// Copyright (c) 2013, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // The test uses an array to compare against values written to the database. // Keys written to the array are in 1:1 correspondence to the actual values in // the database according to the formula in the function GenerateValue. // Space is reserved in the array from 0 to FLAGS_max_key and values are // randomly written/deleted/read from those positions. During verification we // compare all the positions in the array. To shorten/elongate the running // time, you could change the settings: FLAGS_max_key, FLAGS_ops_per_thread, // (sometimes also FLAGS_threads). // // NOTE that if FLAGS_test_batches_snapshots is set, the test will have // different behavior. See comment of the flag for details. #include <sys/types.h> #include <stdio.h> #include <stdlib.h> #include <gflags/gflags.h> #include "db/db_impl.h" #include "db/version_set.h" #include "db/db_statistics.h" #include "rocksdb/cache.h" #include "utilities/utility_db.h" #include "rocksdb/env.h" #include "rocksdb/write_batch.h" #include "rocksdb/statistics.h" #include "port/port.h" #include "util/coding.h" #include "util/crc32c.h" #include "util/histogram.h" #include "util/mutexlock.h" #include "util/random.h" #include "util/testutil.h" #include "util/logging.h" #include "utilities/ttl/db_ttl.h" #include "hdfs/env_hdfs.h" #include "utilities/merge_operators.h" static const long KB = 1024; static bool ValidateUint32Range(const char* flagname, uint64_t value) { if (value > std::numeric_limits<uint32_t>::max()) { fprintf(stderr, "Invalid value for --%s: %lu, overflow\n", flagname, (unsigned long)value); return false; } return true; } DEFINE_uint64(seed, 2341234, "Seed for PRNG"); static const bool FLAGS_seed_dummy = google::RegisterFlagValidator(&FLAGS_seed, &ValidateUint32Range); DEFINE_int64(max_key, 1 * KB * KB * KB, "Max number of key/values to place in database"); DEFINE_bool(test_batches_snapshots, false, "If set, the test uses MultiGet(), MultiPut() and MultiDelete()" " which read/write/delete multiple keys in a batch. In this mode," " we do not verify db content by comparing the content with the " "pre-allocated array. Instead, we do partial verification inside" " MultiGet() by checking various values in a batch. Benefit of" " this mode:\n" "\t(a) No need to acquire mutexes during writes (less cache " "flushes in multi-core leading to speed up)\n" "\t(b) No long validation at the end (more speed up)\n" "\t(c) Test snapshot and atomicity of batch writes"); DEFINE_int32(threads, 32, "Number of concurrent threads to run."); DEFINE_int32(ttl, -1, "Opens the db with this ttl value if this is not -1. " "Carefully specify a large value such that verifications on " "deleted values don't fail"); DEFINE_int32(value_size_mult, 8, "Size of value will be this number times rand_int(1,3) bytes"); DEFINE_bool(verify_before_write, false, "Verify before write"); DEFINE_bool(histogram, false, "Print histogram of operation timings"); DEFINE_bool(destroy_db_initially, true, "Destroys the database dir before start if this is true"); DEFINE_bool (verbose, false, "Verbose"); DEFINE_int32(write_buffer_size, rocksdb::Options().write_buffer_size, "Number of bytes to buffer in memtable before compacting"); DEFINE_int32(max_write_buffer_number, rocksdb::Options().max_write_buffer_number, "The number of in-memory memtables. " "Each memtable is of size FLAGS_write_buffer_size."); DEFINE_int32(min_write_buffer_number_to_merge, rocksdb::Options().min_write_buffer_number_to_merge, "The minimum number of write buffers that will be merged together " "before writing to storage. This is cheap because it is an " "in-memory merge. If this feature is not enabled, then all these " "write buffers are flushed to L0 as separate files and this " "increases read amplification because a get request has to check " "in all of these files. Also, an in-memory merge may result in " "writing less data to storage if there are duplicate records in" " each of these individual write buffers."); DEFINE_int32(open_files, rocksdb::Options().max_open_files, "Maximum number of files to keep open at the same time " "(use default if == 0)"); DEFINE_int64(compressed_cache_size, -1, "Number of bytes to use as a cache of compressed data." " Negative means use default settings."); DEFINE_int32(compaction_style, rocksdb::Options().compaction_style, ""); DEFINE_int32(level0_file_num_compaction_trigger, rocksdb::Options().level0_file_num_compaction_trigger, "Level0 compaction start trigger"); DEFINE_int32(level0_slowdown_writes_trigger, rocksdb::Options().level0_slowdown_writes_trigger, "Number of files in level-0 that will slow down writes"); DEFINE_int32(level0_stop_writes_trigger, rocksdb::Options().level0_stop_writes_trigger, "Number of files in level-0 that will trigger put stop."); DEFINE_int32(block_size, rocksdb::Options().block_size, "Number of bytes in a block."); DEFINE_int32(max_background_compactions, rocksdb::Options().max_background_compactions, "The maximum number of concurrent background compactions " "that can occur in parallel."); DEFINE_int32(universal_size_ratio, 0, "The ratio of file sizes that trigger" " compaction in universal style"); DEFINE_int32(universal_min_merge_width, 0, "The minimum number of files