// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/block_based_table_reader.h" #include #include #include #include #include #include #include "db/dbformat.h" #include "db/pinned_iterators_manager.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "table/block.h" #include "table/block_based_filter_block.h" #include "table/block_based_table_factory.h" #include "table/block_fetcher.h" #include "table/block_prefix_index.h" #include "table/filter_block.h" #include "table/format.h" #include "table/full_filter_block.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/meta_blocks.h" #include "table/multiget_context.h" #include "table/partitioned_filter_block.h" #include "table/persistent_cache_helper.h" #include "table/sst_file_writer_collectors.h" #include "table/two_level_iterator.h" #include "monitoring/perf_context_imp.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/file_reader_writer.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "util/sync_point.h" #include "util/xxhash.h" namespace rocksdb { extern const uint64_t kBlockBasedTableMagicNumber; extern const std::string kHashIndexPrefixesBlock; extern const std::string kHashIndexPrefixesMetadataBlock; typedef BlockBasedTable::IndexReader IndexReader; BlockBasedTable::~BlockBasedTable() { Close(); delete rep_; } std::atomic BlockBasedTable::next_cache_key_id_(0); namespace { // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // On failure return non-OK. // On success fill *result and return OK - caller owns *result // @param uncompression_dict Data for presetting the compression library's // dictionary. Status ReadBlockFromFile( RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, std::unique_ptr* result, const ImmutableCFOptions& ioptions, bool do_uncompress, bool maybe_compressed, const UncompressionDict& uncompression_dict, const PersistentCacheOptions& cache_options, SequenceNumber global_seqno, size_t read_amp_bytes_per_bit, MemoryAllocator* memory_allocator) { BlockContents contents; BlockFetcher block_fetcher(file, prefetch_buffer, footer, options, handle, &contents, ioptions, do_uncompress, maybe_compressed, uncompression_dict, cache_options, memory_allocator); Status s = block_fetcher.ReadBlockContents(); if (s.ok()) { result->reset(new Block(std::move(contents), global_seqno, read_amp_bytes_per_bit, ioptions.statistics)); } return s; } inline MemoryAllocator* GetMemoryAllocator( const BlockBasedTableOptions& table_options) { return table_options.block_cache.get() ? table_options.block_cache->memory_allocator() : nullptr; } inline MemoryAllocator* GetMemoryAllocatorForCompressedBlock( const BlockBasedTableOptions& table_options) { return table_options.block_cache_compressed.get() ? table_options.block_cache_compressed->memory_allocator() : nullptr; } // Delete the resource that is held by the iterator. template void DeleteHeldResource(void* arg, void* /*ignored*/) { delete reinterpret_cast(arg); } // Delete the entry resided in the cache. template void DeleteCachedEntry(const Slice& /*key*/, void* value) { auto entry = reinterpret_cast(value); delete entry; } void DeleteCachedFilterEntry(const Slice& key, void* value); void DeleteCachedIndexEntry(const Slice& key, void* value); void DeleteCachedUncompressionDictEntry(const Slice& key, void* value); // Release the cached entry and decrement its ref count. void ReleaseCachedEntry(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle); } // Release the cached entry and decrement its ref count. void ForceReleaseCachedEntry(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle, true /* force_erase */); } Slice GetCacheKeyFromOffset(const char* cache_key_prefix, size_t cache_key_prefix_size, uint64_t offset, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= BlockBasedTable::kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, offset); return Slice(cache_key, static_cast(end - cache_key)); } Cache::Handle* GetEntryFromCache(Cache* block_cache, const Slice& key, int level, Tickers block_cache_miss_ticker, Tickers block_cache_hit_ticker, uint64_t* block_cache_miss_stats, uint64_t* block_cache_hit_stats, Statistics* statistics, GetContext* get_context) { auto cache_handle = block_cache->Lookup(key, statistics); if (cache_handle != nullptr) { PERF_COUNTER_ADD(block_cache_hit_count, 1); PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, static_cast(level)); if (get_context != nullptr) { // overall cache hit get_context->get_context_stats_.num_cache_hit++; // total bytes read from cache get_context->get_context_stats_.num_cache_bytes_read += block_cache->GetUsage(cache_handle); // block-type specific cache hit (*block_cache_hit_stats)++; } else { // overall cache hit RecordTick(statistics, BLOCK_CACHE_HIT); // total bytes read from cache RecordTick(statistics, BLOCK_CACHE_BYTES_READ, block_cache->GetUsage(cache_handle)); RecordTick(statistics, block_cache_hit_ticker); } } else { PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 1, static_cast(level)); if (get_context != nullptr) { // overall cache miss get_context->get_context_stats_.num_cache_miss++; // block-type specific cache miss (*block_cache_miss_stats)++; } else { RecordTick(statistics, BLOCK_CACHE_MISS); RecordTick(statistics, block_cache_miss_ticker); } } return cache_handle; } // For hash based index, return true if prefix_extractor and // prefix_extractor_block mismatch, false otherwise. This flag will be used // as total_order_seek via NewIndexIterator bool PrefixExtractorChanged(const TableProperties* table_properties, const SliceTransform* prefix_extractor) { // BlockBasedTableOptions::kHashSearch requires prefix_extractor to be set. // Turn off hash index in prefix_extractor is not set; if prefix_extractor // is set but prefix_extractor_block is not set, also disable hash index if (prefix_extractor == nullptr || table_properties == nullptr || table_properties->prefix_extractor_name.empty()) { return true; } // prefix_extractor and prefix_extractor_block are both non-empty if (table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) != 0) { return true; } else { return false; } } } // namespace // Index that allows binary search lookup in a two-level index structure. class PartitionIndexReader : public IndexReader, public Cleanable { public: // Read the partition index from the file and create an instance for // `PartitionIndexReader`. // On success, index_reader will be populated; otherwise it will remain // unmodified. static Status Create(BlockBasedTable* table, RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const Footer& footer, const BlockHandle& index_handle, const ImmutableCFOptions& ioptions, const InternalKeyComparator* icomparator, IndexReader** index_reader, const PersistentCacheOptions& cache_options, const int level, const bool index_key_includes_seq, const bool index_value_is_full, MemoryAllocator* memory_allocator) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, prefetch_buffer, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */, memory_allocator); if (s.ok()) { *index_reader = new PartitionIndexReader( table, icomparator, std::move(index_block), ioptions.statistics, level, index_key_includes_seq, index_value_is_full); } return s; } // return a two-level iterator: first level is on the partition index InternalIteratorBase* NewIterator( IndexBlockIter* /*iter*/ = nullptr, bool /*dont_care*/ = true, bool fill_cache = true) override { Statistics* kNullStats = nullptr; // Filters are already checked before seeking the index if (!partition_map_.empty()) { // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return NewTwoLevelIterator( new BlockBasedTable::PartitionedIndexIteratorState( table_, &partition_map_, index_key_includes_seq_, index_value_is_full_), index_block_->NewIterator( icomparator_, icomparator_->user_comparator(), nullptr, kNullStats, true, index_key_includes_seq_, index_value_is_full_)); } else { auto ro = ReadOptions(); ro.fill_cache = fill_cache; bool kIsIndex = true; // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return new BlockBasedTableIterator( table_, ro, *icomparator_, index_block_->NewIterator( icomparator_, icomparator_->user_comparator(), nullptr, kNullStats, true, index_key_includes_seq_, index_value_is_full_), false, true, /* prefix_extractor */ nullptr, kIsIndex, index_key_includes_seq_, index_value_is_full_); } // TODO(myabandeh): Update TwoLevelIterator to be able to make use of // on-stack BlockIter while the state is on heap. Currentlly it assumes // the first level iter is always on heap and will attempt to delete it // in its destructor. } void CacheDependencies(bool pin) override { // Before read partitions, prefetch them to avoid lots of IOs auto rep = table_->rep_; IndexBlockIter biter; BlockHandle handle; Statistics* kNullStats = nullptr; // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. index_block_->NewIterator( icomparator_, icomparator_->user_comparator(), &biter, kNullStats, true, index_key_includes_seq_, index_value_is_full_); // Index partitions are assumed to be consecuitive. Prefetch them all. // Read the first block offset biter.SeekToFirst(); if (!biter.Valid()) { // Empty index. return; } handle = biter.value(); uint64_t prefetch_off = handle.offset(); // Read the last block's offset biter.SeekToLast(); if (!biter.Valid()) { // Empty index. return; } handle = biter.value(); uint64_t last_off = handle.offset() + handle.size() + kBlockTrailerSize; uint64_t prefetch_len = last_off - prefetch_off; std::unique_ptr prefetch_buffer; auto& file = table_->rep_->file; prefetch_buffer.reset(new FilePrefetchBuffer()); Status s = prefetch_buffer->Prefetch(file.get(), prefetch_off, static_cast(prefetch_len)); // After prefetch, read the partitions one by one biter.SeekToFirst(); auto ro = ReadOptions(); Cache* block_cache = rep->table_options.block_cache.get(); for (; biter.Valid(); biter.Next()) { handle = biter.value(); BlockBasedTable::CachableEntry block; const bool is_index = true; // TODO: Support counter batch update for partitioned index and // filter blocks s = table_->MaybeReadBlockAndLoadToCache( prefetch_buffer.get(), rep, ro, handle, UncompressionDict::GetEmptyDict(), &block, is_index, nullptr /* get_context */); assert(s.ok() || block.value == nullptr); if (s.ok() && block.value != nullptr) { if (block.cache_handle != nullptr) { if (pin) { partition_map_[handle.offset()] = block; RegisterCleanup(&ReleaseCachedEntry, block_cache, block.cache_handle); } else { block_cache->Release(block.cache_handle); } } else { delete block.value; } } } } size_t size() const override { return index_block_->size(); } size_t usable_size() const override { return index_block_->usable_size(); } size_t ApproximateMemoryUsage() const override { assert(index_block_); size_t usage = index_block_->ApproximateMemoryUsage(); #ifdef ROCKSDB_MALLOC_USABLE_SIZE usage += malloc_usable_size((void*)this); #else usage += sizeof(*this); #endif // ROCKSDB_MALLOC_USABLE_SIZE // TODO(myabandeh): more accurate estimate of partition_map_ mem usage return usage; } private: PartitionIndexReader(BlockBasedTable* table, const InternalKeyComparator* icomparator, std::unique_ptr&& index_block, Statistics* stats, const int /*level*/, const bool index_key_includes_seq, const bool index_value_is_full) : IndexReader(icomparator, stats), table_(table), index_block_(std::move(index_block)), index_key_includes_seq_(index_key_includes_seq), index_value_is_full_(index_value_is_full) { assert(index_block_ != nullptr); } BlockBasedTable* table_; std::unique_ptr index_block_; std::unordered_map> partition_map_; const bool index_key_includes_seq_; const bool index_value_is_full_; }; // Index that allows binary search lookup for the first key of each block. // This class can be viewed as a thin wrapper for `Block` class which already // supports binary search. class BinarySearchIndexReader : public IndexReader { public: // Read index from the file and create an intance for // `BinarySearchIndexReader`. // On success, index_reader will be populated; otherwise it will remain // unmodified. static Status Create(RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const Footer& footer, const BlockHandle& index_handle, const ImmutableCFOptions& ioptions, const InternalKeyComparator* icomparator, IndexReader** index_reader, const PersistentCacheOptions& cache_options, const bool index_key_includes_seq, const bool index_value_is_full, MemoryAllocator* memory_allocator) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, prefetch_buffer, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */, memory_allocator); if (s.ok()) { *index_reader = new BinarySearchIndexReader( icomparator, std::move(index_block), ioptions.statistics, index_key_includes_seq, index_value_is_full); } return s; } InternalIteratorBase* NewIterator( IndexBlockIter* iter = nullptr, bool /*dont_care*/ = true, bool /*dont_care*/ = true) override { Statistics* kNullStats = nullptr; // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return index_block_->NewIterator( icomparator_, icomparator_->user_comparator(), iter, kNullStats, true, index_key_includes_seq_, index_value_is_full_); } size_t size() const override { return index_block_->size(); } size_t usable_size() const override { return index_block_->usable_size(); } size_t ApproximateMemoryUsage() const override { assert(index_block_); size_t usage = index_block_->ApproximateMemoryUsage(); #ifdef ROCKSDB_MALLOC_USABLE_SIZE usage += malloc_usable_size((void*)this); #else usage += sizeof(*this); #endif // ROCKSDB_MALLOC_USABLE_SIZE return usage; } private: BinarySearchIndexReader(const InternalKeyComparator* icomparator, std::unique_ptr&& index_block, Statistics* stats, const bool index_key_includes_seq, const bool index_value_is_full) : IndexReader(icomparator, stats), index_block_(std::move(index_block)), index_key_includes_seq_(index_key_includes_seq), index_value_is_full_(index_value_is_full) { assert(index_block_ != nullptr); } std::unique_ptr index_block_; const bool index_key_includes_seq_; const bool index_value_is_full_; }; // Index that leverages an internal hash table to quicken the lookup for