// Copyright (c) 2011-present, Facebook, Inc. All rights reserved // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #pragma once #include <memory> #include <string> #include "cache/sharded_cache.h" #include "port/malloc.h" #include "port/port.h" #include "rocksdb/secondary_cache.h" #include "util/autovector.h" namespace ROCKSDB_NAMESPACE { // LRU cache implementation. This class is not thread-safe. // An entry is a variable length heap-allocated structure. // Entries are referenced by cache and/or by any external entity. // The cache keeps all its entries in a hash table. Some elements // are also stored on LRU list. // // LRUHandle can be in these states: // 1. Referenced externally AND in hash table. // In that case the entry is *not* in the LRU list // (refs >= 1 && in_cache == true) // 2. Not referenced externally AND in hash table. // In that case the entry is in the LRU list and can be freed. // (refs == 0 && in_cache == true) // 3. Referenced externally AND not in hash table. // In that case the entry is not in the LRU list and not in hash table. // The entry can be freed when refs becomes 0. // (refs >= 1 && in_cache == false) // // All newly created LRUHandles are in state 1. If you call // LRUCacheShard::Release on entry in state 1, it will go into state 2. // To move from state 1 to state 3, either call LRUCacheShard::Erase or // LRUCacheShard::Insert with the same key (but possibly different value). // To move from state 2 to state 1, use LRUCacheShard::Lookup. // Before destruction, make sure that no handles are in state 1. This means // that any successful LRUCacheShard::Lookup/LRUCacheShard::Insert have a // matching LRUCache::Release (to move into state 2) or LRUCacheShard::Erase // (to move into state 3). struct LRUHandle { void* value; union Info { Info() {} ~Info() {} Cache::DeleterFn deleter; const ShardedCache::CacheItemHelper* helper; } info_; // An entry is not added to the LRUHandleTable until the secondary cache // lookup is complete, so its safe to have this union. union { LRUHandle* next_hash; SecondaryCacheResultHandle* sec_handle; }; LRUHandle* next; LRUHandle* prev; size_t charge; // TODO(opt): Only allow uint32_t? size_t key_length; // The hash of key(). Used for fast sharding and comparisons. uint32_t hash; // The number of external refs to this entry. The cache itself is not counted. uint32_t refs; enum Flags : uint8_t { // Whether this entry is referenced by the hash table. IN_CACHE = (1 << 0), // Whether this entry is high priority entry. IS_HIGH_PRI = (1 << 1), // Whether this entry is in high-pri pool. IN_HIGH_PRI_POOL = (1 << 2), // Whether this entry has had any lookups (hits). HAS_HIT = (1 << 3), // Can this be inserted into the tiered cache IS_TIERED_CACHE_COMPATIBLE = (1 << 4), // Is the handle still being read from a lower tier IS_PENDING = (1 << 5), // Has the item been promoted from a lower tier IS_PROMOTED = (1 << 6), }; uint8_t flags; // Beginning of the key (MUST BE THE LAST FIELD IN THIS STRUCT!) char key_data[1]; Slice key() const { return Slice(key_data, key_length); } // Increase the reference count by 1. void Ref() { refs++; } // Just reduce the reference count by 1. Return true if it was last reference. bool Unref() { assert(refs > 0); refs--; return refs == 0; } // Return true if there are external refs, false otherwise. bool HasRefs() const { return refs > 0; } bool InCache() const { return flags & IN_CACHE; } bool IsHighPri() const { return flags & IS_HIGH_PRI; } bool InHighPriPool() const { return flags & IN_HIGH_PRI_POOL; } bool HasHit() const { return flags & HAS_HIT; } bool IsSecondaryCacheCompatible() const { return flags & IS_TIERED_CACHE_COMPATIBLE; } bool IsPending() const { return flags & IS_PENDING; } bool IsPromoted() const { return flags & IS_PROMOTED; } void SetInCache(bool in_cache) { if (in_cache) { flags |= IN_CACHE; } else { flags &= ~IN_CACHE; } } void SetPriority(Cache::Priority priority) { if (priority == Cache::Priority::HIGH) { flags |= IS_HIGH_PRI; } else { flags &= ~IS_HIGH_PRI; } } void SetInHighPriPool(bool in_high_pri_pool) { if (in_high_pri_pool) { flags |= IN_HIGH_PRI_POOL; } else { flags &= ~IN_HIGH_PRI_POOL; } } void SetHit() { flags |= HAS_HIT; } void SetSecondaryCacheCompatible(bool tiered) { if (tiered) { flags |= IS_TIERED_CACHE_COMPATIBLE; } else { flags &= ~IS_TIERED_CACHE_COMPATIBLE; } } void SetIncomplete(bool incomp) { if (incomp) { flags |= IS_PENDING; } else { flags &= ~IS_PENDING; } } void SetPromoted(bool promoted) { if (promoted) { flags |= IS_PROMOTED; } else { flags &= ~IS_PROMOTED; } } void Free() { assert(refs == 0); if (!IsSecondaryCacheCompatible() && info_.deleter) { (*info_.deleter)(key(), value); } else if (IsSecondaryCacheCompatible()) { if (IsPending()) { assert(sec_handle != nullptr); SecondaryCacheResultHandle* tmp_sec_handle = sec_handle; tmp_sec_handle->Wait(); value = tmp_sec_handle->Value(); delete tmp_sec_handle; } if (value) { (*info_.helper->del_cb)(key(), value); } } delete[] reinterpret_cast<char*>(this); } // Calculate the memory usage by metadata inline size_t CalcTotalCharge( CacheMetadataChargePolicy metadata_charge_policy) { size_t meta_charge = 0; if (metadata_charge_policy == kFullChargeCacheMetadata) { #ifdef ROCKSDB_MALLOC_USABLE_SIZE meta_charge += malloc_usable_size(static_cast<void*>(this)); #else // This is the size that is used when a new handle is created meta_charge += sizeof(LRUHandle) - 1 + key_length; #endif } return charge + meta_charge; } }; // We provide our own simple hash table since it removes a whole bunch // of porting hacks and is also faster than some of the built-in hash // table implementations in some of the compiler/runtime combinations // we have tested. E.g., readrandom speeds up by ~5% over the g++ // 4.4.3's builtin hashtable. class LRUHandleTable { public: // If the table uses more hash bits than `max_upper_hash_bits`, // it will eat into the bits used for sharding, which are constant // for a given LRUHandleTable. explicit LRUHandleTable(int max_upper_hash_bits); ~LRUHandleTable(); LRUHandle* Lookup(const Slice& key, uint32_t hash); LRUHandle* Insert(LRUHandle* h); LRUHandle* Remove(const Slice& key, uint32_t hash); template <typename T> void ApplyToEntriesRange(T func, uint32_t index_begin, uint32_t index_end) { for (uint32_t i = index_begin; i < index_end; i++) { LRUHandle* h = list_[i]; while (h != nullptr) { auto n = h->next_hash; assert(h->InCache()); func(h); h = n; } } } int GetLengthBits() const { return length_bits_; } private: // Return a pointer to slot that points to a cache entry that // matches key/hash. If there is no such cache entry, return a // pointer to the trailing slot in the corresponding linked list. LRUHandle** FindPointer(const Slice& key, uint32_t hash); void Resize(); // Number of hash bits (upper because lower bits used for sharding) // used for table index. Length == 1 << length_bits_ int length_bits_; // The table consists of an array of buckets where each bucket is // a linked list of cache entries that hash into the bucket. std::unique_ptr<LRUHandle*[]> list_; // Number of elements currently in the table uint32_t elems_; // Set from max_upper_hash_bits (see constructor) const int max_length_bits_; }; // A single shard of sharded cache. class ALIGN_AS(CACHE_LINE_SIZE) LRUCacheShard final : public CacheShard { public: LRUCacheShard(size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio, bool use_adaptive_mutex, CacheMetadataChargePolicy metadata_charge_policy, int max_upper_hash_bits, const std::shared_ptr<SecondaryCache>& secondary_cache); virtual ~LRUCacheShard() override = default; // Separate from constructor so caller can easily make an array of LRUCache // if current usage is more than new capacity, the function will attempt to // free the needed space virtual void SetCapacity(size_t capacity) override; // Set the flag to reject insertion if cache if full. virtual void SetStrictCapacityLimit(bool strict_capacity_limit) override; // Set percentage of capacity reserved for high-pri cache entries. void SetHighPriorityPoolRatio(double high_pri_pool_ratio); // Like Cache methods, but with an extra "hash" parameter. virtual Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge, Cache::DeleterFn deleter, Cache::Handle** handle, Cache::Priority priority) override { return Insert(key, hash, value, charge, deleter, nullptr, handle, priority); } virtual Status Insert(const Slice& key, uint32_t hash, void* value, const Cache::CacheItemHelper* helper, size_t charge, Cache::Handle** handle, Cache::Priority priority) override { assert(helper); return Insert(key, hash, value, charge, nullptr, helper, handle, priority); } // If helper_cb is null, the values of the following arguments don't // matter virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash, const ShardedCache::CacheItemHelper* helper, const ShardedCache::CreateCallback& create_cb, ShardedCache::Priority priority, bool wait) override; virtual Cache::Handle* Lookup(const Slice& key, uint32_t hash) override { return Lookup(key, hash, nullptr, nullptr, Cache::Priority::LOW, true); } virtual bool Release(Cache::Handle* handle, bool /*useful*/, bool force_erase) override { return Release(handle, force_erase); } virtual bool IsReady(Cache::Handle* /*handle*/) override; virtual void Wait(Cache::Handle* /*handle*/) override {} virtual bool Ref(Cache::Handle* handle) override; virtual bool Release(Cache::Handle* handle, bool force_erase = false) override; virtual void Erase(const Slice& key, uint32_t hash) override; // Although in some platforms the update of size_t is atomic, to make sure // GetUsage() and GetPinnedUsage() work correctly under any platform, we'll // protect them with mutex_. virtual size_t GetUsage() const