptions.read_tier is set to do a read-only fetch, then // *value_found will be set to false if it cannot be determined whether // this value exists without doing IO. // // If the key is Deleted, *status will be set to NotFound and // *key_exists will be set to true. // If no key was found, *status will be set to NotFound and // *key_exists will be set to false. // If seq is non-null, *seq will be set to the sequence number found // for the key if a key was found. // // REQUIRES: lock is not held void Get(const ReadOptions&, const LookupKey& key, PinnableSlice* value, Status* status, MergeContext* merge_context, RangeDelAggregator* range_del_agg, bool* value_found = nullptr, bool* key_exists = nullptr, SequenceNumber* seq = nullptr, ReadCallback* callback = nullptr, bool* is_blob = nullptr); // Loads some stats information from files. Call without mutex held. It needs // to be called before applying the version to the version set. void PrepareApply(const MutableCFOptions& mutable_cf_options, bool update_stats); // Reference count management (so Versions do not disappear out from // under live iterators) void Ref(); // Decrease reference count. Delete the object if no reference left // and return true. Otherwise, return false. bool Unref(); // Add all files listed in the current version to *live. void AddLiveFiles(std::vector* live); // Return a human readable string that describes this version's contents. std::string DebugString(bool hex = false, bool print_stats = false) const; // Returns the version number of this version uint64_t GetVersionNumber() const { return version_number_; } // REQUIRES: lock is held // On success, "tp" will contains the table properties of the file // specified in "file_meta". If the file name of "file_meta" is // known ahead, passing it by a non-null "fname" can save a // file-name conversion. Status GetTableProperties(std::shared_ptr* tp, const FileMetaData* file_meta, const std::string* fname = nullptr) const; // REQUIRES: lock is held // On success, *props will be populated with all SSTables' table properties. // The keys of `props` are the sst file name, the values of `props` are the // tables' properties, represented as shared_ptr. Status GetPropertiesOfAllTables(TablePropertiesCollection* props); Status GetPropertiesOfAllTables(TablePropertiesCollection* props, int level); Status GetPropertiesOfTablesInRange(const Range* range, std::size_t n, TablePropertiesCollection* props) const; // REQUIRES: lock is held // On success, "tp" will contains the aggregated table property among // the table properties of all sst files in this version. Status GetAggregatedTableProperties( std::shared_ptr* tp, int level = -1); uint64_t GetEstimatedActiveKeys() { return storage_info_.GetEstimatedActiveKeys(); } size_t GetMemoryUsageByTableReaders(); ColumnFamilyData* cfd() const { return cfd_; } // Return the next Version in the linked list. Used for debug only Version* TEST_Next() const { return next_; } int TEST_refs() const { return refs_; } VersionStorageInfo* storage_info() { return &storage_info_; } VersionSet* version_set() { return vset_; } void GetColumnFamilyMetaData(ColumnFamilyMetaData* cf_meta); uint64_t GetSstFilesSize(); private: Env* env_; friend class VersionSet; const InternalKeyComparator* internal_comparator() const { return storage_info_.internal_comparator_; } const Comparator* user_comparator() const { return storage_info_.user_comparator_; } bool PrefixMayMatch(const ReadOptions& read_options, InternalIterator* level_iter, const Slice& internal_prefix) const; // Returns true if the filter blocks in the specified level will not be // checked during read operations. In certain cases (trivial move or preload), // the filter block may already be cached, but we still do not access it such // that it eventually expires from the cache. bool IsFilterSkipped(int level, bool is_file_last_in_level = false); // The helper function of UpdateAccumulatedStats, which may fill the missing // fields of file_meta from its associated TableProperties. // Returns true if it does initialize FileMetaData. bool MaybeInitializeFileMetaData(FileMetaData* file_meta); // Update the accumulated stats associated with the current version. // This accumulated stats will be used in compaction. void UpdateAccumulatedStats(bool update_stats); // Sort all files for this version based on their file size and // record results in files_by_compaction_pri_. The largest files are listed // first. void UpdateFilesByCompactionPri(); ColumnFamilyData* cfd_; // ColumnFamilyData to which this Version belongs Logger* info_log_; Statistics* db_statistics_; TableCache* table_cache_; const MergeOperator* merge_operator_; VersionStorageInfo storage_info_; VersionSet* vset_; // VersionSet to which this Version belongs Version* next_; // Next version in linked list Version* prev_; // Previous version in linked list int refs_; // Number of live refs to this version const EnvOptions env_options_; // A version number that uniquely represents this version. This is // used for debugging and logging purposes only. uint64_t version_number_; Version(ColumnFamilyData* cfd, VersionSet* vset, const EnvOptions& env_opt, uint64_t version_number = 0); ~Version(); // No copying allowed Version(const Version&); void operator=(const Version&); }; class VersionSet { public: VersionSet(const std::string& dbname, const ImmutableDBOptions* db_options, const EnvOptions& env_options, Cache* table_cache, WriteBufferManager* write_buffer_manager, WriteController* write_controller); ~VersionSet(); // Apply *edit to the current version to form a new descriptor that // is both saved to persistent state and installed as the new // current version. Will release *mu while actually writing to the file. // column_family_options has to be set if edit is column family add // REQUIRES: *mu is held on entry. // REQUIRES: no other thread concurrently calls LogAndApply() Status LogAndApply( ColumnFamilyData* column_family_data, const MutableCFOptions& mutable_cf_options, VersionEdit* edit, InstrumentedMutex* mu, Directory* db_directory = nullptr, bool new_descriptor_log = false, const ColumnFamilyOptions* column_family_options = nullptr) { autovector edit_list; edit_list.push_back(edit); return LogAndApply(column_family_data, mutable_cf_options, edit_list, mu, db_directory, new_descriptor_log, column_family_options); } // The batch version. If edit_list.size() > 1, caller must ensure that // no edit in the list column family add or drop Status LogAndApply( ColumnFamilyData* column_family_data, const MutableCFOptions& mutable_cf_options, const autovector& edit_list, InstrumentedMutex* mu, Directory* db_directory = nullptr, bool new_descriptor_log = false, const ColumnFamilyOptions* column_family_options = nullptr); // Recover the last saved descriptor from persistent storage. // If read_only == true, Recover() will not complain if some column families // are not opened Status Recover(const std::vector& column_families, bool read_only = false); // Reads a manifest file and returns a list of column families in // column_families. static Status ListColumnFamilies(std::vector* column_families, const std::string& dbname, Env* env); #ifndef ROCKSDB_LITE // Try to reduce the number of levels. This call is valid when // only one level from the new max level to the old // max level containing files. // The call is static, since number of levels is immutable during // the lifetime of a RocksDB instance. It reduces number of levels // in a DB by applying changes to manifest. // For example, a db currently has 7 levels [0-6], and a call to // to reduce to 5 [0-4] can only be executed when only one level // among [4-6] contains files. static Status ReduceNumberOfLevels(const std::string& dbname, const Options* options, const EnvOptions& env_options, int new_levels); // printf contents (for debugging) Status DumpManifest(Options& options, std::string& manifestFileName, bool verbose, bool hex = false, bool json = false); #endif // ROCKSDB_LITE // Return the current manifest file number uint64_t manifest_file_number() const { return manifest_file_number_; } uint64_t options_file_number() const { return options_file_number_; } uint64_t pending_manifest_file_number() const { return pending_manifest_file_number_; } uint64_t current_next_file_number() const { return next_file_number_.load(); } uint64_t min_log_number_to_keep_2pc() const { return min_log_number_to_keep_2pc_.load(); } // Allocate and return a new file number uint64_t NewFileNumber() { return next_file_number_.fetch_add(1); } // Return the last sequence number. uint64_t LastSequence() const { return last_sequence_.load(std::memory_order_acquire); } // Note: memory_order_acquire must be sufficient. uint64_t LastAllocatedSequence() const { return last_allocated_sequence_.load(std::memory_order_seq_cst); } // Note: memory_order_acquire must be sufficient. uint64_t LastPublishedSequence() const { return last_published_sequence_.load(std::memory_order_seq_cst); } // Set the last sequence number to s. void SetLastSequence(uint64_t s) { assert(s >= last_sequence_); // Last visible sequence must always be less than last written seq assert(!db_options_->two_write_queues || s <= last_allocated_sequence_); last_sequence_.store(s, std::memory_order_release); } // Note: memory_order_release must be sufficient void SetLastPublishedSequence(uint64_t s) { assert(s >= last_published_sequence_); last_published_sequence_.store(s, std::memory_order_seq_cst); } // Note: memory_order_release must be sufficient void SetLastAllocatedSequence(uint64_t s) { assert(s >= last_allocated_sequence_); last_allocated_sequence_.store(s, std::memory_order_seq_cst); } // Note: memory_order_release must be sufficient uint64_t FetchAddLastAllocatedSequence(uint64_t s) { return last_allocated_sequence_.fetch_add(s, std::memory_order_seq_cst); } // Mark the specified file number as used. // REQUIRED: this is only called during single-threaded recovery or repair. void MarkFileNumberUsed(uint64_t number); // Mark the specified log number as deleted // REQUIRED: this is only called during single-threaded recovery or repair, or // from ::LogAndApply where the global mutex is held. void MarkMinLogNumberToKeep2PC(uint64_t number); // Return the log file number for the log file that is currently // being compacted, or zero if there is no such log file. uint64_t prev_log_number() const { return prev_log_number_; } // Returns the minimum log number which still has data not flushed to any SST // file. // In non-2PC mode, all the log numbers smaller than this number can be safely // deleted. uint64_t MinLogNumberWithUnflushedData() const { return