a given // key. class HashIndexReader : public IndexReader { public: static Status Create( const SliceTransform* hash_key_extractor, const Footer& footer, RandomAccessFileReader* file, FilePrefetchBuffer* prefetch_buffer, const ImmutableCFOptions& ioptions, const InternalKeyComparator* icomparator, const BlockHandle& index_handle, InternalIterator* meta_index_iter, IndexReader** index_reader, bool /*hash_index_allow_collision*/, const PersistentCacheOptions& cache_options, const bool index_key_includes_seq, const bool index_value_is_full, MemoryAllocator* memory_allocator) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, prefetch_buffer, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */, memory_allocator); if (!s.ok()) { return s; } // Note, failure to create prefix hash index does not need to be a // hard error. We can still fall back to the original binary search index. // So, Create will succeed regardless, from this point on. auto new_index_reader = new HashIndexReader( icomparator, std::move(index_block), ioptions.statistics, index_key_includes_seq, index_value_is_full); *index_reader = new_index_reader; // Get prefixes block BlockHandle prefixes_handle; s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesBlock, &prefixes_handle); if (!s.ok()) { // TODO: log error return Status::OK(); } // Get index metadata block BlockHandle prefixes_meta_handle; s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesMetadataBlock, &prefixes_meta_handle); if (!s.ok()) { // TODO: log error return Status::OK(); } // Read contents for the blocks BlockContents prefixes_contents; BlockFetcher prefixes_block_fetcher( file, prefetch_buffer, footer, ReadOptions(), prefixes_handle, &prefixes_contents, ioptions, true /*decompress*/, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options, memory_allocator); s = prefixes_block_fetcher.ReadBlockContents(); if (!s.ok()) { return s; } BlockContents prefixes_meta_contents; BlockFetcher prefixes_meta_block_fetcher( file, prefetch_buffer, footer, ReadOptions(), prefixes_meta_handle, &prefixes_meta_contents, ioptions, true /*decompress*/, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options, memory_allocator); s = prefixes_meta_block_fetcher.ReadBlockContents(); if (!s.ok()) { // TODO: log error return Status::OK(); } BlockPrefixIndex* prefix_index = nullptr; s = BlockPrefixIndex::Create(hash_key_extractor, prefixes_contents.data, prefixes_meta_contents.data, &prefix_index); // TODO: log error if (s.ok()) { new_index_reader->prefix_index_.reset(prefix_index); } return Status::OK(); } InternalIteratorBase* NewIterator( IndexBlockIter* iter = nullptr, bool total_order_seek = true, bool /*dont_care*/ = true) override { Statistics* kNullStats = nullptr; // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return index_block_->NewIterator( icomparator_, icomparator_->user_comparator(), iter, kNullStats, total_order_seek, index_key_includes_seq_, index_value_is_full_, false /* block_contents_pinned */, prefix_index_.get()); } size_t size() const override { return index_block_->size(); } size_t usable_size() const override { return index_block_->usable_size(); } size_t ApproximateMemoryUsage() const override { assert(index_block_); size_t usage = index_block_->ApproximateMemoryUsage(); usage += prefixes_contents_.usable_size(); #ifdef ROCKSDB_MALLOC_USABLE_SIZE usage += malloc_usable_size((void*)this); #else if (prefix_index_) { usage += prefix_index_->ApproximateMemoryUsage(); } usage += sizeof(*this); #endif // ROCKSDB_MALLOC_USABLE_SIZE return usage; } private: HashIndexReader(const InternalKeyComparator* icomparator, std::unique_ptr&& index_block, Statistics* stats, const bool index_key_includes_seq, const bool index_value_is_full) : IndexReader(icomparator, stats), index_block_(std::move(index_block)), index_key_includes_seq_(index_key_includes_seq), index_value_is_full_(index_value_is_full) { assert(index_block_ != nullptr); } ~HashIndexReader() override {} std::unique_ptr index_block_; std::unique_ptr prefix_index_; BlockContents prefixes_contents_; const bool index_key_includes_seq_; const bool index_value_is_full_; }; // Helper function to setup the cache key's prefix for the Table. void BlockBasedTable::SetupCacheKeyPrefix(Rep* rep, uint64_t file_size) { assert(kMaxCacheKeyPrefixSize >= 10); rep->cache_key_prefix_size = 0; rep->compressed_cache_key_prefix_size = 0; if (rep->table_options.block_cache != nullptr) { GenerateCachePrefix(rep->table_options.block_cache.get(), rep->file->file(), &rep->cache_key_prefix[0], &rep->cache_key_prefix_size); // Create dummy offset of index reader which is beyond the file size. rep->dummy_index_reader_offset = file_size + rep->table_options.block_cache->NewId(); } if (rep->table_options.persistent_cache != nullptr) { GenerateCachePrefix(/*cache=*/nullptr, rep->file->file(), &rep->persistent_cache_key_prefix[0], &rep->persistent_cache_key_prefix_size); } if (rep->table_options.block_cache_compressed != nullptr) { GenerateCachePrefix(rep->table_options.block_cache_compressed.get(), rep->file->file(), &rep->compressed_cache_key_prefix[0], &rep->compressed_cache_key_prefix_size); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, RandomAccessFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (cc && *size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, WritableFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (*size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } namespace { // Return True if table_properties has `user_prop_name` has a `true` value // or it doesn't contain this property (for backward compatible). bool IsFeatureSupported(const TableProperties& table_properties, const std::string& user_prop_name, Logger* info_log) { auto& props = table_properties.user_collected_properties; auto pos = props.find(user_prop_name); // Older version doesn't have this value set. Skip this check. if (pos != props.end()) { if (pos->second == kPropFalse) { return false; } else if (pos->second != kPropTrue) { ROCKS_LOG_WARN(info_log, "Property %s has invalidate value %s", user_prop_name.c_str(), pos->second.c_str()); } } return true; } // Caller has to ensure seqno is not nullptr. Status GetGlobalSequenceNumber(const TableProperties& table_properties, SequenceNumber largest_seqno, SequenceNumber* seqno) { const auto& props = table_properties.user_collected_properties; const auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion); const auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno); *seqno = kDisableGlobalSequenceNumber; if (version_pos == props.end()) { if (seqno_pos != props.end()) { std::array msg_buf; // This is not an external sst file, global_seqno is not supported. snprintf( msg_buf.data(), msg_buf.max_size(), "A non-external sst file have global seqno property with value %s", seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } uint32_t version = DecodeFixed32(version_pos->second.c_str()); if (version < 2) { if (seqno_pos != props.end() || version != 1) { std::array msg_buf; // This is a v1 external sst file, global_seqno is not supported. snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno " "property with value %s", version, seqno_pos->second.c_str()); return Status::Corruption(msg_buf.data()); } return Status::OK(); } // Since we have a plan to deprecate global_seqno, we do not return failure // if seqno_pos == props.end(). We rely on version_pos to detect whether the // SST is external. SequenceNumber global_seqno(0); if (seqno_pos != props.end()) { global_seqno = DecodeFixed64(seqno_pos->second.c_str()); } // SstTableReader open table reader with kMaxSequenceNumber as largest_seqno // to denote it is unknown. if (largest_seqno < kMaxSequenceNumber) { if (global_seqno == 0) { global_seqno = largest_seqno; } if (global_seqno != largest_seqno) { std::array msg_buf; snprintf( msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %s, while largest seqno in the file is %llu", version, seqno_pos->second.c_str(), static_cast(largest_seqno)); return Status::Corruption(msg_buf.data()); } } *seqno = global_seqno; if (global_seqno > kMaxSequenceNumber) { std::array msg_buf; snprintf(msg_buf.data(), msg_buf.max_size(), "An external sst file with version %u have global seqno property " "with value %llu, which is greater than kMaxSequenceNumber", version, static_cast(global_seqno)); return Status::Corruption(msg_buf.data()); } return Status::OK(); } } // namespace Slice BlockBasedTable::GetCacheKey(const char* cache_key_prefix, size_t cache_key_prefix_size, const BlockHandle& handle, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset()); return Slice(cache_key, static_cast(end - cache_key)); } Status BlockBasedTable::Open(const ImmutableCFOptions& ioptions, const EnvOptions& env_options, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, std::unique_ptr&& file, uint64_t file_size, std::unique_ptr* table_reader, const SliceTransform* prefix_extractor, const bool prefetch_index_and_filter_in_cache, const bool skip_filters, const int level, const bool immortal_table, const SequenceNumber largest_seqno, TailPrefetchStats* tail_prefetch_stats) { table_reader->reset(); Status s; Footer footer; std::unique_ptr prefetch_buffer; // prefetch both index and filters, down to all partitions const bool prefetch_all = prefetch_index_and_filter_in_cache || level == 0; const bool preload_all = !table_options.cache_index_and_filter_blocks; s = PrefetchTail(file.get(), file_size, tail_prefetch_stats, prefetch_all, preload_all, &prefetch_buffer); // Read in the following order: // 1. Footer // 2. [metaindex block] // 3. [meta block: properties] // 4. [meta block: range deletion tombstone] // 5. [meta block: compression dictionary] // 6. [meta block: index] // 7. [meta block: filter] s = ReadFooterFromFile(file.get(), prefetch_buffer.get(), file_size, &footer, kBlockBasedTableMagicNumber); if (!s.ok()) { return s; } if (!BlockBasedTableSupportedVersion(footer.version())) { return Status::Corruption( "Unknown Footer version. Maybe this file was created with newer " "version of RocksDB?"); } // We've successfully read the footer. We are ready to serve requests. // Better not mutate rep_ after the creation. eg. internal_prefix_transform // raw pointer will be used to create HashIndexReader, whose reset may // access a dangling pointer. Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options, internal_comparator, skip_filters, level, immortal_table); rep->file = std::move(file); rep->footer = footer; rep->index_type = table_options.index_type; rep->hash_index_allow_collision = table_options.hash_index_allow_collision; // We need to wrap data with internal_prefix_transform to make sure it can // handle prefix correctly. rep->internal_prefix_transform.reset( new InternalKeySliceTransform(prefix_extractor)); SetupCacheKeyPrefix(rep, file_size); std::unique_ptr new_table(new BlockBasedTable(rep)); // page cache options rep->persistent_cache_options = PersistentCacheOptions(rep->table_options.persistent_cache, std::string(rep->persistent_cache_key_prefix, rep->persistent_cache_key_prefix_size), rep->ioptions.statistics); // Meta-blocks are not dictionary compressed. Explicitly set the dictionary // handle to null, otherwise it may be seen as uninitialized during the below // meta-block reads. rep->compression_dict_handle = BlockHandle::NullBlockHandle(); // Read metaindex std::unique_ptr meta; std::unique_ptr meta_iter; s = ReadMetaBlock(rep, prefetch_buffer.get(), &meta, &meta_iter); if (!s.ok()) { return s; } s = ReadPropertiesBlock(rep, prefetch_buffer.get(), meta_iter.get(), largest_seqno); if (!s.ok()) { return s; } s = ReadRangeDelBlock(rep, prefetch_buffer.get(), meta_iter.get(), internal_comparator); if (!s.ok()) { return s; } s = PrefetchIndexAndFilterBlocks(rep, prefetch_buffer.get(), meta_iter.get(), new_table.get(), prefix_extractor, prefetch_all, table_options, level, prefetch_index_and_filter_in_cache); if (s.ok()) { // Update tail prefetch stats assert(prefetch_buffer.get() != nullptr); if (tail_prefetch_stats != nullptr) { assert(prefetch_buffer->min_offset_read() < file_size); tail_prefetch_stats->RecordEffectiveSize( static_cast(file_size) - prefetch_buffer->min_offset_read()); } *table_reader = std::move(new_table); } return s; } Status BlockBasedTable::PrefetchTail( RandomAccessFileReader* file, uint64_t file_size, TailPrefetchStats* tail_prefetch_stats, const bool prefetch_all, const bool preload_all, std::unique_ptr* prefetch_buffer) { size_t tail_prefetch_size = 0; if (tail_prefetch_stats != nullptr) { // Multiple threads may get a 0 (no history) when running in parallel, // but it will get cleared after the first of them finishes. tail_prefetch_size = tail_prefetch_stats->GetSuggestedPrefetchSize(); } if (tail_prefetch_size == 0) { // Before read footer, readahead backwards to prefetch data. Do more // readahead if we're going to read index/filter. // TODO: This may incorrectly select small readahead in case partitioned // index/filter is enabled and top-level partition pinning is enabled. // That's because we need to issue readahead before we read the properties, // at which point we don't yet know the index type. tail_prefetch_size = prefetch_all || preload_all ? 