// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include "monitoring/histogram.h" #include <inttypes.h> #include <cassert> #include <math.h> #include <stdio.h> #include "port/port.h" #include "util/cast_util.h" namespace rocksdb { HistogramBucketMapper::HistogramBucketMapper() { // If you change this, you also need to change // size of array buckets_ in HistogramImpl bucketValues_ = {1, 2}; valueIndexMap_ = {{1, 0}, {2, 1}}; double bucket_val = static_cast<double>(bucketValues_.back()); while ((bucket_val = 1.5 * bucket_val) <= static_cast<double>(port::kMaxUint64)) { bucketValues_.push_back(static_cast<uint64_t>(bucket_val)); // Extracts two most significant digits to make histogram buckets more // human-readable. E.g., 172 becomes 170. uint64_t pow_of_ten = 1; while (bucketValues_.back() / 10 > 10) { bucketValues_.back() /= 10; pow_of_ten *= 10; } bucketValues_.back() *= pow_of_ten; valueIndexMap_[bucketValues_.back()] = bucketValues_.size() - 1; } maxBucketValue_ = bucketValues_.back(); minBucketValue_ = bucketValues_.front(); } size_t HistogramBucketMapper::IndexForValue(const uint64_t value) const { if (value >= maxBucketValue_) { return bucketValues_.size() - 1; } else if ( value >= minBucketValue_ ) { std::map<uint64_t, uint64_t>::const_iterator lowerBound = valueIndexMap_.lower_bound(value); if (lowerBound != valueIndexMap_.end()) { return static_cast<size_t>(lowerBound->second); } else { return 0; } } else { return 0; } } namespace { const HistogramBucketMapper bucketMapper; } HistogramStat::HistogramStat() : num_buckets_(bucketMapper.BucketCount()) { assert(num_buckets_ == sizeof(buckets_) / sizeof(*buckets_)); Clear(); } void HistogramStat::Clear() { min_.store(bucketMapper.LastValue(), std::memory_order_relaxed); max_.store(0, std::memory_order_relaxed); num_.store(0, std::memory_order_relaxed); sum_.store(0, std::memory_order_relaxed); sum_squares_.store(0, std::memory_order_relaxed); for (unsigned int b = 0; b < num_buckets_; b++) { buckets_[b].store(0, std::memory_order_relaxed); } }; bool HistogramStat::Empty() const { return num() == 0; } void HistogramStat::Add(uint64_t value) { // This function is designed to be lock free, as it's in the critical path // of any operation. Each individual value is atomic and the order of updates // by concurrent threads is tolerable. const size_t index = bucketMapper.IndexForValue(value); assert(index < num_buckets_); buckets_[index].store(buckets_[index].load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); uint64_t old_min = min(); if (value < old_min) { min_.store(value, std::memory_order_relaxed); } uint64_t old_max = max(); if (value > old_max) { max_.store(value, std::memory_order_relaxed); } num_.store(num_.load(std::memory_order_relaxed) + 1, std::memory_order_relaxed); sum_.store(sum_.load(std::memory_order_relaxed) + value, std::memory_order_relaxed); sum_squares_.store( sum_squares_.load(std::memory_order_relaxed) + value * value, std::memory_order_relaxed); } void HistogramStat::Merge(const HistogramStat& other) { // This function needs to be performned with the outer lock acquired // However, atomic operation on every member is still need, since Add() // requires no lock and value update can still happen concurrently uint64_t old_min = min(); uint64_t other_min = other.min(); while (other_min < old_min && !min_.compare_exchange_weak(old_min, other_min)) {} uint64_t old_max = max(); uint64_t other_max = other.max(); while (other_max > old_max && !max_.compare_exchange_weak(old_max, other_max)) {} num_.fetch_add(other.num(), std::memory_order_relaxed); sum_.fetch_add(other.sum(), std::memory_order_relaxed); sum_squares_.fetch_add(other.sum_squares(), std::memory_order_relaxed); for (unsigned int b = 0; b < num_buckets_; b++) { buckets_[b].fetch_add(other.bucket_at(b), std::memory_order_relaxed); } } double HistogramStat::Median() const { return Percentile(50.0); } double HistogramStat::Percentile(double p) const { double threshold = num() * (p / 100.0); uint64_t cumulative_sum = 0; for (unsigned int b = 0; b < num_buckets_; b++) { uint64_t bucket_value = bucket_at(b); cumulative_sum += bucket_value; if (cumulative_sum >= threshold) { // Scale linearly within this bucket uint64_t left_point = (b == 0) ? 