to " "compact in universal style compaction"); DEFINE_int32(universal_max_merge_width, 0, "The max number of files to compact" " in universal style compaction"); DEFINE_int32(universal_max_size_amplification_percent, 0, "The max size amplification for universal style compaction"); DEFINE_int64(cache_size, 2 * KB * KB * KB, "Number of bytes to use as a cache of uncompressed data."); static bool ValidateInt32Positive(const char* flagname, int32_t value) { if (value < 0) { fprintf(stderr, "Invalid value for --%s: %d, must be >=0\n", flagname, value); return false; } return true; } DEFINE_int32(reopen, 10, "Number of times database reopens"); static const bool FLAGS_reopen_dummy = google::RegisterFlagValidator(&FLAGS_reopen, &ValidateInt32Positive); DEFINE_int32(bloom_bits, 10, "Bloom filter bits per key. " "Negative means use default settings."); DEFINE_string(db, "", "Use the db with the following name."); DEFINE_bool(verify_checksum, false, "Verify checksum for every block read from storage"); DEFINE_bool(mmap_read, rocksdb::EnvOptions().use_mmap_reads, "Allow reads to occur via mmap-ing files"); // Database statistics static std::shared_ptr<rocksdb::Statistics> dbstats; DEFINE_bool(statistics, false, "Create database statistics"); DEFINE_bool(sync, false, "Sync all writes to disk"); DEFINE_bool(disable_data_sync, false, "If true, do not wait until data is synced to disk."); DEFINE_bool(use_fsync, false, "If true, issue fsync instead of fdatasync"); DEFINE_int32(kill_random_test, 0, "If non-zero, kill at various points in source code with " "probability 1/this"); static const bool FLAGS_kill_random_test_dummy = google::RegisterFlagValidator(&FLAGS_kill_random_test, &ValidateInt32Positive); extern int rocksdb_kill_odds; DEFINE_bool(disable_wal, false, "If true, do not write WAL for write."); DEFINE_int32(target_file_size_base, 64 * KB, "Target level-1 file size for compaction"); DEFINE_int32(target_file_size_multiplier, 1, "A multiplier to compute targe level-N file size (N >= 2)"); DEFINE_uint64(max_bytes_for_level_base, 256 * KB, "Max bytes for level-1"); DEFINE_int32(max_bytes_for_level_multiplier, 2, "A multiplier to compute max bytes for level-N (N >= 2)"); static bool ValidateInt32Percent(const char* flagname, int32_t value) { if (value < 0 || value>100) { fprintf(stderr, "Invalid value for --%s: %d, 0<= pct <=100 \n", flagname, value); return false; } return true; } DEFINE_int32(readpercent, 10, "Ratio of reads to total workload (expressed as a percentage)"); static const bool FLAGS_readpercent_dummy = google::RegisterFlagValidator(&FLAGS_readpercent, &ValidateInt32Percent); DEFINE_int32(prefixpercent, 20, "Ratio of prefix iterators to total workload (expressed as a" " percentage)"); static const bool FLAGS_prefixpercent_dummy = google::RegisterFlagValidator(&FLAGS_prefixpercent, &ValidateInt32Percent); DEFINE_int32(writepercent, 45, " Ratio of deletes to total workload (expressed as a percentage)"); static const bool FLAGS_writepercent_dummy = google::RegisterFlagValidator(&FLAGS_writepercent, &ValidateInt32Percent); DEFINE_int32(delpercent, 15, "Ratio of deletes to total workload (expressed as a percentage)"); static const bool FLAGS_delpercent_dummy = google::RegisterFlagValidator(&FLAGS_delpercent, &ValidateInt32Percent); DEFINE_int32(iterpercent, 10, "Ratio of iterations to total workload" " (expressed as a percentage)"); static const bool FLAGS_iterpercent_dummy = google::RegisterFlagValidator(&FLAGS_iterpercent, &ValidateInt32Percent); DEFINE_uint64(num_iterations, 10, "Number of iterations per MultiIterate run"); static const bool FLAGS_num_iterations_dummy = google::RegisterFlagValidator(&FLAGS_num_iterations, &ValidateUint32Range); DEFINE_bool(disable_seek_compaction, false, "Option to disable compation triggered by read."); DEFINE_uint64(delete_obsolete_files_period_micros, 0, "Option to delete obsolete files periodically" "0 means that obsolete files are " " deleted after every compaction run."); enum rocksdb::CompressionType StringToCompressionType(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "none")) return rocksdb::kNoCompression; else if (!strcasecmp(ctype, "snappy")) return rocksdb::kSnappyCompression; else if (!strcasecmp(ctype, "zlib")) return rocksdb::kZlibCompression; else if (!strcasecmp(ctype, "bzip2")) return rocksdb::kBZip2Compression; fprintf(stdout, "Cannot parse compression type '%s'\n", ctype); return rocksdb::kSnappyCompression; //default value } DEFINE_string(compression_type, "snappy", "Algorithm to use to compress the database"); static enum rocksdb::CompressionType FLAGS_compression_type_e = rocksdb::kSnappyCompression; DEFINE_string(hdfs, "", "Name of hdfs environment"); // posix or hdfs environment static rocksdb::Env* FLAGS_env = rocksdb::Env::Default(); DEFINE_uint64(ops_per_thread, 600000, "Number of operations per thread."); static const bool FLAGS_ops_per_thread_dummy = google::RegisterFlagValidator(&FLAGS_ops_per_thread, &ValidateUint32Range); DEFINE_uint64(log2_keys_per_lock, 2, "Log2 of number of keys per lock"); static const bool FLAGS_log2_keys_per_lock_dummy = google::RegisterFlagValidator(&FLAGS_log2_keys_per_lock, &ValidateUint32Range); DEFINE_int32(purge_redundant_percent, 50, "Percentage of times we want to purge redundant