512 * 1024 : 4 * 1024; } size_t prefetch_off; size_t prefetch_len; if (file_size < tail_prefetch_size) { prefetch_off = 0; prefetch_len = static_cast(file_size); } else { prefetch_off = static_cast(file_size - tail_prefetch_size); prefetch_len = tail_prefetch_size; } TEST_SYNC_POINT_CALLBACK("BlockBasedTable::Open::TailPrefetchLen", &tail_prefetch_size); Status s; // TODO should not have this special logic in the future. if (!file->use_direct_io()) { prefetch_buffer->reset(new FilePrefetchBuffer(nullptr, 0, 0, false, true)); s = file->Prefetch(prefetch_off, prefetch_len); } else { prefetch_buffer->reset(new FilePrefetchBuffer(nullptr, 0, 0, true, true)); s = (*prefetch_buffer)->Prefetch(file, prefetch_off, prefetch_len); } return s; } Status VerifyChecksum(const ChecksumType type, const char* buf, size_t len, uint32_t expected) { Status s; uint32_t actual = 0; switch (type) { case kNoChecksum: break; case kCRC32c: expected = crc32c::Unmask(expected); actual = crc32c::Value(buf, len); break; case kxxHash: actual = XXH32(buf, static_cast(len), 0); break; case kxxHash64: actual = static_cast(XXH64(buf, static_cast(len), 0) & uint64_t{0xffffffff}); break; default: s = Status::Corruption("unknown checksum type"); } if (s.ok() && actual != expected) { s = Status::Corruption("properties block checksum mismatched"); } return s; } Status BlockBasedTable::TryReadPropertiesWithGlobalSeqno( Rep* rep, FilePrefetchBuffer* prefetch_buffer, const Slice& handle_value, TableProperties** table_properties) { assert(table_properties != nullptr); // If this is an external SST file ingested with write_global_seqno set to // true, then we expect the checksum mismatch because checksum was written // by SstFileWriter, but its global seqno in the properties block may have // been changed during ingestion. In this case, we read the properties // block, copy it to a memory buffer, change the global seqno to its // original value, i.e. 0, and verify the checksum again. BlockHandle props_block_handle; CacheAllocationPtr tmp_buf; Status s = ReadProperties(handle_value, rep->file.get(), prefetch_buffer, rep->footer, rep->ioptions, table_properties, false /* verify_checksum */, &props_block_handle, &tmp_buf, false /* compression_type_missing */, nullptr /* memory_allocator */); if (s.ok() && tmp_buf) { const auto seqno_pos_iter = (*table_properties) ->properties_offsets.find( ExternalSstFilePropertyNames::kGlobalSeqno); size_t block_size = static_cast(props_block_handle.size()); if (seqno_pos_iter != (*table_properties)->properties_offsets.end()) { uint64_t global_seqno_offset = seqno_pos_iter->second; EncodeFixed64( tmp_buf.get() + global_seqno_offset - props_block_handle.offset(), 0); } uint32_t value = DecodeFixed32(tmp_buf.get() + block_size + 1); s = rocksdb::VerifyChecksum(rep->footer.checksum(), tmp_buf.get(), block_size + 1, value); } return s; } Status BlockBasedTable::ReadPropertiesBlock( Rep* rep, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const SequenceNumber largest_seqno) { bool found_properties_block = true; Status s; s = SeekToPropertiesBlock(meta_iter, &found_properties_block); if (!s.ok()) { ROCKS_LOG_WARN(rep->ioptions.info_log, "Error when seeking to properties block from file: %s", s.ToString().c_str()); } else if (found_properties_block) { s = meta_iter->status(); TableProperties* table_properties = nullptr; if (s.ok()) { s = ReadProperties( meta_iter->value(), rep->file.get(), prefetch_buffer, rep->footer, rep->ioptions, &table_properties, true /* verify_checksum */, nullptr /* ret_block_handle */, nullptr /* ret_block_contents */, false /* compression_type_missing */, nullptr /* memory_allocator */); } if (s.IsCorruption()) { s = TryReadPropertiesWithGlobalSeqno( rep, prefetch_buffer, meta_iter->value(), &table_properties); } std::unique_ptr props_guard; if (table_properties != nullptr) { props_guard.reset(table_properties); } if (!s.ok()) { ROCKS_LOG_WARN(rep->ioptions.info_log, "Encountered error while reading data from properties " "block %s", s.ToString().c_str()); } else { assert(table_properties != nullptr); rep->table_properties.reset(props_guard.release()); rep->blocks_maybe_compressed = rep->table_properties->compression_name != CompressionTypeToString(kNoCompression); rep->blocks_definitely_zstd_compressed = (rep->table_properties->compression_name == CompressionTypeToString(kZSTD) || rep->table_properties->compression_name == CompressionTypeToString(kZSTDNotFinalCompression)); } } else { ROCKS_LOG_ERROR(rep->ioptions.info_log, "Cannot find Properties block from file."); } #ifndef ROCKSDB_LITE if (rep->table_properties) { ParseSliceTransform(rep->table_properties->prefix_extractor_name, &(rep->table_prefix_extractor)); } #endif // ROCKSDB_LITE // Read the table properties, if provided. if (rep->table_properties) { rep->whole_key_filtering &= IsFeatureSupported(*(rep->table_properties), BlockBasedTablePropertyNames::kWholeKeyFiltering, rep->ioptions.info_log); rep->prefix_filtering &= IsFeatureSupported( *(rep->table_properties), BlockBasedTablePropertyNames::kPrefixFiltering, rep->ioptions.info_log); s = GetGlobalSequenceNumber(*(rep->table_properties), largest_seqno, &(rep->global_seqno)); if (!s.ok()) { ROCKS_LOG_ERROR(rep->ioptions.info_log, "%s", s.ToString().c_str()); } } return s; } Status BlockBasedTable::ReadRangeDelBlock( Rep* rep, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, const InternalKeyComparator& internal_comparator) { Status s; bool found_range_del_block; BlockHandle range_del_handle; s = SeekToRangeDelBlock(meta_iter, &found_range_del_block, &range_del_handle); if (!s.ok()) { ROCKS_LOG_WARN( rep->ioptions.info_log, "Error when seeking to range delete tombstones block from file: %s", s.ToString().c_str()); } else if (found_range_del_block && !range_del_handle.IsNull()) { ReadOptions read_options; std::unique_ptr iter(NewDataBlockIterator( rep, read_options, range_del_handle, nullptr /* input_iter */, false /* is_index */, true /* key_includes_seq */, true /* index_key_is_full */, nullptr /* get_context */, Status(), prefetch_buffer)); assert(iter != nullptr); s = iter->status(); if (!s.ok()) { ROCKS_LOG_WARN( rep->ioptions.info_log, "Encountered error while reading data from range del block %s", s.ToString().c_str()); } else { rep->fragmented_range_dels = std::make_shared(std::move(iter), internal_comparator); } } return s; } Status BlockBasedTable::ReadCompressionDictBlock( Rep* rep, FilePrefetchBuffer* prefetch_buffer, std::unique_ptr* compression_dict_block) { assert(compression_dict_block != nullptr); Status s; if (!rep->compression_dict_handle.IsNull()) { std::unique_ptr compression_dict_cont{new BlockContents()}; PersistentCacheOptions cache_options; ReadOptions read_options; read_options.verify_checksums = true; BlockFetcher compression_block_fetcher( rep->file.get(), prefetch_buffer, rep->footer, read_options, rep->compression_dict_handle, compression_dict_cont.get(), rep->ioptions, false /* decompress */, false /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), cache_options); s = compression_block_fetcher.ReadBlockContents(); if (!s.ok()) { ROCKS_LOG_WARN( rep->ioptions.info_log, "Encountered error while reading data from compression dictionary " "block %s", s.ToString().c_str()); } else { *compression_dict_block = std::move(compression_dict_cont); } } return s; } Status BlockBasedTable::PrefetchIndexAndFilterBlocks( Rep* rep, FilePrefetchBuffer* prefetch_buffer, InternalIterator* meta_iter, BlockBasedTable* new_table, const SliceTransform* prefix_extractor, bool prefetch_all, const BlockBasedTableOptions& table_options, const int level, const bool prefetch_index_and_filter_in_cache) { Status s; // Find filter handle and filter type if (rep->filter_policy) { for (auto filter_type : {Rep::FilterType::kFullFilter, Rep::FilterType::kPartitionedFilter, Rep::FilterType::kBlockFilter}) { std::string prefix; switch (filter_type) { case Rep::FilterType::kFullFilter: prefix = kFullFilterBlockPrefix; break; case Rep::FilterType::kPartitionedFilter: prefix = kPartitionedFilterBlockPrefix; break; case Rep::FilterType::kBlockFilter: prefix = kFilterBlockPrefix; break; default: assert(0); } std::string filter_block_key = prefix; filter_block_key.append(rep->filter_policy->Name()); if (FindMetaBlock(meta_iter, filter_block_key, &rep->filter_handle) .ok()) { rep->filter_type = filter_type; break; } } } { // Find compression dictionary handle bool found_compression_dict; s = SeekToCompressionDictBlock(meta_iter, &found_compression_dict, &rep->compression_dict_handle); } bool need_upper_bound_check = PrefixExtractorChanged(rep->table_properties.get(), prefix_extractor); BlockBasedTableOptions::IndexType index_type = new_table->UpdateIndexType(); // prefetch the first level of index const bool prefetch_index = prefetch_all || (table_options.pin_top_level_index_and_filter && index_type == BlockBasedTableOptions::kTwoLevelIndexSearch); // prefetch the first level of filter const bool prefetch_filter = prefetch_all || (table_options.pin_top_level_index_and_filter && rep->filter_type == Rep::FilterType::kPartitionedFilter); // Partition fitlers cannot be enabled without partition indexes assert(!prefetch_filter || prefetch_index); // pin both index and filters, down to all partitions const bool pin_all = rep->table_options.pin_l0_filter_and_index_blocks_in_cache && level == 0; // pin the first level of index const bool pin_index = pin_all || (table_options.pin_top_level_index_and_filter && index_type == BlockBasedTableOptions::kTwoLevelIndexSearch); // pin the first level of filter const bool pin_filter = pin_all || (table_options.pin_top_level_index_and_filter && rep->filter_type == Rep::FilterType::kPartitionedFilter); // pre-fetching of blocks is turned on // Will use block cache for meta-blocks access // Always prefetch index and filter for level 0 // TODO(ajkr): also prefetch compression dictionary block if (table_options.cache_index_and_filter_blocks) { assert(table_options.block_cache != nullptr); if (prefetch_index) { // Hack: Call NewIndexIterator() to implicitly add index to the // block_cache CachableEntry index_entry; // check prefix_extractor match only if hash based index is used bool disable_prefix_seek = rep->index_type == BlockBasedTableOptions::kHashSearch && need_upper_bound_check; if (s.ok()) { std::unique_ptr> iter( new_table->NewIndexIterator(ReadOptions(), disable_prefix_seek, nullptr, &index_entry)); s = iter->status(); } if (s.ok()) { // This is the first call to NewIndexIterator() since we're in Open(). // On success it should give us ownership of the `CachableEntry` by // populating `index_entry`. assert(index_entry.value != nullptr); if (prefetch_all) { index_entry.value->CacheDependencies(pin_all); } if (pin_index) { rep->index_entry = std::move(index_entry); } else { index_entry.Release(table_options.block_cache.get()); } } } if (s.ok() && prefetch_filter) { // Hack: Call GetFilter() to implicitly add filter to the block_cache auto filter_entry = new_table->GetFilter(rep->table_prefix_extractor.get()); if (filter_entry.value != nullptr && prefetch_all) { filter_entry.value->CacheDependencies( pin_all, rep->table_prefix_extractor.get()); } // if pin_filter is true then save it in rep_->filter_entry; it will be // released in the destructor only, hence it will be pinned in the // cache while this reader is alive if (pin_filter) { rep->filter_entry = filter_entry; } else { filter_entry.Release(table_options.block_cache.get()); } } } else { // If we don't use block cache for meta-block access, we'll pre-load these // blocks, which will kept in member variables in Rep and with a same life- // time as this table object. IndexReader* index_reader = nullptr; if (s.ok()) { s = new_table->CreateIndexReader(prefetch_buffer, &index_reader, meta_iter, level); } std::unique_ptr compression_dict_block; if (s.ok()) { rep->index_reader.reset(index_reader); // The partitions of partitioned index are always stored in cache. They // are hence follow the configuration for pin and prefetch regardless of // the value of cache_index_and_filter_blocks if (prefetch_index_and_filter_in_cache || level == 0) { rep->index_reader->CacheDependencies(pin_all); } // Set filter block if (rep->filter_policy) { const bool is_a_filter_partition = true; auto filter = new_table->ReadFilter(prefetch_buffer, rep->filter_handle, !is_a_filter_partition, rep->table_prefix_extractor.get()); rep->filter.reset(filter); // Refer to the comment above about paritioned indexes always being // cached if (filter && (prefetch_index_and_filter_in_cache || level == 0)) { filter->CacheDependencies(pin_all, rep->table_prefix_extractor.get()); } } s = ReadCompressionDictBlock(rep, prefetch_buffer, &compression_dict_block); } else { delete index_reader; } if (s.ok() && !rep->compression_dict_handle.IsNull()) { assert(compression_dict_block != nullptr); // TODO(ajkr): find a way to avoid the `compression_dict_block` data copy rep->uncompression_dict.reset(new UncompressionDict( compression_dict_block->data.ToString(), rep->blocks_definitely_zstd_compressed, rep->ioptions.statistics)); } } return s; } void BlockBasedTable::SetupForCompaction() { switch (rep_->ioptions.