override; virtual size_t GetPinnedUsage() const override; virtual void ApplyToSomeEntries( const std::function<void(const Slice& key, void* value, size_t charge, DeleterFn deleter)>& callback, uint32_t average_entries_per_lock, uint32_t* state) override; virtual void EraseUnRefEntries() override; virtual std::string GetPrintableOptions() const override; void TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri); // Retrieves number of elements in LRU, for unit test purpose only // not threadsafe size_t TEST_GetLRUSize(); // Retrieves high pri pool ratio double GetHighPriPoolRatio(); private: friend class LRUCache; // Insert an item into the hash table and, if handle is null, insert into // the LRU list. Older items are evicted as necessary. If the cache is full // and free_handle_on_fail is true, the item is deleted and handle is set to. Status InsertItem(LRUHandle* item, Cache::Handle** handle, bool free_handle_on_fail); Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge, DeleterFn deleter, const Cache::CacheItemHelper* helper, Cache::Handle** handle, Cache::Priority priority); // Promote an item looked up from the secondary cache to the LRU cache. The // item is only inserted into the hash table and not the LRU list, and only // if the cache is not at full capacity, as is the case during Insert. The // caller should hold a reference on the LRUHandle. When the caller releases // the last reference, the item is added to the LRU list. // The item is promoted to the high pri or low pri pool as specified by the // caller in Lookup. void Promote(LRUHandle* e); void LRU_Remove(LRUHandle* e); void LRU_Insert(LRUHandle* e); // Overflow the last entry in high-pri pool to low-pri pool until size of // high-pri pool is no larger than the size specify by high_pri_pool_pct. void MaintainPoolSize(); // Free some space following strict LRU policy until enough space // to hold (usage_ + charge) is freed or the lru list is empty // This function is not thread safe - it needs to be executed while // holding the mutex_ void EvictFromLRU(size_t charge, autovector<LRUHandle*>* deleted); // Initialized before use. size_t capacity_; // Memory size for entries in high-pri pool. size_t high_pri_pool_usage_; // Whether to reject insertion if cache reaches its full capacity. bool strict_capacity_limit_; // Ratio of capacity reserved for high priority cache entries. double high_pri_pool_ratio_; // High-pri pool size, equals to capacity * high_pri_pool_ratio. // Remember the value to avoid recomputing each time. double high_pri_pool_capacity_; // Dummy head of LRU list. // lru.prev is newest entry, lru.next is oldest entry. // LRU contains items which can be evicted, ie reference only by cache LRUHandle lru_; // Pointer to head of low-pri pool in LRU list. LRUHandle* lru_low_pri_; // ------------^^^^^^^^^^^^^----------- // Not frequently modified data members // ------------------------------------ // // We separate data members that are updated frequently from the ones that // are not frequently updated so that they don't share the same cache line // which will lead into false cache sharing // // ------------------------------------ // Frequently modified data members // ------------vvvvvvvvvvvvv----------- LRUHandleTable table_; // Memory size for entries residing in the cache size_t usage_; // Memory size for entries residing only in the LRU list size_t lru_usage_; // mutex_ protects the following state. // We don't count mutex_ as the cache's internal state so semantically we // don't mind mutex_ invoking the non-const actions. mutable port::Mutex mutex_; std::shared_ptr<SecondaryCache> secondary_cache_; }; class LRUCache #ifdef NDEBUG final #endif : public ShardedCache { public: LRUCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit, double high_pri_pool_ratio, std::shared_ptr<MemoryAllocator> memory_allocator = nullptr, bool use_adaptive_mutex = kDefaultToAdaptiveMutex, CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata, const std::shared_ptr<SecondaryCache>& secondary_cache = nullptr); virtual ~LRUCache(); virtual const char* Name() const override { return "LRUCache"; } virtual CacheShard* GetShard(uint32_t shard) override; virtual const CacheShard* GetShard(uint32_t shard) const override; virtual void* Value(Handle* handle) override; virtual size_t GetCharge(Handle* handle) const override; virtual uint32_t GetHash(Handle* handle) const override; virtual DeleterFn GetDeleter(Handle* handle) const override; virtual void DisownData() override; virtual void WaitAll(std::vector<Handle*>& handles) override; // Retrieves number of elements in LRU, for unit test purpose only size_t TEST_GetLRUSize(); // Retrieves high pri pool ratio double GetHighPriPoolRatio(); private: LRUCacheShard* shards_ = nullptr; int num_shards_ = 0; std::shared_ptr<SecondaryCache> secondary_cache_; }; } // namespace ROCKSDB_NAMESPACE