0 : bucketMapper.BucketLimit(b-1); uint64_t right_point = bucketMapper.BucketLimit(b); uint64_t left_sum = cumulative_sum - bucket_value; uint64_t right_sum = cumulative_sum; double pos = 0; uint64_t right_left_diff = right_sum - left_sum; if (right_left_diff != 0) { pos = (threshold - left_sum) / right_left_diff; } double r = left_point + (right_point - left_point) * pos; uint64_t cur_min = min(); uint64_t cur_max = max(); if (r < cur_min) r = static_cast<double>(cur_min); if (r > cur_max) r = static_cast<double>(cur_max); return r; } } return static_cast<double>(max()); } double HistogramStat::Average() const { uint64_t cur_num = num(); uint64_t cur_sum = sum(); if (cur_num == 0) return 0; return static_cast<double>(cur_sum) / static_cast<double>(cur_num); } double HistogramStat::StandardDeviation() const { uint64_t cur_num = num(); uint64_t cur_sum = sum(); uint64_t cur_sum_squares = sum_squares(); if (cur_num == 0) return 0; double variance = static_cast<double>(cur_sum_squares * cur_num - cur_sum * cur_sum) / static_cast<double>(cur_num * cur_num); return sqrt(variance); } std::string HistogramStat::ToString() const { uint64_t cur_num = num(); std::string r; char buf[1650]; snprintf(buf, sizeof(buf), "Count: %" PRIu64 " Average: %.4f StdDev: %.2f\n", cur_num, Average(), StandardDeviation()); r.append(buf); snprintf(buf, sizeof(buf), "Min: %" PRIu64 " Median: %.4f Max: %" PRIu64 "\n", (cur_num == 0 ? 0 : min()), Median(), (cur_num == 0 ? 0 : max())); r.append(buf); snprintf(buf, sizeof(buf), "Percentiles: " "P50: %.2f P75: %.2f P99: %.2f P99.9: %.2f P99.99: %.2f\n", Percentile(50), Percentile(75), Percentile(99), Percentile(99.9), Percentile(99.99)); r.append(buf); r.append("------------------------------------------------------\n"); if (cur_num == 0) return r; // all buckets are empty const double mult = 100.0 / cur_num; uint64_t cumulative_sum = 0; for (unsigned int b = 0; b < num_buckets_; b++) { uint64_t bucket_value = bucket_at(b); if (bucket_value <= 0.0) continue; cumulative_sum += bucket_value; snprintf(buf, sizeof(buf), "%c %7" PRIu64 ", %7" PRIu64 " ] %8" PRIu64 " %7.3f%% %7.3f%% ", (b == 0) ? '[' : '(', (b == 0) ? 0 : bucketMapper.BucketLimit(b-1), // left bucketMapper.BucketLimit(b), // right bucket_value, // count (mult * bucket_value), // percentage (mult * cumulative_sum)); // cumulative percentage r.append(buf); // Add hash marks based on percentage; 20 marks for 100%. size_t marks = static_cast<size_t>(mult * bucket_value / 5 + 0.5); r.append(marks, '#'); r.push_back('\n'); } return r; } void HistogramStat::Data(HistogramData * const data) const { assert(data); data->median = Median(); data->percentile95 = Percentile(95); data->percentile99 = Percentile(99); data->max = static_cast<double>(max()); data->average = Average(); data->standard_deviation = StandardDeviation(); } void HistogramImpl::Clear() { std::lock_guard<std::mutex> lock(mutex_); stats_.Clear(); } bool HistogramImpl::Empty() const { return stats_.Empty(); } void HistogramImpl::Add(uint64_t value) { stats_.Add(value); } void HistogramImpl::Merge(const Histogram& other) { if (strcmp(Name(), other.Name()) == 0) { Merge( *static_cast_with_check<const HistogramImpl, const Histogram>(&other)); } } void HistogramImpl::Merge(const HistogramImpl& other) { std::lock_guard<std::mutex> lock(mutex_); stats_.Merge(other.stats_); } double HistogramImpl::Median() const { return stats_.Median(); } double HistogramImpl::Percentile(double p) const { return stats_.Percentile(p); } double HistogramImpl::Average() const { return stats_.Average(); } double HistogramImpl::StandardDeviation() const { return stats_.StandardDeviation(); } std::string HistogramImpl::ToString() const { return stats_.ToString(); } void HistogramImpl::Data(HistogramData * const data) const { stats_.Data(data); } } // namespace levedb