keys in memory " "before flushing"); static const bool FLAGS_purge_redundant_percent_dummy = google::RegisterFlagValidator(&FLAGS_purge_redundant_percent, &ValidateInt32Percent); DEFINE_bool(filter_deletes, false, "On true, deletes use KeyMayExist to drop" " the delete if key not present"); enum RepFactory { kSkipList, kHashSkipList, kVectorRep }; enum RepFactory StringToRepFactory(const char* ctype) { assert(ctype); if (!strcasecmp(ctype, "skip_list")) return kSkipList; else if (!strcasecmp(ctype, "prefix_hash")) return kHashSkipList; else if (!strcasecmp(ctype, "vector")) return kVectorRep; fprintf(stdout, "Cannot parse memreptable %s\n", ctype); return kSkipList; } static enum RepFactory FLAGS_rep_factory; DEFINE_string(memtablerep, "skip_list", ""); static bool ValidatePrefixSize(const char* flagname, int32_t value) { if (value < 0 || value>=2000000000) { fprintf(stderr, "Invalid value for --%s: %d. 0<= PrefixSize <=2000000000\n", flagname, value); return false; } return true; } DEFINE_int32(prefix_size, 0, "Control the prefix size for HashSkipListRep"); static const bool FLAGS_prefix_size_dummy = google::RegisterFlagValidator(&FLAGS_prefix_size, &ValidatePrefixSize); DEFINE_bool(use_merge, false, "On true, replaces all writes with a Merge " "that behaves like a Put"); namespace rocksdb { // convert long to a big-endian slice key static std::string Key(long val) { std::string little_endian_key; std::string big_endian_key; PutFixed64(&little_endian_key, val); assert(little_endian_key.size() == sizeof(val)); big_endian_key.resize(sizeof(val)); for (int i=0; i<(int)sizeof(val); i++) { big_endian_key[i] = little_endian_key[sizeof(val) - 1 - i]; } return big_endian_key; } class StressTest; namespace { class Stats { private: double start_; double finish_; double seconds_; long done_; long gets_; long prefixes_; long writes_; long deletes_; long iterator_size_sums_; long founds_; long iterations_; long errors_; int next_report_; size_t bytes_; double last_op_finish_; HistogramImpl hist_; public: Stats() { } void Start() { next_report_ = 100; hist_.Clear(); done_ = 0; gets_ = 0; prefixes_ = 0; writes_ = 0; deletes_ = 0; iterator_size_sums_ = 0; founds_ = 0; iterations_ = 0; errors_ = 0; bytes_ = 0; seconds_ = 0; start_ = FLAGS_env->NowMicros(); last_op_finish_ = start_; finish_ = start_; } void Merge(const Stats& other) { hist_.Merge(other.hist_); done_ += other.done_; gets_ += other.gets_; prefixes_ += other.prefixes_; writes_ += other.writes_; deletes_ += other.deletes_; iterator_size_sums_ += other.iterator_size_sums_; founds_ += other.founds_; iterations_ += other.iterations_; errors_ += other.errors_; bytes_ += other.bytes_; seconds_ += other.seconds_; if (other.start_ < start_) start_ = other.start_; if (other.finish_ > finish_) finish_ = other.finish_; } void Stop() { finish_ = FLAGS_env->NowMicros(); seconds_ = (finish_ - start_) * 1e-6; } void FinishedSingleOp() { if (FLAGS_histogram) { double now = FLAGS_env->NowMicros(); double micros = now - last_op_finish_; hist_.Add(micros); if (micros > 20000) { fprintf(stdout, "long op: %.1f micros%30s\r", micros, ""); } last_op_finish_ = now; } done_++; if (done_ >= next_report_) { if (next_report_ < 1000) next_report_ += 100; else if (next_report_ < 5000) next_report_ += 500; else if (next_report_ < 10000) next_report_ += 1000; else if (next_report_ < 50000) next_report_ += 5000; else if (next_report_ < 100000) next_report_ += 10000; else if (next_report_ < 500000) next_report_ += 50000; else next_report_ += 100000; fprintf(stdout, "... finished %ld ops%30s\r", done_, ""); } } void AddBytesForWrites(int nwrites, size_t nbytes) { writes_ += nwrites; bytes_ += nbytes; } void AddGets(int ngets, int nfounds) { founds_ += nfounds; gets_ += ngets; } void AddPrefixes(int nprefixes, int count) { prefixes_ += nprefixes; iterator_size_sums_ += count; } void AddIterations(int n) { iterations_ += n; } void AddDeletes(int n) { deletes_ += n; } void AddErrors(int n) { errors_ += n; } void Report(const char* name) { std::string extra; if (bytes_ < 1 || done_ < 1) { fprintf(stderr, "No writes or ops?\n"); return; } double elapsed = (finish_ - start_) * 1e-6; double bytes_mb = bytes_ / 1048576.0; double rate = bytes_mb / elapsed; double throughput = (double)done_/elapsed; fprintf(stdout, "%-12s: ", name); fprintf(stdout, "%.3f micros/op %ld ops/sec\n", seconds_ * 1e6 / done_, (long)throughput); fprintf(stdout, "%-12s: Wrote %.2f MB (%.2f MB/sec) (%ld%% of %ld ops)\n", "", bytes_mb, rate, (100*writes_)/done_, done_); fprintf(stdout, "%-12s: Wrote %ld times\n", "", writes_); fprintf(stdout, "%-12s: Deleted %ld times\n", "", deletes_); fprintf(stdout, "%-12s: %ld read and %ld found the key\n", "", gets_, founds_); fprintf(stdout, "%-12s: Prefix scanned %ld times\n", "", prefixes_); fprintf(stdout, "%-12s: Iterator size sum is %ld\n", "", iterator_size_sums_); fprintf(stdout, "%-12s: Iterated %ld times\n", "", iterations_); fprintf(stdout, "%-12s: Got errors %ld times\n", "", errors_); if (FLAGS_histogram) { fprintf(stdout, "Microseconds per op:\n%s\n", hist_.ToString().c_str()); } fflush(stdout); } }; // State shared by all concurrent executions of the same benchmark. class SharedState { public: static const uint32_t SENTINEL = 0xffffffff; explicit