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->file()->Hint(RandomAccessFile::NORMAL); break; case Options::SEQUENTIAL: rep_->file->file()->Hint(RandomAccessFile::SEQUENTIAL); break; case Options::WILLNEED: rep_->file->file()->Hint(RandomAccessFile::WILLNEED); break; default: assert(false); } } std::shared_ptr BlockBasedTable::GetTableProperties() const { return rep_->table_properties; } size_t BlockBasedTable::ApproximateMemoryUsage() const { size_t usage = 0; if (rep_->filter) { usage += rep_->filter->ApproximateMemoryUsage(); } if (rep_->index_reader) { usage += rep_->index_reader->ApproximateMemoryUsage(); } if (rep_->uncompression_dict) { usage += rep_->uncompression_dict->ApproximateMemoryUsage(); } return usage; } // Load the meta-block from the file. On success, return the loaded meta block // and its iterator. Status BlockBasedTable::ReadMetaBlock(Rep* rep, FilePrefetchBuffer* prefetch_buffer, std::unique_ptr* meta_block, std::unique_ptr* iter) { // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. std::unique_ptr meta; Status s = ReadBlockFromFile( rep->file.get(), prefetch_buffer, rep->footer, ReadOptions(), rep->footer.metaindex_handle(), &meta, rep->ioptions, true /* decompress */, true /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep->persistent_cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */, GetMemoryAllocator(rep->table_options)); if (!s.ok()) { ROCKS_LOG_ERROR(rep->ioptions.info_log, "Encountered error while reading data from properties" " block %s", s.ToString().c_str()); return s; } *meta_block = std::move(meta); // meta block uses bytewise comparator. iter->reset(meta_block->get()->NewIterator( BytewiseComparator(), BytewiseComparator())); return Status::OK(); } Status BlockBasedTable::GetDataBlockFromCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, Rep* rep, const ReadOptions& read_options, BlockBasedTable::CachableEntry* block, const UncompressionDict& uncompression_dict, size_t read_amp_bytes_per_bit, bool is_index, GetContext* get_context) { Status s; BlockContents* compressed_block = nullptr; Cache::Handle* block_cache_compressed_handle = nullptr; Statistics* statistics = rep->ioptions.statistics; // Lookup uncompressed cache first if (block_cache != nullptr) { block->cache_handle = GetEntryFromCache( block_cache, block_cache_key, rep->level, is_index ? BLOCK_CACHE_INDEX_MISS : BLOCK_CACHE_DATA_MISS, is_index ? BLOCK_CACHE_INDEX_HIT : BLOCK_CACHE_DATA_HIT, get_context ? (is_index ? &get_context->get_context_stats_.num_cache_index_miss : &get_context->get_context_stats_.num_cache_data_miss) : nullptr, get_context ? (is_index ? &get_context->get_context_stats_.num_cache_index_hit : &get_context->get_context_stats_.num_cache_data_hit) : nullptr, statistics, get_context); if (block->cache_handle != nullptr) { block->value = reinterpret_cast(block_cache->Value(block->cache_handle)); return s; } } // If not found, search from the compressed block cache. assert(block->cache_handle == nullptr && block->value == nullptr); if (block_cache_compressed == nullptr) { return s; } assert(!compressed_block_cache_key.empty()); block_cache_compressed_handle = block_cache_compressed->Lookup(compressed_block_cache_key); // if we found in the compressed cache, then uncompress and insert into // uncompressed cache if (block_cache_compressed_handle == nullptr) { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS); return s; } // found compressed block RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT); compressed_block = reinterpret_cast( block_cache_compressed->Value(block_cache_compressed_handle)); CompressionType compression_type = compressed_block->get_compression_type(); assert(compression_type != kNoCompression); // Retrieve the uncompressed contents into a new buffer BlockContents contents; UncompressionContext context(compression_type); UncompressionInfo info(context, uncompression_dict, compression_type); s = UncompressBlockContents(info, compressed_block->data.data(), compressed_block->data.size(), &contents, rep->table_options.format_version, rep->ioptions, GetMemoryAllocator(rep->table_options)); // Insert uncompressed block into block cache if (s.ok()) { block->value = new Block(std::move(contents), rep->get_global_seqno(is_index), read_amp_bytes_per_bit, statistics); // uncompressed block if (block_cache != nullptr && block->value->own_bytes() && read_options.fill_cache) { size_t charge = block->value->ApproximateMemoryUsage(); s = block_cache->Insert(block_cache_key, block->value, charge, &DeleteCachedEntry, &(block->cache_handle)); #ifndef NDEBUG block_cache->TEST_mark_as_data_block(block_cache_key, charge); #endif // NDEBUG if (s.ok()) { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_add++; get_context->get_context_stats_.num_cache_bytes_write += charge; } else { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, charge); } if (is_index) { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_index_add++; get_context->get_context_stats_.num_cache_index_bytes_insert += charge; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, charge); } } else { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_data_add++; get_context->get_context_stats_.num_cache_data_bytes_insert += charge; } else { RecordTick(statistics, BLOCK_CACHE_DATA_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, charge); } } } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete block->value; block->value = nullptr; } } } // Release hold on compressed cache entry block_cache_compressed->Release(block_cache_compressed_handle); return s; } Status BlockBasedTable::PutDataBlockToCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, const ReadOptions& /*read_options*/, const ImmutableCFOptions& ioptions, CachableEntry* cached_block, BlockContents* raw_block_contents, CompressionType raw_block_comp_type, uint32_t format_version, const UncompressionDict& uncompression_dict, SequenceNumber seq_no, size_t read_amp_bytes_per_bit, MemoryAllocator* memory_allocator, bool is_index, Cache::Priority priority, GetContext* get_context) { assert(raw_block_comp_type == kNoCompression || block_cache_compressed != nullptr); Status s; // Retrieve the uncompressed contents into a new buffer BlockContents uncompressed_block_contents; Statistics* statistics = ioptions.statistics; if (raw_block_comp_type != kNoCompression) { UncompressionContext context(raw_block_comp_type); UncompressionInfo info(context, uncompression_dict, raw_block_comp_type); s = UncompressBlockContents(info, raw_block_contents->data.data(), raw_block_contents->data.size(), &uncompressed_block_contents, format_version, ioptions, memory_allocator); } if (!s.ok()) { return s; } if (raw_block_comp_type != kNoCompression) { cached_block->value = new Block(std::move(uncompressed_block_contents), seq_no, read_amp_bytes_per_bit, statistics); // uncompressed block } else { cached_block->value = new Block(std::move(*raw_block_contents), seq_no, read_amp_bytes_per_bit, ioptions.statistics); } // Insert compressed block into compressed block cache. // Release the hold on the compressed cache entry immediately. if (block_cache_compressed != nullptr && raw_block_comp_type != kNoCompression && raw_block_contents != nullptr && raw_block_contents->own_bytes()) { #ifndef NDEBUG assert(raw_block_contents->is_raw_block); #endif // NDEBUG // We cannot directly put raw_block_contents because this could point to // an object in the stack. BlockContents* block_cont_for_comp_cache = new BlockContents(std::move(*raw_block_contents)); s = block_cache_compressed->Insert( compressed_block_cache_key, block_cont_for_comp_cache, block_cont_for_comp_cache->ApproximateMemoryUsage(), &DeleteCachedEntry); if (s.ok()) { // Avoid the following code to delete this cached block. RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD); } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD_FAILURES); delete block_cont_for_comp_cache; } } // insert into uncompressed block cache if (block_cache != nullptr && cached_block->value->own_bytes()) { size_t charge = cached_block->value->ApproximateMemoryUsage(); s = block_cache->Insert(block_cache_key, cached_block->value, charge, &DeleteCachedEntry, &(cached_block->cache_handle), priority); #ifndef NDEBUG block_cache->TEST_mark_as_data_block(block_cache_key, charge); #endif // NDEBUG if (s.ok()) { assert(cached_block->cache_handle != nullptr); if (get_context != nullptr) { get_context->get_context_stats_.num_cache_add++; get_context->get_context_stats_.num_cache_bytes_write += charge; } else { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, charge); } if (is_index) { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_index_add++; get_context->get_context_stats_.num_cache_index_bytes_insert += charge; } else { RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, charge); } } else { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_data_add++; get_context->get_context_stats_.num_cache_data_bytes_insert += charge; } else { RecordTick(statistics, BLOCK_CACHE_DATA_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, charge); } } assert(reinterpret_cast(block_cache->Value( cached_block->cache_handle)) == cached_block->value); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete cached_block->value; cached_block->value = nullptr; } } return s; } FilterBlockReader* BlockBasedTable::ReadFilter( FilePrefetchBuffer* prefetch_buffer, const BlockHandle& filter_handle, const bool is_a_filter_partition, const SliceTransform* prefix_extractor) const { auto& rep = rep_; // TODO: We might want to unify with ReadBlockFromFile() if we start // requiring checksum verification in Table::Open. if (rep->filter_type == Rep::FilterType::kNoFilter) { return nullptr; } BlockContents block; BlockFetcher block_fetcher( rep->file.get(), prefetch_buffer, rep->footer, ReadOptions(), filter_handle, &block, rep->ioptions, false /* decompress */, false /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep->persistent_cache_options, GetMemoryAllocator(rep->table_options)); Status s = block_fetcher.ReadBlockContents(); if (!s.ok()) { // Error reading the block return nullptr; } assert(rep->filter_policy); auto filter_type = rep->filter_type; if (rep->filter_type == Rep::FilterType::kPartitionedFilter && is_a_filter_partition) { filter_type = Rep::FilterType::kFullFilter; } switch (filter_type) { case Rep::FilterType::kPartitionedFilter: { return new PartitionedFilterBlockReader( rep->prefix_filtering ? prefix_extractor : nullptr, rep->whole_key_filtering, std::move(block), nullptr, rep->ioptions.statistics, rep->internal_comparator, this, rep_->table_properties == nullptr || rep_->table_properties->index_key_is_user_key == 0, rep_->table_properties == nullptr || rep_->table_properties->index_value_is_delta_encoded == 0); } case Rep::FilterType::kBlockFilter: return new BlockBasedFilterBlockReader( rep->prefix_filtering ? prefix_extractor : nullptr, rep->table_options, rep->whole_key_filtering, std::move(block), rep->ioptions.statistics); case Rep::FilterType::kFullFilter: { auto filter_bits_reader = rep->filter_policy->GetFilterBitsReader(block.data); assert(filter_bits_reader != nullptr); return new FullFilterBlockReader( rep->prefix_filtering ? prefix_extractor : nullptr, rep->whole_key_filtering, std::move(block), filter_bits_reader, rep->ioptions.statistics); } default: // filter_type is either kNoFilter (exited the function at the first if), // or it must be covered in this switch block assert(false); return nullptr; } } BlockBasedTable::CachableEntry BlockBasedTable::GetFilter( const SliceTransform* prefix_extractor, FilePrefetchBuffer* prefetch_buffer, bool no_io, GetContext* get_context) const { const BlockHandle& filter_blk_handle = rep_->filter_handle; const bool is_a_filter_partition = true; return GetFilter(prefetch_buffer, filter_blk_handle, !is_a_filter_partition, no_io, get_context, prefix_extractor); } BlockBasedTable::CachableEntry BlockBasedTable::GetFilter( FilePrefetchBuffer* prefetch_buffer, const BlockHandle& filter_blk_handle, const bool is_a_filter_partition, bool no_io, GetContext* get_context, const SliceTransform* prefix_extractor) const { // If cache_index_and_filter_blocks is false, filter should be pre-populated. // We will return rep_->filter anyway. rep_->filter can be nullptr if filter // read fails at Open() time. We don't want to reload again since it will // most probably fail again. if (!is_a_filter_partition && !rep_->table_options.cache_index_and_filter_blocks) { return {rep_->filter.get(), nullptr /* cache handle */}; } Cache* block_cache = rep_->table_options.block_cache.get(); if (rep_->filter_policy == nullptr /* do not use filter */ || block_cache == nullptr /* no block cache at all */) { return {nullptr /* filter */, nullptr /* cache handle */}; } if (!is_a_filter_partition && rep_->filter_entry.IsSet()) { return rep_->filter_entry; } PERF_TIMER_GUARD(read_filter_block_nanos); // Fetching from the cache char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, filter_blk_handle, cache_key); Statistics* statistics = rep_->ioptions.statistics; auto cache_handle = GetEntryFromCache( block_cache, key, rep_->level, BLOCK_CACHE_FILTER_MISS, BLOCK_CACHE_FILTER_HIT, get_context ? &get_context->get_context_stats_.num_cache_filter_miss : nullptr, get_context ? &get_context->get_context_stats_.num_cache_filter_hit : nullptr, statistics, get_context); FilterBlockReader* filter = nullptr; if (cache_handle != nullptr) { PERF_COUNTER_ADD(block_cache_filter_hit_count, 1); filter = reinterpret_cast(block_cache->Value(cache_handle)); } else if (no_io) { // Do not invoke any io. return CachableEntry(); } else { filter = ReadFilter(prefetch_buffer, filter_blk_handle, is_a_filter_partition, prefix_extractor); if (filter != nullptr) { size_t usage = filter->ApproximateMemoryUsage(); Status s = block_cache->Insert( key, filter, usage, &DeleteCachedFilterEntry, &cache_handle, rep_->table_options.cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW); if (s.ok()) { PERF_COUNTER_ADD(filter_block_read_count, 1); if (get_context != nullptr) { get_context->get_context_stats_.num_cache_add++; get_context->get_context_stats_.num_cache_bytes_write += usage; get_context->get_context_stats_.num_cache_filter_add++; get_context->get_context_stats_.num_cache_filter_bytes_insert += usage; } else { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usage); RecordTick(statistics, BLOCK_CACHE_FILTER_ADD); RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT, usage); } } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete filter; return CachableEntry(); } } } return {filter, cache_handle}; } BlockBasedTable::CachableEntry BlockBasedTable::GetUncompressionDict(Rep* rep, FilePrefetchBuffer* prefetch_buffer, bool no_io, GetContext* get_context) { if (!rep->table_options.cache_index_and_filter_blocks) { // block cache is either disabled or not used for meta-blocks. In either // case, BlockBasedTableReader is the owner of the uncompression dictionary. return {rep->uncompression_dict.get(), nullptr /* cache handle */}; } if (rep->compression_dict_handle.IsNull()) { return {nullptr, nullptr}; } char cache_key_buf[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto cache_key = GetCacheKey(rep->cache_key_prefix, rep->cache_key_prefix_size, rep->compression_dict_handle, cache_key_buf); auto cache_handle = GetEntryFromCache( rep->table_options.block_cache.get(), cache_key, rep->level, BLOCK_CACHE_COMPRESSION_DICT_MISS, BLOCK_CACHE_COMPRESSION_DICT_HIT, get_context ? &get_context->get_context_stats_.num_cache_compression_dict_miss : nullptr, get_context ? &get_context->get_context_stats_.num_cache_compression_dict_hit : nullptr, rep->ioptions.statistics, get_context); UncompressionDict* dict = nullptr; if (cache_handle != nullptr) { dict = reinterpret_cast( rep->table_options.block_cache->Value(cache_handle)); } else if (no_io) { // Do not