PreComputeMinLogNumberWithUnflushedData(nullptr); } // Returns the minimum log number which still has data not flushed to any SST // file, except data from `cfd_to_skip`. uint64_t PreComputeMinLogNumberWithUnflushedData( const ColumnFamilyData* cfd_to_skip) const { uint64_t min_log_num = std::numeric_limits::max(); for (auto cfd : *column_family_set_) { if (cfd == cfd_to_skip) { continue; } // It's safe to ignore dropped column families here: // cfd->IsDropped() becomes true after the drop is persisted in MANIFEST. if (min_log_num > cfd->GetLogNumber() && !cfd->IsDropped()) { min_log_num = cfd->GetLogNumber(); } } return min_log_num; } // Create an iterator that reads over the compaction inputs for "*c". // The caller should delete the iterator when no longer needed. InternalIterator* MakeInputIterator( const Compaction* c, RangeDelAggregator* range_del_agg, const EnvOptions& env_options_compactions); // Add all files listed in any live version to *live. void AddLiveFiles(std::vector* live_list); // Return the approximate size of data to be scanned for range [start, end) // in levels [start_level, end_level). If end_level == 0 it will search // through all non-empty levels uint64_t ApproximateSize(Version* v, const Slice& start, const Slice& end, int start_level = 0, int end_level = -1); // Return the size of the current manifest file uint64_t manifest_file_size() const { return manifest_file_size_; } // verify that the files that we started with for a compaction // still exist in the current version and in the same original level. // This ensures that a concurrent compaction did not erroneously // pick the same files to compact. bool VerifyCompactionFileConsistency(Compaction* c); Status GetMetadataForFile(uint64_t number, int* filelevel, FileMetaData** metadata, ColumnFamilyData** cfd); // This function doesn't support leveldb SST filenames void GetLiveFilesMetaData(std::vector *metadata); void GetObsoleteFiles(std::vector* files, std::vector* manifest_filenames, uint64_t min_pending_output); ColumnFamilySet* GetColumnFamilySet() { return column_family_set_.get(); } const EnvOptions& env_options() { return env_options_; } void ChangeEnvOptions(const MutableDBOptions& new_options) { env_options_.writable_file_max_buffer_size = new_options.writable_file_max_buffer_size; } const ImmutableDBOptions* db_options() const { return db_options_; } static uint64_t GetNumLiveVersions(Version* dummy_versions); static uint64_t GetTotalSstFilesSize(Version* dummy_versions); private: struct ManifestWriter; friend class Version; friend class DBImpl; struct LogReporter : public log::Reader::Reporter { Status* status; virtual void Corruption(size_t /*bytes*/, const Status& s) override { if (this->status->ok()) *this->status = s; } }; // ApproximateSize helper uint64_t ApproximateSizeLevel0(Version* v, const LevelFilesBrief& files_brief, const Slice& start, const Slice& end); uint64_t ApproximateSize(Version* v, const FdWithKeyRange& f, const Slice& key); // Save current contents to *log Status WriteSnapshot(log::Writer* log); void AppendVersion(ColumnFamilyData* column_family_data, Version* v); ColumnFamilyData* CreateColumnFamily(const ColumnFamilyOptions& cf_options, VersionEdit* edit); std::unique_ptr column_family_set_; Env* const env_; const std::string dbname_; const ImmutableDBOptions* const db_options_; std::atomic next_file_number_; // Any log number equal or lower than this should be ignored during recovery, // and is qualified for being deleted in 2PC mode. In non-2PC mode, this // number is ignored. std::atomic min_log_number_to_keep_2pc_ = {0}; uint64_t manifest_file_number_; uint64_t options_file_number_; uint64_t pending_manifest_file_number_; // The last seq visible to reads. It normally indicates the last sequence in // the memtable but when using two write queues it could also indicate the // last sequence in the WAL visible to reads. std::atomic last_sequence_; // The last seq that is already allocated. It is applicable only when we have // two write queues. In that case seq might or might not have appreated in // memtable but it is expected to appear in the WAL. // We have last_sequence <= last_allocated_sequence_ std::atomic last_allocated_sequence_; // The last allocated sequence that is also published to the readers. This is // applicable only when last_seq_same_as_publish_seq_ is not set. Otherwise // last_sequence_ also indicates the last published seq. // We have last_sequence <= last_published_sequence_ <= // last_allocated_sequence_ std::atomic last_published_sequence_; uint64_t prev_log_number_; // 0 or backing store for memtable being compacted // Opened lazily unique_ptr descriptor_log_; // generates a increasing version number for every new version uint64_t current_version_number_; // Queue of writers to the manifest file std::deque manifest_writers_; // Current size of manifest file uint64_t manifest_file_size_; std::vector obsolete_files_; std::vector obsolete_manifests_; // env options for all reads and writes except compactions EnvOptions env_options_; // No copying allowed VersionSet(const VersionSet&); void operator=(const VersionSet&); void LogAndApplyCFHelper(VersionEdit* edit); void LogAndApplyHelper(ColumnFamilyData* cfd, VersionBuilder* b, Version* v, VersionEdit* edit, InstrumentedMutex* mu); }; } // namespace rocksdb