// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. An additional grant // of patent rights can be found in the PATENTS file in the same directory. // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "table/block_based_table_reader.h" #include #include #include #include #include #include "db/dbformat.h" #include "db/pinned_iterators_manager.h" #include "rocksdb/cache.h" #include "rocksdb/comparator.h" #include "rocksdb/env.h" #include "rocksdb/filter_policy.h" #include "rocksdb/iterator.h" #include "rocksdb/options.h" #include "rocksdb/statistics.h" #include "rocksdb/table.h" #include "rocksdb/table_properties.h" #include "table/block.h" #include "table/block_based_filter_block.h" #include "table/block_based_table_factory.h" #include "table/block_prefix_index.h" #include "table/filter_block.h" #include "table/format.h" #include "table/full_filter_block.h" #include "table/get_context.h" #include "table/internal_iterator.h" #include "table/meta_blocks.h" #include "table/persistent_cache_helper.h" #include "table/sst_file_writer_collectors.h" #include "table/two_level_iterator.h" #include "util/coding.h" #include "util/file_reader_writer.h" #include "util/perf_context_imp.h" #include "util/stop_watch.h" #include "util/string_util.h" #include "util/sync_point.h" namespace rocksdb { extern const uint64_t kBlockBasedTableMagicNumber; extern const std::string kHashIndexPrefixesBlock; extern const std::string kHashIndexPrefixesMetadataBlock; using std::unique_ptr; typedef BlockBasedTable::IndexReader IndexReader; namespace { // Read the block identified by "handle" from "file". // The only relevant option is options.verify_checksums for now. // On failure return non-OK. // On success fill *result and return OK - caller owns *result // @param compression_dict Data for presetting the compression library's // dictionary. Status ReadBlockFromFile(RandomAccessFileReader* file, const Footer& footer, const ReadOptions& options, const BlockHandle& handle, std::unique_ptr* result, const ImmutableCFOptions& ioptions, bool do_uncompress, const Slice& compression_dict, const PersistentCacheOptions& cache_options, SequenceNumber global_seqno, size_t read_amp_bytes_per_bit) { BlockContents contents; Status s = ReadBlockContents(file, footer, options, handle, &contents, ioptions, do_uncompress, compression_dict, cache_options); if (s.ok()) { result->reset(new Block(std::move(contents), global_seqno, read_amp_bytes_per_bit, ioptions.statistics)); } return s; } // Delete the resource that is held by the iterator. template void DeleteHeldResource(void* arg, void* ignored) { delete reinterpret_cast(arg); } // Delete the entry resided in the cache. template void DeleteCachedEntry(const Slice& key, void* value) { auto entry = reinterpret_cast(value); delete entry; } void DeleteCachedFilterEntry(const Slice& key, void* value); void DeleteCachedIndexEntry(const Slice& key, void* value); // Release the cached entry and decrement its ref count. void ReleaseCachedEntry(void* arg, void* h) { Cache* cache = reinterpret_cast(arg); Cache::Handle* handle = reinterpret_cast(h); cache->Release(handle); } Slice GetCacheKeyFromOffset(const char* cache_key_prefix, size_t cache_key_prefix_size, uint64_t offset, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= BlockBasedTable::kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, offset); return Slice(cache_key, static_cast(end - cache_key)); } Cache::Handle* GetEntryFromCache(Cache* block_cache, const Slice& key, Tickers block_cache_miss_ticker, Tickers block_cache_hit_ticker, Statistics* statistics) { auto cache_handle = block_cache->Lookup(key, statistics); if (cache_handle != nullptr) { PERF_COUNTER_ADD(block_cache_hit_count, 1); // overall cache hit RecordTick(statistics, BLOCK_CACHE_HIT); // total bytes read from cache RecordTick(statistics, BLOCK_CACHE_BYTES_READ, block_cache->GetUsage(cache_handle)); // block-type specific cache hit RecordTick(statistics, block_cache_hit_ticker); } else { // overall cache miss RecordTick(statistics, BLOCK_CACHE_MISS); // block-type specific cache miss RecordTick(statistics, block_cache_miss_ticker); } return cache_handle; } } // namespace // -- IndexReader and its subclasses // IndexReader is the interface that provide the functionality for index access. class BlockBasedTable::IndexReader { public: explicit IndexReader(const Comparator* comparator, Statistics* stats) : comparator_(comparator), statistics_(stats) {} virtual ~IndexReader() {} // Create an iterator for index access. // If iter is null then a new object is created on heap and the callee will // have the ownership. If a non-null iter is passed in it will be used, and // the returned value is either the same as iter or a new on-heap object that // wrapps the passed iter. In the latter case the return value would point to // a different object then iter and the callee has the ownership of the // returned object. virtual InternalIterator* NewIterator(BlockIter* iter = nullptr, bool total_order_seek = true) = 0; // The size of the index. virtual size_t size() const = 0; // Memory usage of the index block virtual size_t usable_size() const = 0; // return the statistics pointer virtual Statistics* statistics() const { return