invoke any io. } else { std::unique_ptr compression_dict_block; Status s = ReadCompressionDictBlock(rep, prefetch_buffer, &compression_dict_block); size_t usage = 0; if (s.ok()) { assert(compression_dict_block != nullptr); // TODO(ajkr): find a way to avoid the `compression_dict_block` data copy dict = new UncompressionDict(compression_dict_block->data.ToString(), rep->blocks_definitely_zstd_compressed, rep->ioptions.statistics); usage = dict->ApproximateMemoryUsage(); s = rep->table_options.block_cache->Insert( cache_key, dict, usage, &DeleteCachedUncompressionDictEntry, &cache_handle, rep->table_options.cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW); } if (s.ok()) { PERF_COUNTER_ADD(compression_dict_block_read_count, 1); if (get_context != nullptr) { get_context->get_context_stats_.num_cache_add++; get_context->get_context_stats_.num_cache_bytes_write += usage; get_context->get_context_stats_.num_cache_compression_dict_add++; get_context->get_context_stats_ .num_cache_compression_dict_bytes_insert += usage; } else { RecordTick(rep->ioptions.statistics, BLOCK_CACHE_ADD); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_BYTES_WRITE, usage); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_COMPRESSION_DICT_ADD); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_COMPRESSION_DICT_BYTES_INSERT, usage); } } else { // There should be no way to get here if block cache insertion succeeded. // Though it is still possible something failed earlier. RecordTick(rep->ioptions.statistics, BLOCK_CACHE_ADD_FAILURES); delete dict; dict = nullptr; assert(cache_handle == nullptr); } } return {dict, cache_handle}; } // disable_prefix_seek should be set to true when prefix_extractor found in SST // differs from the one in mutable_cf_options and index type is HashBasedIndex InternalIteratorBase* BlockBasedTable::NewIndexIterator( const ReadOptions& read_options, bool disable_prefix_seek, IndexBlockIter* input_iter, CachableEntry* index_entry, GetContext* get_context) { // index reader has already been pre-populated. if (rep_->index_reader) { // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return rep_->index_reader->NewIterator( input_iter, read_options.total_order_seek || disable_prefix_seek, read_options.fill_cache); } // we have a pinned index block if (rep_->index_entry.IsSet()) { // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return rep_->index_entry.value->NewIterator( input_iter, read_options.total_order_seek || disable_prefix_seek, read_options.fill_cache); } PERF_TIMER_GUARD(read_index_block_nanos); const bool no_io = read_options.read_tier == kBlockCacheTier; Cache* block_cache = rep_->table_options.block_cache.get(); char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKeyFromOffset(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->dummy_index_reader_offset, cache_key); Statistics* statistics = rep_->ioptions.statistics; auto cache_handle = GetEntryFromCache( block_cache, key, rep_->level, BLOCK_CACHE_INDEX_MISS, BLOCK_CACHE_INDEX_HIT, get_context ? &get_context->get_context_stats_.num_cache_index_miss : nullptr, get_context ? &get_context->get_context_stats_.num_cache_index_hit : nullptr, statistics, get_context); if (cache_handle == nullptr && no_io) { if (input_iter != nullptr) { input_iter->Invalidate(Status::Incomplete("no blocking io")); return input_iter; } else { return NewErrorInternalIterator( Status::Incomplete("no blocking io")); } } IndexReader* index_reader = nullptr; if (cache_handle != nullptr) { PERF_COUNTER_ADD(block_cache_index_hit_count, 1); index_reader = reinterpret_cast(block_cache->Value(cache_handle)); } else { // Create index reader and put it in the cache. Status s; TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:2"); s = CreateIndexReader(nullptr /* prefetch_buffer */, &index_reader); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:1"); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:3"); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:4"); size_t charge = 0; if (s.ok()) { assert(index_reader != nullptr); charge = index_reader->ApproximateMemoryUsage(); s = block_cache->Insert( key, index_reader, charge, &DeleteCachedIndexEntry, &cache_handle, rep_->table_options.cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW); } if (s.ok()) { if (get_context != nullptr) { get_context->get_context_stats_.num_cache_add++; get_context->get_context_stats_.num_cache_bytes_write += charge; } else { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, charge); } PERF_COUNTER_ADD(index_block_read_count, 1); RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, charge); } else { if (index_reader != nullptr) { delete index_reader; } RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); // make sure if something goes wrong, index_reader shall remain intact. if (input_iter != nullptr) { input_iter->Invalidate(s); return input_iter; } else { return NewErrorInternalIterator(s); } } } assert(cache_handle); // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. auto* iter = index_reader->NewIterator( input_iter, read_options.total_order_seek || disable_prefix_seek); // the caller would like to take ownership of the index block // don't call RegisterCleanup() in this case, the caller will take care of it if (index_entry != nullptr) { *index_entry = {index_reader, cache_handle}; } else { iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, cache_handle); } return iter; } // Convert an index iterator value (i.e., an encoded BlockHandle) // into an iterator over the contents of the corresponding block. // If input_iter is null, new a iterator // If input_iter is not null, update this iter and return it template TBlockIter* BlockBasedTable::NewDataBlockIterator( Rep* rep, const ReadOptions& ro, const BlockHandle& handle, TBlockIter* input_iter, bool is_index, bool key_includes_seq, bool index_key_is_full, GetContext* get_context, Status s, FilePrefetchBuffer* prefetch_buffer) { PERF_TIMER_GUARD(new_table_block_iter_nanos); Cache* block_cache = rep->table_options.block_cache.get(); CachableEntry block; TBlockIter* iter; { const bool no_io = (ro.read_tier == kBlockCacheTier); auto uncompression_dict_storage = GetUncompressionDict(rep, prefetch_buffer, no_io, get_context); const UncompressionDict& uncompression_dict = uncompression_dict_storage.value == nullptr ? UncompressionDict::GetEmptyDict() : *uncompression_dict_storage.value; if (s.ok()) { s = MaybeReadBlockAndLoadToCache(prefetch_buffer, rep, ro, handle, uncompression_dict, &block, is_index, get_context); } if (input_iter != nullptr) { iter = input_iter; } else { iter = new TBlockIter; } // Didn't get any data from block caches. if (s.ok() && block.value == nullptr) { if (no_io) { // Could not read from block_cache and can't do IO iter->Invalidate(Status::Incomplete("no blocking io")); return iter; } std::unique_ptr block_value; { StopWatch sw(rep->ioptions.env, rep->ioptions.statistics, READ_BLOCK_GET_MICROS); s = ReadBlockFromFile( rep->file.get(), prefetch_buffer, rep->footer, ro, handle, &block_value, rep->ioptions, rep->blocks_maybe_compressed /*do_decompress*/, rep->blocks_maybe_compressed, uncompression_dict, rep->persistent_cache_options, is_index ? kDisableGlobalSequenceNumber : rep->global_seqno, rep->table_options.read_amp_bytes_per_bit, GetMemoryAllocator(rep->table_options)); } if (s.ok()) { block.value = block_value.release(); } } // TODO(ajkr): also pin compression dictionary block when // `pin_l0_filter_and_index_blocks_in_cache == true`. uncompression_dict_storage.Release(block_cache); } if (s.ok()) { assert(block.value != nullptr); const bool kTotalOrderSeek = true; // Block contents are pinned and it is still pinned after the iterator // is destroyed as long as cleanup functions are moved to another object, // when: // 1. block cache handle is set to be released in cleanup function, or // 2. it's pointing to immortal source. If own_bytes is true then we are // not reading data from the original source, whether immortal or not. // Otherwise, the block is pinned iff the source is immortal. bool block_contents_pinned = (block.cache_handle != nullptr || (!block.value->own_bytes() && rep->immortal_table)); iter = block.value->NewIterator( &rep->internal_comparator, rep->internal_comparator.user_comparator(), iter, rep->ioptions.statistics, kTotalOrderSeek, key_includes_seq, index_key_is_full, block_contents_pinned); if (block.cache_handle != nullptr) { iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, block.cache_handle); } else { if (!ro.fill_cache && rep->cache_key_prefix_size != 0) { // insert a dummy record to block cache to track the memory usage Cache::Handle* cache_handle; // There are two other types of cache keys: 1) SST cache key added in // `MaybeReadBlockAndLoadToCache` 2) dummy cache key added in // `write_buffer_manager`. Use longer prefix (41 bytes) to differentiate // from SST cache key(31 bytes), and use non-zero prefix to // differentiate from `write_buffer_manager` const size_t kExtraCacheKeyPrefix = kMaxVarint64Length * 4 + 1; char cache_key[kExtraCacheKeyPrefix + kMaxVarint64Length]; // Prefix: use rep->cache_key_prefix padded by 0s memset(cache_key, 0, kExtraCacheKeyPrefix + kMaxVarint64Length); assert(rep->cache_key_prefix_size != 0); assert(rep->cache_key_prefix_size <= kExtraCacheKeyPrefix); memcpy(cache_key, rep->cache_key_prefix, rep->cache_key_prefix_size); char* end = EncodeVarint64(cache_key + kExtraCacheKeyPrefix, next_cache_key_id_++); assert(end - cache_key <= static_cast(kExtraCacheKeyPrefix + kMaxVarint64Length)); Slice unique_key = Slice(cache_key, static_cast(end - cache_key)); s = block_cache->Insert(unique_key, nullptr, block.value->ApproximateMemoryUsage(), nullptr, &cache_handle); if (s.ok()) { if (cache_handle != nullptr) { iter->RegisterCleanup(&ForceReleaseCachedEntry, block_cache, cache_handle); } } } iter->RegisterCleanup(&DeleteHeldResource, block.value, nullptr); } } else { assert(block.value == nullptr); iter->Invalidate(s); } return iter; } Status BlockBasedTable::MaybeReadBlockAndLoadToCache( FilePrefetchBuffer* prefetch_buffer, Rep* rep, const ReadOptions& ro, const BlockHandle& handle, const UncompressionDict& uncompression_dict, CachableEntry* block_entry, bool is_index, GetContext* get_context) { assert(block_entry != nullptr); const bool no_io = (ro.read_tier == kBlockCacheTier); Cache* block_cache = rep->table_options.block_cache.get(); // No point to cache compressed blocks if it never goes away Cache* block_cache_compressed = rep->immortal_table ? nullptr : rep->table_options.block_cache_compressed.get(); // First, try to get the block from the cache // // If either block cache is enabled, we'll try to read from it. Status s; char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; char compressed_cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice key /* key to the block cache */; Slice ckey /* key to the compressed block cache */; if (block_cache != nullptr || block_cache_compressed != nullptr) { // create key for block cache if (block_cache != nullptr) { key = GetCacheKey(rep->cache_key_prefix, rep->cache_key_prefix_size, handle, cache_key); } if (block_cache_compressed != nullptr) { ckey = GetCacheKey(rep->compressed_cache_key_prefix, rep->compressed_cache_key_prefix_size, handle, compressed_cache_key); } s = GetDataBlockFromCache(key, ckey, block_cache, block_cache_compressed, rep, ro, block_entry, uncompression_dict, rep->table_options.read_amp_bytes_per_bit, is_index, get_context); // Can't find the block from the cache. If I/O is allowed, read from the // file. if (block_entry->value == nullptr && !no_io && ro.fill_cache) { Statistics* statistics = rep->ioptions.statistics; bool do_decompress = block_cache_compressed == nullptr && rep->blocks_maybe_compressed; CompressionType raw_block_comp_type; BlockContents raw_block_contents; { StopWatch sw(rep->ioptions.env, statistics, READ_BLOCK_GET_MICROS); BlockFetcher block_fetcher( rep->file.get(), prefetch_buffer, rep->footer, ro, handle, &raw_block_contents, rep->ioptions, do_decompress /* do uncompress */, rep->blocks_maybe_compressed, uncompression_dict, rep->persistent_cache_options, GetMemoryAllocator(rep->table_options), GetMemoryAllocatorForCompressedBlock(rep->table_options)); s = block_fetcher.ReadBlockContents(); raw_block_comp_type = block_fetcher.get_compression_type(); } if (s.ok()) { SequenceNumber seq_no = rep->get_global_seqno(is_index); // If filling cache is allowed and a cache is configured, try to put the // block to the cache. s = PutDataBlockToCache( key, ckey, block_cache, block_cache_compressed, ro, rep->ioptions, block_entry, &raw_block_contents, raw_block_comp_type, rep->table_options.format_version, uncompression_dict, seq_no, rep->table_options.read_amp_bytes_per_bit, GetMemoryAllocator(rep->table_options), is_index, is_index && rep->table_options .cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW, get_context); } } } assert(s.ok() || block_entry->value == nullptr); return s; } BlockBasedTable::PartitionedIndexIteratorState::PartitionedIndexIteratorState( BlockBasedTable* table, std::unordered_map>* block_map, bool index_key_includes_seq, bool index_key_is_full) : table_(table), block_map_(block_map), index_key_includes_seq_(index_key_includes_seq), index_key_is_full_(index_key_is_full) {} InternalIteratorBase* BlockBasedTable::PartitionedIndexIteratorState::NewSecondaryIterator( const BlockHandle& handle) { // Return a block iterator on the index partition auto rep = table_->get_rep(); auto block = block_map_->find(handle.offset()); // This is a possible scenario since block cache might not have had space // for the partition if (block != block_map_->end()) { PERF_COUNTER_ADD(block_cache_hit_count, 1); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_INDEX_HIT); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_HIT); Cache* block_cache = rep->table_options.block_cache.get(); assert(block_cache); RecordTick(rep->ioptions.statistics, BLOCK_CACHE_BYTES_READ, block_cache->GetUsage(block->second.cache_handle)); Statistics* kNullStats = nullptr; // We don't return pinned