SharedState(StressTest* stress_test) : cv_(&mu_), seed_(FLAGS_seed), max_key_(FLAGS_max_key), log2_keys_per_lock_(FLAGS_log2_keys_per_lock), num_threads_(FLAGS_threads), num_initialized_(0), num_populated_(0), vote_reopen_(0), num_done_(0), start_(false), start_verify_(false), stress_test_(stress_test) { if (FLAGS_test_batches_snapshots) { key_locks_ = nullptr; values_ = nullptr; fprintf(stdout, "No lock creation because test_batches_snapshots set\n"); return; } values_ = new uint32_t[max_key_]; for (long i = 0; i < max_key_; i++) { values_[i] = SENTINEL; } long num_locks = (max_key_ >> log2_keys_per_lock_); if (max_key_ & ((1 << log2_keys_per_lock_) - 1)) { num_locks ++; } fprintf(stdout, "Creating %ld locks\n", num_locks); key_locks_ = new port::Mutex[num_locks]; } ~SharedState() { delete[] values_; delete[] key_locks_; } port::Mutex* GetMutex() { return &mu_; } port::CondVar* GetCondVar() { return &cv_; } StressTest* GetStressTest() const { return stress_test_; } long GetMaxKey() const { return max_key_; } uint32_t GetNumThreads() const { return num_threads_; } void IncInitialized() { num_initialized_++; } void IncOperated() { num_populated_++; } void IncDone() { num_done_++; } void IncVotedReopen() { vote_reopen_ = (vote_reopen_ + 1) % num_threads_; } bool AllInitialized() const { return num_initialized_ >= num_threads_; } bool AllOperated() const { return num_populated_ >= num_threads_; } bool AllDone() const { return num_done_ >= num_threads_; } bool AllVotedReopen() { return (vote_reopen_ == 0); } void SetStart() { start_ = true; } void SetStartVerify() { start_verify_ = true; } bool Started() const { return start_; } bool VerifyStarted() const { return start_verify_; } port::Mutex* GetMutexForKey(long key) { return &key_locks_[key >> log2_keys_per_lock_]; } void Put(long key, uint32_t value_base) { values_[key] = value_base; } uint32_t Get(long key) const { return values_[key]; } void Delete(long key) const { values_[key] = SENTINEL; } uint32_t GetSeed() const { return seed_; } private: port::Mutex mu_; port::CondVar cv_; const uint32_t seed_; const long max_key_; const uint32_t log2_keys_per_lock_; const int num_threads_; long num_initialized_; long num_populated_; long vote_reopen_; long num_done_; bool start_; bool start_verify_; StressTest* stress_test_; uint32_t *values_; port::Mutex *key_locks_; }; // Per-thread state for concurrent executions of the same benchmark. struct ThreadState { uint32_t tid; // 0..n-1 Random rand; // Has different seeds for different threads SharedState* shared; Stats stats; ThreadState(uint32_t index, SharedState *shared) : tid(index), rand(1000 + index + shared->GetSeed()), shared(shared) { } }; } // namespace class StressTest { public: StressTest() : cache_(NewLRUCache(FLAGS_cache_size)), compressed_cache_(FLAGS_compressed_cache_size >= 0 ? NewLRUCache(FLAGS_compressed_cache_size) : nullptr), filter_policy_(FLAGS_bloom_bits >= 0 ? NewBloomFilterPolicy(FLAGS_bloom_bits) : nullptr), prefix_extractor_(NewFixedPrefixTransform( FLAGS_test_batches_snapshots ? sizeof(long) : sizeof(long)-1)), db_(nullptr), num_times_reopened_(0) { if (FLAGS_destroy_db_initially) { std::vector<std::string> files; FLAGS_env->GetChildren(FLAGS_db, &files); for (unsigned int i = 0; i < files.size(); i++) { if (Slice(files[i]).starts_with("heap-")) { FLAGS_env->DeleteFile(FLAGS_db + "/" + files[i]); } } DestroyDB(FLAGS_db, Options()); } } ~StressTest() { delete db_; delete filter_policy_; delete prefix_extractor_; } void Run() { PrintEnv(); Open(); SharedState shared(this); uint32_t n = shared.GetNumThreads(); std::vector<ThreadState*> threads(n); for (uint32_t i = 0; i < n; i++) { threads[i] = new ThreadState(i, &shared); FLAGS_env->StartThread(ThreadBody, threads[i]); } // Each thread goes through the following states: // initializing -> wait for others to init -> read/populate/depopulate // wait for others to operate -> verify -> done { MutexLock l(shared.GetMutex()); while (!shared.AllInitialized()) { shared.GetCondVar()->Wait(); } double now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Starting database operations\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); shared.SetStart(); shared.GetCondVar()->SignalAll(); while (!shared.AllOperated()) { shared.GetCondVar()->Wait(); } now = FLAGS_env->NowMicros(); if (FLAGS_test_batches_snapshots) { fprintf(stdout, "%s Limited verification already done during gets\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } else { fprintf(stdout, "%s Starting verification\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } shared.SetStartVerify(); shared.GetCondVar()->SignalAll(); while (!shared.AllDone()) { shared.GetCondVar()->Wait(); } } for (unsigned int i = 1; i < n; i++) { threads[0]->stats.Merge(threads[i]->stats); } threads[0]->stats.Report("Stress Test"); for (unsigned int i = 0; i < n; i++) { delete threads[i]; threads[i] = nullptr; } double now = FLAGS_env->NowMicros(); if (!FLAGS_test_batches_snapshots) { fprintf(stdout, "%s Verification successful\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str()); } PrintStatistics(); } private: static void ThreadBody(void* v) { ThreadState* thread = reinterpret_cast<ThreadState*>(v); SharedState* shared = thread->shared; { MutexLock l(shared->GetMutex()); shared->IncInitialized(); if (shared->AllInitialized()) { shared->GetCondVar()->SignalAll(); } while (!shared->Started()) { shared->GetCondVar()->Wait(); } } thread->shared->GetStressTest()->OperateDb(thread); { MutexLock l(shared->GetMutex()); shared->IncOperated(); if (shared->AllOperated()) { shared->GetCondVar()->SignalAll(); } while (!shared->VerifyStarted()) { shared->GetCondVar()->Wait(); } } if (!FLAGS_test_batches_snapshots) { thread->shared->GetStressTest()->VerifyDb(thread); } { MutexLock l(shared->GetMutex()); shared->IncDone(); if (shared->AllDone()) { shared->GetCondVar()->SignalAll(); } } } // Given a key K and value V, this puts ("0"+K, "0"+V), ("1"+K, "1"+V), ... // ("9"+K, "9"+V) in DB atomically i.e in a single batch. // Also refer MultiGet. Status MultiPut(ThreadState* thread, const WriteOptions& writeoptions, const Slice& key, const Slice& value, size_t sz) { std::string keys[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; std::string values[10] = {"9", "8", "7", "6", "5", "4", "3", "2", "1", "0"}; Slice value_slices[10]; WriteBatch batch; Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); values[i] += value.ToString(); value_slices[i] = values[i]; if (FLAGS_use_merge) { batch.Merge(keys[i], value_slices[i]); } else { batch.Put(keys[i], value_slices[i]); } } s = db_->Write(writeoptions, &batch); if (!s.ok()) { fprintf(stderr, "multiput error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { // we did 10 writes each of size sz + 1 thread->stats.AddBytesForWrites(10, (sz + 1) * 10); } return s; } // Given a key K, this deletes ("0"+K), ("1"+K),... ("9"+K) // in DB atomically i.e in a single batch. Also refer MultiGet. Status MultiDelete(ThreadState* thread, const WriteOptions& writeoptions, const Slice& key) { std::string keys[10] = {"9", "7", "5", "3", "1", "8", "6", "4", "2", "0"}; WriteBatch batch; Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); batch.Delete(keys[i]); } s = db_->Write(writeoptions, &batch); if (!s.ok()) { fprintf(stderr, "multidelete error: %s\n", s.ToString().c_str()); thread->stats.AddErrors(1); } else { thread->stats.AddDeletes(10); } return s; } // Given a key K, this gets values for "0"+K, "1"+K,..."9"+K // in the same snapshot, and verifies that all the values are of the form // "0"+V, "1"+V,..."9"+V. // ASSUMES that MultiPut was used to put (K, V) into the DB. Status MultiGet(ThreadState* thread, const ReadOptions& readoptions, const Slice& key, std::string* value) { std::string keys[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice key_slices[10]; std::string values[10]; ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = db_->GetSnapshot(); Status s; for (int i = 0; i < 10; i++) { keys[i] += key.ToString(); key_slices[i] = keys[i]; s = db_->Get(readoptionscopy, key_slices[i], value); if (!s.ok() && !s.IsNotFound()) { fprintf(stderr, "get error: %s\n", s.ToString().c_str()); values[i] = ""; thread->stats.AddErrors(1); // we continue after error rather than exiting so that we can // find more errors if any } else if (s.IsNotFound()) { values[i] = ""; thread->stats.AddGets(1, 0); } else { values[i] = *value; char expected_prefix = (keys[i])[0]; char actual_prefix = (values[i])[0]; if (actual_prefix != expected_prefix) { fprintf(stderr, "error expected prefix = %c actual = %c\n", expected_prefix, actual_prefix); } (values[i])[0] = ' '; // blank out the differing character thread->stats.AddGets(1, 1); } } db_->ReleaseSnapshot(readoptionscopy.snapshot); // Now that we retrieved all values, check that they all match for (int i = 1; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for key %s: %s, %s\n", key.ToString().c_str(), values[0].c_str(), values[i].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } } return s; } // Given a prefix P, this does prefix scans for "0"+P, "1"+P,..."9"+P // in the same snapshot. Each of these 10 scans returns a series of // values; each series should be the same length, and it is verified // for each index i that all the i'th values are of the form "0"+V, // "1"+V,..."9"+V. // ASSUMES that MultiPut was used to put (K, V) Status MultiPrefixScan(ThreadState* thread, const ReadOptions& readoptions, const Slice& prefix) { std::string prefixes[10] = {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"}; Slice prefix_slices[10]; ReadOptions readoptionscopy[10]; const Snapshot* snapshot = db_->GetSnapshot(); Iterator* iters[10]; Status s = Status::OK(); for (int i = 0; i < 10; i++) { prefixes[i] += prefix.ToString(); prefix_slices[i] = prefixes[i]; readoptionscopy[i] = readoptions; readoptionscopy[i].prefix = &prefix_slices[i]; readoptionscopy[i].snapshot = snapshot; iters[i] = db_->NewIterator(readoptionscopy[i]); iters[i]->SeekToFirst(); } int count = 0; while (iters[0]->Valid()) { count++; std::string values[10]; // get list of all values for this iteration for (int i = 0; i < 10; i++) { // no iterator should finish before the first one assert(iters[i]->Valid()); values[i] = iters[i]->value().ToString(); char expected_first = (prefixes[i])[0]; char actual_first = (values[i])[0]; if (actual_first != expected_first) { fprintf(stderr, "error expected first = %c actual = %c\n", expected_first, actual_first); } (values[i])[0] = ' '; // blank out the differing character } // make sure all values are equivalent for (int i = 0; i < 10; i++) { if (values[i] != values[0]) { fprintf(stderr, "error : inconsistent values for prefix %s: %s, %s\n", prefix.ToString().c_str(), values[0].c_str(), values[i].c_str()); // we continue after error rather than exiting so that we can // find more errors if any } iters[i]->Next(); } } // cleanup iterators and snapshot for (int i = 0; i < 10; i++) { // if the first iterator finished, they should have all finished assert(!iters[i]->Valid()); assert(iters[i]->status().ok()); delete iters[i]; } db_->ReleaseSnapshot(snapshot); if (s.ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } return s; } // Given a key K, this creates an iterator which scans to K and then // does a random sequence of Next/Prev operations. Status MultiIterate(ThreadState* thread, const ReadOptions& readoptions, const Slice& key) { Status s; const Snapshot* snapshot = db_->GetSnapshot(); ReadOptions readoptionscopy = readoptions; readoptionscopy.snapshot = snapshot; unique_ptr<Iterator> iter(db_->NewIterator(readoptionscopy)); iter->Seek(key); for (uint64_t i = 0; i < FLAGS_num_iterations && iter->Valid(); i++) { if (thread->rand.OneIn(2)) { iter->Next(); } else { iter->Prev(); } } if (s.ok()) { thread->stats.AddIterations(1); } else { thread->stats.AddErrors(1); } db_->ReleaseSnapshot(snapshot); return s; } void OperateDb(ThreadState* thread) { ReadOptions read_opts(FLAGS_verify_checksum, true); WriteOptions write_opts; char value[100]; long max_key = thread->shared->GetMaxKey(); std::string from_db; if (FLAGS_sync) { write_opts.sync = true; } write_opts.disableWAL = FLAGS_disable_wal; const int prefixBound = (int)FLAGS_readpercent + (int)FLAGS_prefixpercent; const int writeBound = prefixBound + (int)FLAGS_writepercent; const int delBound = writeBound + (int)FLAGS_delpercent; thread->stats.Start(); for (uint64_t i = 0; i < FLAGS_ops_per_thread; i++) { if(i != 0 && (i % (FLAGS_ops_per_thread / (FLAGS_reopen + 1))) == 0) { { thread->stats.FinishedSingleOp(); MutexLock l(thread->shared->GetMutex()); thread->shared->IncVotedReopen(); if (thread->shared->AllVotedReopen()) { thread->shared->GetStressTest()->Reopen(); thread->shared->GetCondVar()->SignalAll(); } else { thread->shared->GetCondVar()->Wait(); } // Commenting this out as we don't want to reset stats on each open. // thread->stats.Start(); } } long rand_key = thread->rand.Next() % max_key; std::string keystr = Key(rand_key); Slice key = keystr; int prob_op = thread->rand.Uniform(100); if (prob_op >= 0 && prob_op < (int)FLAGS_readpercent) { // OPERATION read if (!FLAGS_test_batches_snapshots) { Status s = db_->Get(read_opts, key, &from_db); if (s.ok()) { // found case thread->stats.AddGets(1, 1); } else if (s.IsNotFound()) { // not found case thread->stats.AddGets(1, 0); } else { // errors case thread->stats.AddErrors(1); } } else { MultiGet(thread, read_opts, key, &from_db); } } else if ((int)FLAGS_readpercent <= prob_op && prob_op < prefixBound) { // OPERATION prefix scan // keys are longs (e.g., 8 bytes), so we let prefixes be // everything except the last byte. So there will be 2^8=256 // keys per prefix. Slice prefix = Slice(key.data(), key.size() - 1); if (!FLAGS_test_batches_snapshots) { read_opts.prefix = &prefix; Iterator* iter = db_->NewIterator(read_opts); int count = 0; for (iter->SeekToFirst(); iter->Valid(); iter->Next()) { assert(iter->key().starts_with(prefix)); count++; } assert(count <= 256); if (iter->status().ok()) { thread->stats.AddPrefixes(1, count); } else { thread->stats.AddErrors(1); } delete iter; } else { MultiPrefixScan(thread, read_opts, prefix); } read_opts.prefix = nullptr; } else if (prefixBound <= prob_op && prob_op < writeBound) { // OPERATION write uint32_t value_base = thread->rand.Next(); size_t sz = GenerateValue(value_base, value, sizeof(value)); Slice v(value, sz); if (!FLAGS_test_batches_snapshots) { MutexLock l(thread->shared->GetMutexForKey(rand_key)); if (FLAGS_verify_before_write) { std::string keystr2 = Key(rand_key); Slice k = keystr2; Status s = db_->Get(read_opts, k, &from_db); VerifyValue(rand_key, read_opts, *(thread->shared), from_db, s, true); } thread->shared->Put(rand_key, value_base); if (FLAGS_use_merge) { db_->Merge(write_opts, key, v); } else { db_->Put(write_opts, key, v); } thread->stats.AddBytesForWrites(1, sz); } else { MultiPut(thread, write_opts, key, v, sz); } PrintKeyValue(rand_key, value, sz); } else if (writeBound <= prob_op && prob_op < delBound) { // OPERATION delete if (!FLAGS_test_batches_snapshots) { MutexLock l(thread->shared->GetMutexForKey(rand_key)); thread->shared->Delete(rand_key); db_->Delete(write_opts, key); thread->stats.AddDeletes(1); } else { MultiDelete(thread, write_opts, key); } } else { // OPERATION iterate MultiIterate(thread, read_opts, key); } thread->stats.FinishedSingleOp(); } thread->stats.Stop(); } void VerifyDb(ThreadState* thread) const { ReadOptions options(FLAGS_verify_checksum, true); const SharedState& shared = *(thread->shared); static const long max_key = shared.GetMaxKey(); static const long keys_per_thread = max_key / shared.GetNumThreads(); long start = keys_per_thread * thread->tid; long end = start + keys_per_thread; if (thread->tid == shared.GetNumThreads() - 1) { end = max_key; } if (!thread->rand.OneIn(2)) { // Use