datat from index blocks, so no need // to set `block_contents_pinned`. return block->second.value->NewIterator( &rep->internal_comparator, rep->internal_comparator.user_comparator(), nullptr, kNullStats, true, index_key_includes_seq_, index_key_is_full_); } // Create an empty iterator return new IndexBlockIter(); } // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in BlockBasedTableOptions.filter_policy. // In particular, we require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // Otherwise, this method guarantees no I/O will be incurred. // // REQUIRES: this method shouldn't be called while the DB lock is held. bool BlockBasedTable::PrefixMayMatch( const Slice& internal_key, const ReadOptions& read_options, const SliceTransform* options_prefix_extractor, const bool need_upper_bound_check) { if (!rep_->filter_policy) { return true; } const SliceTransform* prefix_extractor; if (rep_->table_prefix_extractor == nullptr) { if (need_upper_bound_check) { return true; } prefix_extractor = options_prefix_extractor; } else { prefix_extractor = rep_->table_prefix_extractor.get(); } auto user_key = ExtractUserKey(internal_key); if (!prefix_extractor->InDomain(user_key)) { return true; } bool may_match = true; Status s; // First, try check with full filter auto filter_entry = GetFilter(prefix_extractor); FilterBlockReader* filter = filter_entry.value; bool filter_checked = true; if (filter != nullptr) { if (!filter->IsBlockBased()) { const Slice* const const_ikey_ptr = &internal_key; may_match = filter->RangeMayExist( read_options.iterate_upper_bound, user_key, prefix_extractor, rep_->internal_comparator.user_comparator(), const_ikey_ptr, &filter_checked, need_upper_bound_check); } else { // if prefix_extractor changed for block based filter, skip filter if (need_upper_bound_check) { if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } return true; } auto prefix = prefix_extractor->Transform(user_key); InternalKey internal_key_prefix(prefix, kMaxSequenceNumber, kTypeValue); auto internal_prefix = internal_key_prefix.Encode(); // To prevent any io operation in this method, we set `read_tier` to make // sure we always read index or filter only when they have already been // loaded to memory. ReadOptions no_io_read_options; no_io_read_options.read_tier = kBlockCacheTier; // Then, try find it within each block // we already know prefix_extractor and prefix_extractor_name must match // because `CheckPrefixMayMatch` first checks `check_filter_ == true` std::unique_ptr> iiter( NewIndexIterator(no_io_read_options, /* need_upper_bound_check */ false)); iiter->Seek(internal_prefix); if (!iiter->Valid()) { // we're past end of file // if it's incomplete, it means that we avoided I/O // and we're not really sure that we're past the end // of the file may_match = iiter->status().IsIncomplete(); } else if ((rep_->table_properties && rep_->table_properties->index_key_is_user_key ? iiter->key() : ExtractUserKey(iiter->key())) .starts_with(ExtractUserKey(internal_prefix))) { // we need to check for this subtle case because our only // guarantee is that "the key is a string >= last key in that data // block" according to the doc/table_format.txt spec. // // Suppose iiter->key() starts with the desired prefix; it is not // necessarily the case that the corresponding data block will // contain the prefix, since iiter->key() need not be in the // block. However, the next data block may contain the prefix, so // we return true to play it safe. may_match = true; } else if (filter->IsBlockBased()) { // iiter->key() does NOT start with the desired prefix. Because // Seek() finds the first key that is >= the seek target, this // means that iiter->key() > prefix. Thus, any data blocks coming // after the data block corresponding to iiter->key() cannot // possibly contain the key. Thus, the corresponding data block // is the only on could potentially contain the prefix. BlockHandle handle = iiter->value(); may_match = filter->PrefixMayMatch(prefix, prefix_extractor, handle.offset()); } } } if (filter_checked) { Statistics* statistics = rep_->ioptions.statistics; RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED); if (!may_match) { RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL); } } // if rep_->filter_entry is not set, we should call Release(); otherwise // don't call, in this case we have a local copy in rep_->filter_entry, // it's pinned to the cache and will be released in the destructor if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } return may_match; } template void BlockBasedTableIterator::Seek(const Slice& target) { is_out_of_bound_ = false; if (!CheckPrefixMayMatch(target)) { ResetDataIter(); return; } SavePrevIndexValue(); index_iter_->Seek(target); if (!index_iter_->Valid()) { ResetDataIter(); return; } InitDataBlock(); block_iter_.Seek(target); FindKeyForward(); CheckOutOfBound(); assert( !block_iter_.Valid() || (key_includes_seq_ && icomp_.Compare(target, block_iter_.key()) <= 0) || (!key_includes_seq_ && user_comparator_.Compare(ExtractUserKey(target), block_iter_.key()) <= 0)); } template void BlockBasedTableIterator::SeekForPrev( const Slice& target) { is_out_of_bound_ = false; if (!CheckPrefixMayMatch(target)) { ResetDataIter(); return; } SavePrevIndexValue(); // Call Seek() rather than SeekForPrev() in the index block, because the // target data block will likely to contain the position for `target`, the // same as Seek(), rather than than before. // For example, if we have three data blocks, each containing two keys: // [2, 4] [6, 8] [10, 12] // (the keys in the index block would be [4, 8, 12]) // and the user calls SeekForPrev(7), we need to go to the second block, // just like if they call Seek(7). // The only case where the block is difference is when they seek to a position // in the boundary. For example, if they SeekForPrev(5), we should go to the // first block, rather than the second. However, we don't have the information // to distinguish the two unless we read the second block. In this case, we'll // end up with reading two blocks. index_iter_->Seek(target); if (!index_iter_->Valid()) { index_iter_->SeekToLast(); if (!index_iter_->Valid()) { ResetDataIter(); block_iter_points_to_real_block_ = false; return; } } InitDataBlock(); block_iter_.SeekForPrev(target); FindKeyBackward(); assert(!block_iter_.Valid() || icomp_.Compare(target, block_iter_.key()) >= 0); } template void BlockBasedTableIterator::SeekToFirst() { is_out_of_bound_ = false; SavePrevIndexValue(); index_iter_->SeekToFirst(); if (!index_iter_->Valid()) { ResetDataIter(); return; } InitDataBlock(); block_iter_.SeekToFirst(); FindKeyForward(); CheckOutOfBound(); } template void BlockBasedTableIterator::SeekToLast() { is_out_of_bound_ = false; SavePrevIndexValue(); index_iter_->SeekToLast(); if (!index_iter_->Valid()) { ResetDataIter(); return; } InitDataBlock(); block_iter_.SeekToLast(); FindKeyBackward(); } template void BlockBasedTableIterator::Next() { assert(block_iter_points_to_real_block_); block_iter_.Next(); FindKeyForward(); } template bool BlockBasedTableIterator::NextAndGetResult( Slice* ret_key) { Next(); bool is_valid = Valid(); if (is_valid) { *ret_key = key(); } return is_valid; } template void BlockBasedTableIterator::Prev() { assert(block_iter_points_to_real_block_); block_iter_.Prev(); FindKeyBackward(); } // Found that 256 KB readahead size provides the best performance, based on // experiments, for auto readahead. Experiment data is in PR #3282. template const size_t BlockBasedTableIterator::kMaxAutoReadaheadSize = 256 * 1024; template void BlockBasedTableIterator::InitDataBlock() { BlockHandle data_block_handle = index_iter_->value(); if (!block_iter_points_to_real_block_ || data_block_handle.offset() != prev_index_value_.offset() || // if previous attempt of reading the block missed cache, try again block_iter_.status().IsIncomplete()) { if (block_iter_points_to_real_block_) { ResetDataIter(); } auto* rep = table_->get_rep(); // Prefetch additional data for range scans (iterators). Enabled only for // user reads. // Implicit auto readahead: // Enabled after 2 sequential IOs when ReadOptions.readahead_size == 0. // Explicit user requested readahead: // Enabled from the very first IO when ReadOptions.readahead_size is set. if (!for_compaction_) { if (read_options_.readahead_size == 0) { // Implicit auto readahead num_file_reads_++; if (num_file_reads_ > kMinNumFileReadsToStartAutoReadahead) { if (!rep->file->use_direct_io() && (data_block_handle.offset() + static_cast(data_block_handle.size()) + kBlockTrailerSize > readahead_limit_)) { // Buffered I/O // Discarding the return status of Prefetch calls intentionally, as // we can fallback to reading from disk if Prefetch fails. rep->file->Prefetch(data_block_handle.offset(), readahead_size_); readahead_limit_ = static_cast(data_block_handle.offset() + readahead_size_); // Keep exponentially increasing readahead size until // kMaxAutoReadaheadSize. readahead_size_ = std::min(kMaxAutoReadaheadSize, readahead_size_ * 2); } else if (rep->file->use_direct_io() && !prefetch_buffer_) { // Direct I/O // Let FilePrefetchBuffer take care of the readahead. prefetch_buffer_.reset( new FilePrefetchBuffer(rep->file.get(), kInitAutoReadaheadSize, kMaxAutoReadaheadSize)); } } } else if (!prefetch_buffer_) { // Explicit user requested readahead // The actual condition is: // if (read_options_.readahead_size != 0 && !prefetch_buffer_) prefetch_buffer_.reset(new FilePrefetchBuffer( rep->file.get(), read_options_.readahead_size, read_options_.readahead_size)); } } Status s; BlockBasedTable::NewDataBlockIterator( rep, read_options_, data_block_handle, &block_iter_, is_index_, key_includes_seq_, index_key_is_full_, /* get_context */ nullptr, s, prefetch_buffer_.get()); block_iter_points_to_real_block_ = true; } } template void BlockBasedTableIterator::FindBlockForward() { // TODO the while loop inherits from two-level-iterator. We don't know // whether a block can be empty so it can be replaced by an "if". do { if (!block_iter_.status().ok()) { return; } // Whether next data block is out of upper bound, if there is one. bool next_block_is_out_of_bound = false; if (read_options_.iterate_upper_bound != nullptr && block_iter_points_to_real_block_) { next_block_is_out_of_bound = (user_comparator_.Compare(*read_options_.iterate_upper_bound, index_iter_->user_key()) <= 0); } ResetDataIter(); index_iter_->Next(); if (next_block_is_out_of_bound) { // The next block is out of bound. No need to read it. TEST_SYNC_POINT_CALLBACK("BlockBasedTableIterator:out_of_bound", nullptr); // We need to make sure this is not the last data block before setting // is_out_of_bound_, since the index key for the last data block can be // larger than smallest key of the next file on the same level. if (index_iter_->Valid()) { is_out_of_bound_ = true; } return; } if (index_iter_->Valid()) { InitDataBlock(); block_iter_.SeekToFirst(); } else { return; } } while (!block_iter_.Valid()); } template void BlockBasedTableIterator::FindKeyForward() { assert(!is_out_of_bound_); if (!block_iter_.Valid()) { FindBlockForward(); } } template void BlockBasedTableIterator::FindKeyBackward() { while (!block_iter_.Valid()) { if (!block_iter_.status().ok()) { return; } ResetDataIter(); index_iter_->Prev(); if (index_iter_->Valid()) { InitDataBlock(); block_iter_.SeekToLast(); } else { return; } } // We could have check lower bound here too, but we opt not to do it for // code simplicity. } template void BlockBasedTableIterator::CheckOutOfBound() { if (read_options_.iterate_upper_bound != nullptr && block_iter_points_to_real_block_ && block_iter_.Valid()) { is_out_of_bound_ = user_comparator_.Compare( *read_options_.iterate_upper_bound, user_key()) <= 0; } } InternalIterator* BlockBasedTable::NewIterator( const ReadOptions& read_options, const SliceTransform* prefix_extractor, Arena* arena, bool skip_filters, bool for_compaction) { bool need_upper_bound_check = PrefixExtractorChanged(rep_->table_properties.get(), prefix_extractor); const bool kIsNotIndex = false; if (arena == nullptr) { return new BlockBasedTableIterator( this, read_options, rep_->internal_comparator, NewIndexIterator( read_options, need_upper_bound_check && rep_->index_type == BlockBasedTableOptions::kHashSearch), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, kIsNotIndex, true /*key_includes_seq*/, true /*index_key_is_full*/, for_compaction); } else { auto* mem = arena->AllocateAligned(sizeof(BlockBasedTableIterator)); return new (mem) BlockBasedTableIterator( this, read_options, rep_->internal_comparator, NewIndexIterator(read_options, need_upper_bound_check), !skip_filters && !read_options.total_order_seek && prefix_extractor != nullptr, need_upper_bound_check, prefix_extractor, kIsNotIndex, true /*key_includes_seq*/, true /*index_key_is_full*/, for_compaction); } } FragmentedRangeTombstoneIterator* BlockBasedTable::NewRangeTombstoneIterator( const ReadOptions& read_options) { if (rep_->fragmented_range_dels == nullptr) { return nullptr; } SequenceNumber snapshot = kMaxSequenceNumber; if (read_options.snapshot != nullptr) { snapshot = read_options.snapshot->GetSequenceNumber(); } return new FragmentedRangeTombstoneIterator( rep_->fragmented_range_dels, rep_->internal_comparator, snapshot); } bool BlockBasedTable::FullFilterKeyMayMatch( const ReadOptions& read_options, FilterBlockReader* filter, const Slice& internal_key, const bool no_io, const SliceTransform* prefix_extractor) const { if (filter == nullptr || filter->IsBlockBased()) { return true; } Slice user_key = ExtractUserKey(internal_key); const Slice* const const_ikey_ptr = &internal_key; bool may_match = true; if (filter->whole_key_filtering()) { may_match = filter->KeyMayMatch(user_key, prefix_extractor, kNotValid, no_io, const_ikey_ptr); } else if (!read_options.total_order_seek && prefix_extractor && rep_->table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) == 0 && prefix_extractor->InDomain(user_key) && !filter->PrefixMayMatch(prefix_extractor->Transform(user_key), prefix_extractor, kNotValid, false, const_ikey_ptr)) { may_match = false; } if (may_match) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, rep_->level); } return may_match; } void BlockBasedTable::FullFilterKeysMayMatch( const ReadOptions& read_options, FilterBlockReader* filter, MultiGetRange* range, const bool no_io, const SliceTransform* prefix_extractor) const { if (filter == nullptr || filter->IsBlockBased()) { return; } if (filter->whole_key_filtering()) { filter->KeysMayMatch(range, prefix_extractor, kNotValid, no_io); } else if (!read_options.total_order_seek && prefix_extractor && rep_->table_properties->prefix_extractor_name.compare( prefix_extractor->Name()) == 0) { for (auto iter = range->begin(); iter != range->end(); ++iter) { Slice user_key = iter->lkey->user_key(); if (!prefix_extractor->InDomain(user_key)) { range->SkipKey(iter); } } filter->PrefixesMayMatch(range, prefix_extractor, kNotValid, false); } } Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key, GetContext* get_context, const SliceTransform* prefix_extractor, bool skip_filters) { assert(key.size() >= 8); // key must be internal key Status s; const bool no_io = read_options.read_tier == kBlockCacheTier; CachableEntry filter_entry; bool may_match; FilterBlockReader* filter = nullptr; { if (!skip_filters) { filter_entry = GetFilter(prefix_extractor, /*prefetch_buffer*/ nullptr, read_options.read_tier == kBlockCacheTier, get_context); } filter = filter_entry.value; // First check the full filter // If full filter not useful, Then go into each block may_match = FullFilterKeyMayMatch(read_options, filter, key, no_io, prefix_extractor); } if (!may_match) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); } else { IndexBlockIter iiter_on_stack; // if prefix_extractor found in block differs from options, disable // BlockPrefixIndex. Only do this check when index_type is kHashSearch. bool need_upper_bound_check = false; if (rep_->index_type == BlockBasedTableOptions::kHashSearch) { need_upper_bound_check = PrefixExtractorChanged( rep_->table_properties.get(), prefix_extractor); } auto iiter = NewIndexIterator(read_options, need_upper_bound_check, &iiter_on_stack, /* index_entry */ nullptr, get_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } bool matched = false; // if such user key mathced a key in SST bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { BlockHandle handle = iiter->value(); bool not_exist_in_filter = filter != nullptr && filter->IsBlockBased() == true && !filter->KeyMayMatch(ExtractUserKey(key), prefix_extractor, handle.offset(), no_io); if (not_exist_in_filter) { // Not found // TODO: think about interaction with Merge. If a user key cannot // cross one data block, we should be fine. RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, rep_->level); break; } else { DataBlockIter biter; NewDataBlockIterator( rep_, read_options, iiter->value(), &biter, false, true /* key_includes_seq */, true /* index_key_is_full */, get_context); if (read_options.read_tier == kBlockCacheTier && biter.status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for // whether we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); break; } if (!biter.status().ok()) { s = biter.status(); break; } bool may_exist = biter.SeekForGet(key); if (!may_exist) { // HashSeek cannot find the key this block and the the iter is not // the end of the block, i.e. cannot be in the following blocks // either. In this case, the seek_key cannot be found, so we break // from the top level for-loop. break; } // Call the *saver function on each entry/block until it returns false for (; biter.Valid(); biter.Next()) { ParsedInternalKey parsed_key; if (!ParseInternalKey(biter.key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (!get_context->SaveValue( parsed_key, biter.value(), &matched, biter.IsValuePinned() ? &biter : nullptr)) { done = true; break; } } s = biter.status(); } if (done) { // Avoid the extra Next which is expensive in two-level indexes break; } } if (matched && filter != nullptr && !filter->IsBlockBased()) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_TRUE_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, rep_->level); } if (s.ok()) { s = iiter->status(); } } // if rep_->filter_entry is not set, we should call Release(); otherwise // don't call, in this case we have a local copy in rep_->filter_entry, // it's pinned to the cache and will be released in the destructor if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } return s; } using MultiGetRange = MultiGetContext::Range; void BlockBasedTable::MultiGet(const ReadOptions& read_options, const MultiGetRange* mget_range, const SliceTransform* prefix_extractor, bool skip_filters) { const bool no_io = read_options.read_tier == kBlockCacheTier; CachableEntry filter_entry; FilterBlockReader* filter = nullptr; MultiGetRange sst_file_range(*mget_range, mget_range->begin(), mget_range->end()); { if (!skip_filters) { // TODO: Figure out where the stats should go filter_entry = GetFilter(prefix_extractor, /*prefetch_buffer*/ nullptr, read_options.read_tier == kBlockCacheTier, nullptr /*get_context*/); } filter = filter_entry.value; // First check the full filter // If full filter not useful, Then go into each block FullFilterKeysMayMatch(read_options, filter, &sst_file_range, no_io, prefix_extractor); } if (skip_filters || !sst_file_range.empty()) { IndexBlockIter iiter_on_stack; // if prefix_extractor found in block differs from options, disable // BlockPrefixIndex. Only do this check when index_type is kHashSearch. bool need_upper_bound_check = false; if (rep_->index_type == BlockBasedTableOptions::kHashSearch) { need_upper_bound_check = PrefixExtractorChanged( rep_->table_properties.get(), prefix_extractor); } auto iiter = NewIndexIterator( read_options, need_upper_bound_check, &iiter_on_stack, /* index_entry */ nullptr, sst_file_range.begin()->get_context); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr.reset(iiter); } for (auto miter = sst_file_range.begin(); miter != sst_file_range.end(); ++miter) { Status s; GetContext* get_context = miter->get_context; const Slice& key = miter->ikey; bool matched = false; // if such user key matched a key in SST bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { DataBlockIter biter; NewDataBlockIterator( rep_, read_options, iiter->value(), &biter, false, true /* key_includes_seq */, get_context); if (read_options.read_tier == kBlockCacheTier && biter.status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for // whether we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); break; } if (!biter.status().ok()) { s = biter.status(); break; } bool may_exist = biter.SeekForGet(key); if (!may_exist) { // HashSeek cannot find the key this block and the the iter is not // the end of the block, i.e. cannot be in the following blocks // either. In this case, the seek_key cannot be found, so we break // from the top level for-loop. break; } // Call the *saver function on each entry/block until it returns false for (; biter.Valid(); biter.Next()) { ParsedInternalKey parsed_key; if (!ParseInternalKey(biter.key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (!get_context->SaveValue( parsed_key, biter.value(), &matched, biter.IsValuePinned() ? &biter : nullptr)) { done = true; break; } } s = biter.status(); if (done) { // Avoid the extra Next which is expensive in two-level indexes break; } } if (matched && filter != nullptr && !filter->IsBlockBased()) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_FULL_TRUE_POSITIVE); PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, rep_->level); } if (s.ok()) { s = iiter->status(); } *(miter->s) = s; } } // if rep_->filter_entry is not set, we should call Release(); otherwise // don't call, in this case we have a local copy in rep_->filter_entry, // it's pinned to the cache and will be released in the destructor if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } } Status BlockBasedTable::Prefetch(const Slice* const begin, const Slice* const end) { auto& comparator = rep_->internal_comparator; auto user_comparator = comparator.user_comparator(); // pre-condition if (begin && end && comparator.Compare(*begin, *end) > 0) { return Status::InvalidArgument(*begin, *end); } IndexBlockIter iiter_on_stack; auto iiter = NewIndexIterator(ReadOptions(), false, &iiter_on_stack); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } // indicates if we are on the last page that need to be pre-fetched bool prefetching_boundary_page = false; for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid(); iiter->Next()) { BlockHandle block_handle = iiter->value(); const bool is_user_key = rep_->table_properties && rep_->table_properties->index_key_is_user_key > 0; if (end && ((!is_user_key && comparator.Compare(iiter->key(), *end) >= 0) || (is_user_key && user_comparator->Compare(iiter->key(), ExtractUserKey(*end)) >= 0))) { if (prefetching_boundary_page) { break; } // The index entry represents the last key in the data block. // We should load this page into memory as well, but no more prefetching_boundary_page = true; } // Load the block specified by the block_handle into the block cache DataBlockIter biter; NewDataBlockIterator(rep_, ReadOptions(), block_handle, &biter); if (!biter.status().ok()) { // there was an unexpected error while pre-fetching return biter.status(); } } return Status::OK(); } Status BlockBasedTable::VerifyChecksum() { Status s; // Check Meta blocks std::unique_ptr meta; std::unique_ptr meta_iter; s = ReadMetaBlock(rep_, nullptr /* prefetch buffer */, &meta, &meta_iter); if (s.ok()) { s = VerifyChecksumInMetaBlocks(meta_iter.get()); if (!s.ok()) { return s; } } else { return s; } // Check Data blocks IndexBlockIter iiter_on_stack; InternalIteratorBase* iiter = NewIndexIterator(ReadOptions(), false, &iiter_on_stack); std::unique_ptr> iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr>(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } s = VerifyChecksumInBlocks(iiter); return s; } Status BlockBasedTable::VerifyChecksumInBlocks( InternalIteratorBase* index_iter) { Status s; for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle = index_iter->value(); BlockContents contents; BlockFetcher block_fetcher( rep_->file.get(), nullptr /* prefetch buffer */, rep_->footer, ReadOptions(), handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (!s.ok()) { break; } } return s; } Status BlockBasedTable::VerifyChecksumInMetaBlocks( InternalIteratorBase* index_iter) { Status s; for (index_iter->SeekToFirst(); index_iter->Valid(); index_iter->Next()) { s = index_iter->status(); if (!s.ok()) { break; } BlockHandle handle; Slice input = index_iter->value(); s = handle.DecodeFrom(&input); BlockContents contents; BlockFetcher block_fetcher( rep_->file.get(), nullptr /* prefetch buffer */, rep_->footer, ReadOptions(), handle, &contents, rep_->ioptions, false /* decompress */, false /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (s.IsCorruption() && index_iter->key() == kPropertiesBlock) { TableProperties* table_properties; s = TryReadPropertiesWithGlobalSeqno(rep_, nullptr /* prefetch_buffer */, index_iter->value(), &table_properties); delete table_properties; } if (!s.ok()) { break; } } return s; } bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { std::unique_ptr> iiter( NewIndexIterator(options)); iiter->Seek(key); assert(iiter->Valid()); CachableEntry block; BlockHandle handle = iiter->value(); Cache* block_cache = rep_->table_options.block_cache.get(); assert(block_cache != nullptr); char cache_key_storage[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice cache_key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, handle, cache_key_storage); Slice ckey; Status s; if (!rep_->compression_dict_handle.IsNull()) { std::unique_ptr compression_dict_block; s = ReadCompressionDictBlock(rep_, nullptr /* prefetch_buffer */, &compression_dict_block); if (s.ok()) { assert(compression_dict_block != nullptr); UncompressionDict uncompression_dict( compression_dict_block->data.ToString(), rep_->blocks_definitely_zstd_compressed); s = GetDataBlockFromCache(cache_key, ckey, block_cache, nullptr, rep_, options, &block, uncompression_dict, 0 /* read_amp_bytes_per_bit */); } } else { s = GetDataBlockFromCache( cache_key, ckey, block_cache, nullptr, rep_, options, &block, UncompressionDict::GetEmptyDict(), 0 /* read_amp_bytes_per_bit */); } assert(s.ok()); bool in_cache = block.value != nullptr; if (in_cache) { ReleaseCachedEntry(block_cache, block.cache_handle); } return in_cache; } BlockBasedTableOptions::IndexType BlockBasedTable::UpdateIndexType() { // Some old version of block-based tables don't have index type present in // table properties. If that's the case we can safely use the kBinarySearch. BlockBasedTableOptions::IndexType index_type_on_file = BlockBasedTableOptions::kBinarySearch; if (rep_->table_properties) { auto& props = rep_->table_properties->user_collected_properties; auto pos = props.find(BlockBasedTablePropertyNames::kIndexType); if (pos != props.end()) { index_type_on_file = static_cast( DecodeFixed32(pos->second.c_str())); // update index_type with the true type rep_->index_type = index_type_on_file; } } return index_type_on_file; } // REQUIRES: The following fields of rep_ should have already been populated: // 1. file // 2. index_handle, // 3. options // 4. internal_comparator // 5. index_type Status BlockBasedTable::CreateIndexReader( FilePrefetchBuffer* prefetch_buffer, IndexReader** index_reader, InternalIterator* preloaded_meta_index_iter, int level) { auto index_type_on_file = UpdateIndexType(); auto file = rep_->file.get(); const InternalKeyComparator* icomparator = &rep_->internal_comparator; const Footer& footer = rep_->footer; // kHashSearch requires non-empty prefix_extractor but bypass checking // prefix_extractor here since we have no access to MutableCFOptions. // Add need_upper_bound_check flag in BlockBasedTable::NewIndexIterator. // If prefix_extractor does not match prefix_extractor_name from table // properties, turn off Hash Index by setting total_order_seek to true switch (index_type_on_file) { case BlockBasedTableOptions::kTwoLevelIndexSearch: { return PartitionIndexReader::Create( this, file, prefetch_buffer, footer, footer.index_handle(), rep_->ioptions, icomparator, index_reader, rep_->persistent_cache_options, level, rep_->table_properties == nullptr || rep_->table_properties->index_key_is_user_key == 0, rep_->table_properties == nullptr || rep_->table_properties->index_value_is_delta_encoded == 0, GetMemoryAllocator(rep_->table_options)); } case BlockBasedTableOptions::kBinarySearch: { return BinarySearchIndexReader::Create( file, prefetch_buffer, footer, footer.index_handle(), rep_->ioptions, icomparator, index_reader, rep_->persistent_cache_options, rep_->table_properties == nullptr || rep_->table_properties->index_key_is_user_key == 0, rep_->table_properties == nullptr || rep_->table_properties->index_value_is_delta_encoded == 0, GetMemoryAllocator(rep_->table_options)); } case BlockBasedTableOptions::kHashSearch: { std::unique_ptr meta_guard; std::unique_ptr meta_iter_guard; auto meta_index_iter = preloaded_meta_index_iter; if (meta_index_iter == nullptr) { auto s = ReadMetaBlock(rep_, prefetch_buffer, &meta_guard, &meta_iter_guard); if (!s.ok()) { // we simply fall back to binary search in case there is any // problem with prefix hash index loading. ROCKS_LOG_WARN(rep_->ioptions.info_log, "Unable to read the metaindex block." " Fall back to binary search index."); return BinarySearchIndexReader::Create( file, prefetch_buffer, footer, footer.index_handle(), rep_->ioptions, icomparator, index_reader, rep_->persistent_cache_options, rep_->table_properties == nullptr || rep_->table_properties->index_key_is_user_key == 0, rep_->table_properties == nullptr || rep_->table_properties->index_value_is_delta_encoded == 0, GetMemoryAllocator(rep_->table_options)); } meta_index_iter = meta_iter_guard.get(); } return HashIndexReader::Create( rep_->internal_prefix_transform.get(), footer, file, prefetch_buffer, rep_->ioptions, icomparator, footer.index_handle(), meta_index_iter, index_reader, rep_->hash_index_allow_collision, rep_->persistent_cache_options, rep_->table_properties == nullptr || rep_->table_properties->index_key_is_user_key == 0, rep_->table_properties == nullptr || rep_->table_properties->index_value_is_delta_encoded == 0, GetMemoryAllocator(rep_->table_options)); } default: { std::string error_message = "Unrecognized index type: " + ToString(index_type_on_file); return Status::InvalidArgument(error_message.c_str()); } } } uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key) { std::unique_ptr> index_iter( NewIndexIterator(ReadOptions())); index_iter->Seek(key); uint64_t result; if (index_iter->Valid()) { BlockHandle handle = index_iter->value(); result = handle.offset(); } else { // key is past the last key in the file. If table_properties is not // available, approximate the offset by returning the offset of the // metaindex block (which is right near the end of the file). result = 0; if (rep_->table_properties) { result = rep_->table_properties->data_size; } // table_properties is not present in the table. if (result == 0) { result = rep_->footer.metaindex_handle().offset(); } } return result; } bool BlockBasedTable::TEST_filter_block_preloaded() const { return rep_->filter != nullptr; } bool BlockBasedTable::TEST_index_reader_preloaded() const { return rep_->index_reader != nullptr; } Status BlockBasedTable::GetKVPairsFromDataBlocks( std::vector* kv_pair_blocks) { std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { // Cannot read Index Block return s; } for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } std::unique_ptr datablock_iter; datablock_iter.reset(NewDataBlockIterator( rep_, ReadOptions(), blockhandles_iter->value())); s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped continue; } KVPairBlock kv_pair_block; for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped break; } const Slice& key = datablock_iter->key(); const Slice& value = datablock_iter->value(); std::string key_copy = std::string(key.data(), key.size()); std::string value_copy = std::string(value.data(), value.size()); kv_pair_block.push_back( std::make_pair(std::move(key_copy), std::move(value_copy))); } kv_pair_blocks->push_back(std::move(kv_pair_block)); } return Status::OK(); } Status BlockBasedTable::DumpTable(WritableFile* out_file, const SliceTransform* prefix_extractor) { // Output Footer out_file->Append( "Footer Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->footer.ToString().c_str()); out_file->Append("\n"); // Output MetaIndex out_file->Append( "Metaindex Details:\n" "--------------------------------------\n"); std::unique_ptr meta; std::unique_ptr meta_iter; Status s = ReadMetaBlock(rep_, nullptr /* prefetch_buffer */, &meta, &meta_iter); if (s.ok()) { for (meta_iter->SeekToFirst(); meta_iter->Valid(); meta_iter->Next()) { s = meta_iter->status(); if (!s.ok()) { return s; } if (meta_iter->key() == rocksdb::kPropertiesBlock) { out_file->Append(" Properties block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (meta_iter->key() == rocksdb::kCompressionDictBlock) { out_file->Append(" Compression dictionary block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (strstr(meta_iter->key().ToString().c_str(), "filter.rocksdb.") != nullptr) { out_file->Append(" Filter block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (meta_iter->key() == rocksdb::kRangeDelBlock) { out_file->Append(" Range deletion block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } } out_file->Append("\n"); } else { return s; } // Output TableProperties const rocksdb::TableProperties* table_properties; table_properties = rep_->table_properties.get(); if (table_properties != nullptr) { out_file->Append( "Table Properties:\n" "--------------------------------------\n" " "); out_file->Append(table_properties->ToString("\n ", ": ").c_str()); out_file->Append("\n"); // Output Filter blocks if (!rep_->filter && !table_properties->filter_policy_name.empty()) { // Support only BloomFilter as off now rocksdb::BlockBasedTableOptions table_options; table_options.filter_policy.reset(rocksdb::NewBloomFilterPolicy(1)); if (table_properties->filter_policy_name.compare( table_options.filter_policy->Name()) == 0) { std::string filter_block_key = kFilterBlockPrefix; filter_block_key.append(table_properties->filter_policy_name); BlockHandle handle; if (FindMetaBlock(meta_iter.get(), filter_block_key, &handle).ok()) { BlockContents block; BlockFetcher block_fetcher( rep_->file.get(), nullptr /* prefetch_buffer */, rep_->footer, ReadOptions(), handle, &block, rep_->ioptions, false /*decompress*/, false /*maybe_compressed*/, UncompressionDict::GetEmptyDict(), rep_->persistent_cache_options); s = block_fetcher.ReadBlockContents(); if (!s.ok()) { rep_->filter.reset(new BlockBasedFilterBlockReader( prefix_extractor, table_options, table_options.whole_key_filtering, std::move(block), rep_->ioptions.statistics)); } } } } } if (rep_->filter) { out_file->Append( "Filter Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->filter->ToString().c_str()); out_file->Append("\n"); } // Output Index block s = DumpIndexBlock(out_file); if (!s.ok()) { return s; } // Output compression dictionary if (!rep_->compression_dict_handle.IsNull()) { std::unique_ptr compression_dict_block; s = ReadCompressionDictBlock(rep_, nullptr /* prefetch_buffer */, &compression_dict_block); if (!s.ok()) { return s; } assert(compression_dict_block != nullptr); auto compression_dict = compression_dict_block->data; out_file->Append( "Compression Dictionary:\n" "--------------------------------------\n"); out_file->Append(" size (bytes): "); out_file->Append(rocksdb::ToString(compression_dict.size())); out_file->Append("\n\n"); out_file->Append(" HEX "); out_file->Append(compression_dict.ToString(true).c_str()); out_file->Append("\n\n"); } // Output range deletions block auto* range_del_iter = NewRangeTombstoneIterator(ReadOptions()); if (range_del_iter != nullptr) { range_del_iter->SeekToFirst(); if (range_del_iter->Valid()) { out_file->Append( "Range deletions:\n" "--------------------------------------\n" " "); for (; range_del_iter->Valid(); range_del_iter->Next()) { DumpKeyValue(range_del_iter->key(), range_del_iter->value(), out_file); } out_file->Append("\n"); } delete range_del_iter; } // Output Data blocks s = DumpDataBlocks(out_file); return s; } void BlockBasedTable::Close() { if (rep_->closed) { return; } Cache* const cache = rep_->table_options.block_cache.get(); rep_->filter_entry.Release(cache); rep_->index_entry.Release(cache); // cleanup index, filter, and compression dictionary blocks // to avoid accessing dangling pointers if (!rep_->table_options.no_block_cache) { char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; // Get the filter block key auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->filter_handle, cache_key); cache->Erase(key); // Get the index block key key = GetCacheKeyFromOffset(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->dummy_index_reader_offset, cache_key); cache->Erase(key); if (!rep_->compression_dict_handle.IsNull()) { // Get the compression dictionary block key key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->compression_dict_handle, cache_key); cache->Erase(key); } } rep_->closed = true; } Status BlockBasedTable::DumpIndexBlock(WritableFile* out_file) { out_file->Append( "Index Details:\n" "--------------------------------------\n"); std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } out_file->Append(" Block key hex dump: Data block handle\n"); out_file->Append(" Block key ascii\n\n"); for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } Slice key = blockhandles_iter->key(); Slice user_key; InternalKey ikey; if (rep_->table_properties && rep_->table_properties->index_key_is_user_key != 0) { user_key = key; } else { ikey.DecodeFrom(key); user_key = ikey.user_key(); } out_file->Append(" HEX "); out_file->Append(user_key.ToString(true).c_str()); out_file->Append(": "); out_file->Append(blockhandles_iter->value().ToString(true).c_str()); out_file->Append("\n"); std::string str_key = user_key.ToString(); std::string res_key(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { res_key.append(&str_key[i], 1); res_key.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append("\n ------\n"); } out_file->Append("\n"); return Status::OK(); } Status BlockBasedTable::DumpDataBlocks(WritableFile* out_file) { std::unique_ptr> blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } uint64_t datablock_size_min = std::numeric_limits::max(); uint64_t datablock_size_max = 0; uint64_t datablock_size_sum = 0; size_t block_id = 1; for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); block_id++, blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } BlockHandle bh = blockhandles_iter->value(); uint64_t datablock_size = bh.size(); datablock_size_min = std::min(datablock_size_min, datablock_size); datablock_size_max = std::max(datablock_size_max, datablock_size); datablock_size_sum += datablock_size; out_file->Append("Data Block # "); out_file->Append(rocksdb::ToString(block_id)); out_file->Append(" @ "); out_file->Append(blockhandles_iter->value().ToString(true).c_str()); out_file->Append("\n"); out_file->Append("--------------------------------------\n"); std::unique_ptr datablock_iter; datablock_iter.reset(NewDataBlockIterator( rep_, ReadOptions(), blockhandles_iter->value())); s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n\n"); continue; } for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n"); break; } DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_file); } out_file->Append("\n"); } uint64_t num_datablocks = block_id - 1; if (num_datablocks) { double datablock_size_avg = static_cast(datablock_size_sum) / num_datablocks; out_file->Append("Data Block Summary:\n"); out_file->Append("--------------------------------------"); out_file->Append("\n # data blocks: "); out_file->Append(rocksdb::ToString(num_datablocks)); out_file->Append("\n min data block size: "); out_file->Append(rocksdb::ToString(datablock_size_min)); out_file->Append("\n max data block size: "); out_file->Append(rocksdb::ToString(datablock_size_max)); out_file->Append("\n avg data block size: "); out_file->Append(rocksdb::ToString(datablock_size_avg)); out_file->Append("\n"); } return Status::OK(); } void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value, WritableFile* out_file) { InternalKey ikey; ikey.DecodeFrom(key); out_file->Append(" HEX "); out_file->Append(ikey.user_key().ToString(true).c_str()); out_file->Append(": "); out_file->Append(value.ToString(true).c_str()); out_file->Append("\n"); std::string str_key = ikey.user_key().ToString(); std::string str_value = value.ToString(); std::string res_key(""), res_value(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { if (str_key[i] == '\0') { res_key.append("\\0", 2); } else { res_key.append(&str_key[i], 1); } res_key.append(1, cspace); } for (size_t i = 0; i < str_value.size(); i++) { if (str_value[i] == '\0') { res_value.append("\\0", 2); } else { res_value.append(&str_value[i], 1); } res_value.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append(": "); out_file->Append(res_value.c_str()); out_file->Append("\n ------\n"); } namespace { void DeleteCachedFilterEntry(const Slice& /*key*/, void* value) { FilterBlockReader* filter = reinterpret_cast(value); if (filter->statistics() != nullptr) { RecordTick(filter->statistics(), BLOCK_CACHE_FILTER_BYTES_EVICT, filter->ApproximateMemoryUsage()); } delete filter; } void DeleteCachedIndexEntry(const Slice& /*key*/, void* value) { IndexReader* index_reader = reinterpret_cast(value); if (index_reader->statistics() != nullptr) { RecordTick(index_reader->statistics(), BLOCK_CACHE_INDEX_BYTES_EVICT, index_reader->ApproximateMemoryUsage()); } delete index_reader; } void DeleteCachedUncompressionDictEntry(const Slice& /*key*/, void* value) { UncompressionDict* dict = reinterpret_cast(value); RecordTick(dict->statistics(), BLOCK_CACHE_COMPRESSION_DICT_BYTES_EVICT, dict->ApproximateMemoryUsage()); delete dict; } } // anonymous namespace } // namespace rocksdb