iterator to verify this range unique_ptr<Iterator> iter(db_->NewIterator(options)); iter->Seek(Key(start)); for (long i = start; i < end; i++) { std::string from_db; std::string keystr = Key(i); Slice k = keystr; Status s = iter->status(); if (iter->Valid()) { if (iter->key().compare(k) > 0) { s = Status::NotFound(Slice()); } else if (iter->key().compare(k) == 0) { from_db = iter->value().ToString(); iter->Next(); } else if (iter->key().compare(k) < 0) { VerificationAbort("An out of range key was found", i); } } else { // The iterator found no value for the key in question, so do not // move to the next item in the iterator s = Status::NotFound(Slice()); } VerifyValue(i, options, shared, from_db, s, true); if (from_db.length()) { PrintKeyValue(i, from_db.data(), from_db.length()); } } } else { // Use Get to verify this range for (long i = start; i < end; i++) { std::string from_db; std::string keystr = Key(i); Slice k = keystr; Status s = db_->Get(options, k, &from_db); VerifyValue(i, options, shared, from_db, s, true); if (from_db.length()) { PrintKeyValue(i, from_db.data(), from_db.length()); } } } } void VerificationAbort(std::string msg, long key) const { fprintf(stderr, "Verification failed for key %ld: %s\n", key, msg.c_str()); exit(1); } void VerifyValue(long key, const ReadOptions &opts, const SharedState &shared, const std::string &value_from_db, Status s, bool strict=false) const { // compare value_from_db with the value in the shared state char value[100]; uint32_t value_base = shared.Get(key); if (value_base == SharedState::SENTINEL && !strict) { return; } if (s.ok()) { if (value_base == SharedState::SENTINEL) { VerificationAbort("Unexpected value found", key); } size_t sz = GenerateValue(value_base, value, sizeof(value)); if (value_from_db.length() != sz) { VerificationAbort("Length of value read is not equal", key); } if (memcmp(value_from_db.data(), value, sz) != 0) { VerificationAbort("Contents of value read don't match", key); } } else { if (value_base != SharedState::SENTINEL) { VerificationAbort("Value not found", key); } } } static void PrintKeyValue(uint32_t key, const char *value, size_t sz) { if (!FLAGS_verbose) return; fprintf(stdout, "%u ==> (%u) ", key, (unsigned int)sz); for (size_t i=0; i<sz; i++) { fprintf(stdout, "%X", value[i]); } fprintf(stdout, "\n"); } static size_t GenerateValue(uint32_t rand, char *v, size_t max_sz) { size_t value_sz = ((rand % 3) + 1) * FLAGS_value_size_mult; assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t)); *((uint32_t*)v) = rand; for (size_t i=sizeof(uint32_t); i < value_sz; i++) { v[i] = (char)(rand ^ i); } v[value_sz] = '\0'; return value_sz; // the size of the value set. } void PrintEnv() const { fprintf(stdout, "LevelDB version : %d.%d\n", kMajorVersion, kMinorVersion); fprintf(stdout, "Number of threads : %d\n", FLAGS_threads); fprintf(stdout, "Ops per thread : %lu\n", (unsigned long)FLAGS_ops_per_thread); std::string ttl_state("unused"); if (FLAGS_ttl > 0) { ttl_state = NumberToString(FLAGS_ttl); } fprintf(stdout, "Time to live(sec) : %s\n", ttl_state.c_str()); fprintf(stdout, "Read percentage : %d%%\n", FLAGS_readpercent); fprintf(stdout, "Prefix percentage : %d%%\n", FLAGS_prefixpercent); fprintf(stdout, "Write percentage : %d%%\n", FLAGS_writepercent); fprintf(stdout, "Delete percentage : %d%%\n", FLAGS_delpercent); fprintf(stdout, "Iterate percentage : %d%%\n", FLAGS_iterpercent); fprintf(stdout, "Write-buffer-size : %d\n", FLAGS_write_buffer_size); fprintf(stdout, "Iterations : %lu\n", (unsigned long)FLAGS_num_iterations); fprintf(stdout, "Max key : %lu\n", (unsigned long)FLAGS_max_key); fprintf(stdout, "Ratio #ops/#keys : %f\n", (1.0 * FLAGS_ops_per_thread * FLAGS_threads)/FLAGS_max_key); fprintf(stdout, "Num times DB reopens: %d\n", FLAGS_reopen); fprintf(stdout, "Batches/snapshots : %d\n", FLAGS_test_batches_snapshots); fprintf(stdout, "Purge redundant %% : %d\n", FLAGS_purge_redundant_percent); fprintf(stdout, "Deletes use filter : %d\n", FLAGS_filter_deletes); fprintf(stdout, "Num keys per lock : %d\n", 1 << FLAGS_log2_keys_per_lock); const char* compression = ""; switch (FLAGS_compression_type_e) { case rocksdb::kNoCompression: compression = "none"; break; case rocksdb::kSnappyCompression: compression = "snappy"; break; case rocksdb::kZlibCompression: compression = "zlib"; break; case rocksdb::kBZip2Compression: compression = "bzip2"; break; } fprintf(stdout, "Compression : %s\n", compression); const char* memtablerep = ""; switch (FLAGS_rep_factory) { case kSkipList: memtablerep = "skip_list"; break; case kHashSkipList: memtablerep = "prefix_hash"; break; case kVectorRep: memtablerep = "vector"; break; } fprintf(stdout, "Memtablerep : %s\n", memtablerep); fprintf(stdout, "------------------------------------------------\n"); } void Open() { assert(db_ == nullptr); Options options; options.block_cache = cache_; options.block_cache_compressed = compressed_cache_; options.write_buffer_size = FLAGS_write_buffer_size; options.max_write_buffer_number = FLAGS_max_write_buffer_number; options.min_write_buffer_number_to_merge = FLAGS_min_write_buffer_number_to_merge; options.max_background_compactions = FLAGS_max_background_compactions; options.compaction_style = static_cast<rocksdb::CompactionStyle>(FLAGS_compaction_style); options.block_size = FLAGS_block_size; options.filter_policy = filter_policy_; options.prefix_extractor = prefix_extractor_; options.max_open_files = FLAGS_open_files; options.statistics = dbstats; options.env = FLAGS_env; options.disableDataSync = FLAGS_disable_data_sync; options.use_fsync = FLAGS_use_fsync; options.allow_mmap_reads = FLAGS_mmap_read; rocksdb_kill_odds = FLAGS_kill_random_test; options.target_file_size_base = FLAGS_target_file_size_base; options.target_file_size_multiplier = FLAGS_target_file_size_multiplier; options.max_bytes_for_level_base = FLAGS_max_bytes_for_level_base; options.max_bytes_for_level_multiplier = FLAGS_max_bytes_for_level_multiplier; options.level0_stop_writes_trigger = FLAGS_level0_stop_writes_trigger; options.level0_slowdown_writes_trigger = FLAGS_level0_slowdown_writes_trigger; options.level0_file_num_compaction_trigger = FLAGS_level0_file_num_compaction_trigger; options.compression = FLAGS_compression_type_e; options.create_if_missing = true; options.disable_seek_compaction = FLAGS_disable_seek_compaction; options.delete_obsolete_files_period_micros = FLAGS_delete_obsolete_files_period_micros; options.max_manifest_file_size = 1024; options.filter_deletes = FLAGS_filter_deletes; if ((FLAGS_prefix_size == 0) == (FLAGS_rep_factory == kHashSkipList)) { fprintf(stderr, "prefix_size should be non-zero iff memtablerep == prefix_hash\n"); exit(1); } switch (FLAGS_rep_factory) { case kHashSkipList: options.memtable_factory.reset(NewHashSkipListRepFactory( NewFixedPrefixTransform(FLAGS_prefix_size))); break; case kSkipList: // no need to do anything break; case kVectorRep: options.memtable_factory.reset( new VectorRepFactory() ); break; } static Random purge_percent(1000); // no benefit from non-determinism here if (static_cast<int32_t>(purge_percent.Uniform(100)) < FLAGS_purge_redundant_percent - 1) { options.purge_redundant_kvs_while_flush = false; } if (FLAGS_use_merge) { options.merge_operator = MergeOperators::CreatePutOperator(); } // set universal style compaction configurations, if applicable if (FLAGS_universal_size_ratio != 0) { options.compaction_options_universal.size_ratio = FLAGS_universal_size_ratio; } if (FLAGS_universal_min_merge_width != 0) { options.compaction_options_universal.min_merge_width = FLAGS_universal_min_merge_width; } if (FLAGS_universal_max_merge_width != 0) { options.compaction_options_universal.max_merge_width = FLAGS_universal_max_merge_width; } if (FLAGS_universal_max_size_amplification_percent != 0) { options.compaction_options_universal.max_size_amplification_percent = FLAGS_universal_max_size_amplification_percent; } fprintf(stdout, "DB path: [%s]\n", FLAGS_db.c_str()); Status s; if (FLAGS_ttl == -1) { s = DB::Open(options, FLAGS_db, &db_); } else { s = UtilityDB::OpenTtlDB(options, FLAGS_db, &sdb_, FLAGS_ttl); db_ = sdb_; } if (!s.ok()) { fprintf(stderr, "open error: %s\n", s.ToString().c_str()); exit(1); } } void Reopen() { // do not close the db. Just delete the lock file. This // simulates a crash-recovery kind of situation. if (FLAGS_ttl != -1) { ((DBWithTTL*) db_)->TEST_Destroy_DBWithTtl(); } else { ((DBImpl*) db_)->TEST_Destroy_DBImpl(); } db_ = nullptr; num_times_reopened_++; double now = FLAGS_env->NowMicros(); fprintf(stdout, "%s Reopening database for the %dth time\n", FLAGS_env->TimeToString((uint64_t) now/1000000).c_str(), num_times_reopened_); Open(); } void PrintStatistics() { if (dbstats) { fprintf(stdout, "STATISTICS:\n%s\n", dbstats->ToString().c_str()); } } private: shared_ptr<Cache> cache_; shared_ptr<Cache> compressed_cache_; const FilterPolicy* filter_policy_; const SliceTransform* prefix_extractor_; DB* db_; StackableDB* sdb_; int num_times_reopened_; }; } // namespace rocksdb int main(int argc, char** argv) { google::SetUsageMessage(std::string("\nUSAGE:\n") + std::string(argv[0]) + " [OPTIONS]..."); google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_statistics) { dbstats = rocksdb::CreateDBStatistics(); } FLAGS_compression_type_e = StringToCompressionType(FLAGS_compression_type.c_str()); if (!FLAGS_hdfs.empty()) { FLAGS_env = new rocksdb::HdfsEnv(FLAGS_hdfs); } FLAGS_rep_factory = StringToRepFactory(FLAGS_memtablerep.c_str()); // The number of background threads should be at least as much the // max number of concurrent compactions. FLAGS_env->SetBackgroundThreads(FLAGS_max_background_compactions); if ((FLAGS_readpercent + FLAGS_prefixpercent + FLAGS_writepercent + FLAGS_delpercent + FLAGS_iterpercent) != 100) { fprintf(stderr, "Error: Read+Prefix+Write+Delete+Iterate percents != 100!\n"); exit(1); } if (FLAGS_disable_wal == 1 && FLAGS_reopen > 0) { fprintf(stderr, "Error: Db cannot reopen safely with disable_wal set!\n"); exit(1); } if ((unsigned)FLAGS_reopen >= FLAGS_ops_per_thread) { fprintf(stderr, "Error: #DB-reopens should be < ops_per_thread\n" "Provided reopens = %d and ops_per_thread = %lu\n", FLAGS_reopen, (unsigned long)FLAGS_ops_per_thread); exit(1); } // Choose a location for the test database if none given with --db=<path> if (FLAGS_db.empty()) { std::string default_db_path; rocksdb::Env::Default()->GetTestDirectory(&default_db_path); default_db_path += "/dbstress"; FLAGS_db = default_db_path; } rocksdb::StressTest stress; stress.Run(); return 0; }