statistics_; } // Report an approximation of how much memory has been used other than memory // that was allocated in block cache. virtual size_t ApproximateMemoryUsage() const = 0; protected: const Comparator* comparator_; private: Statistics* statistics_; }; // Index that allows binary search lookup in a two-level index structure. class PartitionIndexReader : public IndexReader { public: // Read the partition index from the file and create an instance for // `PartitionIndexReader`. // On success, index_reader will be populated; otherwise it will remain // unmodified. static Status Create(BlockBasedTable* table, RandomAccessFileReader* file, const Footer& footer, const BlockHandle& index_handle, const ImmutableCFOptions& ioptions, const Comparator* comparator, IndexReader** index_reader, const PersistentCacheOptions& cache_options) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, Slice() /*compression dict*/, cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */); if (s.ok()) { *index_reader = new PartitionIndexReader( table, comparator, std::move(index_block), ioptions.statistics); } return s; } // return a two-level iterator: first level is on the partition index virtual InternalIterator* NewIterator(BlockIter* iter = nullptr, bool dont_care = true) override { return NewTwoLevelIterator( new BlockBasedTable::BlockEntryIteratorState(table_, ReadOptions(), false), index_block_->NewIterator(comparator_, iter, true)); } virtual size_t size() const override { return index_block_->size(); } virtual size_t usable_size() const override { return index_block_->usable_size(); } virtual size_t ApproximateMemoryUsage() const override { assert(index_block_); return index_block_->ApproximateMemoryUsage(); } private: PartitionIndexReader(BlockBasedTable* table, const Comparator* comparator, std::unique_ptr&& index_block, Statistics* stats) : IndexReader(comparator, stats), table_(table), index_block_(std::move(index_block)) { assert(index_block_ != nullptr); } BlockBasedTable* table_; std::unique_ptr index_block_; }; // Index that allows binary search lookup for the first key of each block. // This class can be viewed as a thin wrapper for `Block` class which already // supports binary search. class BinarySearchIndexReader : public IndexReader { public: // Read index from the file and create an intance for // `BinarySearchIndexReader`. // On success, index_reader will be populated; otherwise it will remain // unmodified. static Status Create(RandomAccessFileReader* file, const Footer& footer, const BlockHandle& index_handle, const ImmutableCFOptions &ioptions, const Comparator* comparator, IndexReader** index_reader, const PersistentCacheOptions& cache_options) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, Slice() /*compression dict*/, cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */); if (s.ok()) { *index_reader = new BinarySearchIndexReader( comparator, std::move(index_block), ioptions.statistics); } return s; } virtual InternalIterator* NewIterator(BlockIter* iter = nullptr, bool dont_care = true) override { return index_block_->NewIterator(comparator_, iter, true); } virtual size_t size() const override { return index_block_->size(); } virtual size_t usable_size() const override { return index_block_->usable_size(); } virtual size_t ApproximateMemoryUsage() const override { assert(index_block_); return index_block_->ApproximateMemoryUsage(); } private: BinarySearchIndexReader(const Comparator* comparator, std::unique_ptr&& index_block, Statistics* stats) : IndexReader(comparator, stats), index_block_(std::move(index_block)) { assert(index_block_ != nullptr); } std::unique_ptr index_block_; }; // Index that leverages an internal hash table to quicken the lookup for a given // key. class HashIndexReader : public IndexReader { public: static Status Create(const SliceTransform* hash_key_extractor, const Footer& footer, RandomAccessFileReader* file, const ImmutableCFOptions& ioptions, const Comparator* comparator, const BlockHandle& index_handle, InternalIterator* meta_index_iter, IndexReader** index_reader, bool hash_index_allow_collision, const PersistentCacheOptions& cache_options) { std::unique_ptr index_block; auto s = ReadBlockFromFile( file, footer, ReadOptions(), index_handle, &index_block, ioptions, true /* decompress */, Slice() /*compression dict*/, cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */); if (!s.ok()) { return s; } // Note, failure to create prefix hash index does not need to be a // hard error. We can still fall back to the original binary search index. // So, Create will succeed regardless, from this point on. auto new_index_reader = new HashIndexReader(comparator, std::move(index_block), ioptions.statistics); *index_reader = new_index_reader; // Get prefixes block BlockHandle prefixes_handle; s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesBlock, &prefixes_handle); if (!s.ok()) { // TODO: log error return Status::OK(); } // Get index metadata block BlockHandle prefixes_meta_handle; s = FindMetaBlock(meta_index_iter, kHashIndexPrefixesMetadataBlock, &prefixes_meta_handle); if (!s.ok()) { // TODO: log error return Status::OK(); } // Read contents for the blocks BlockContents prefixes_contents; s = ReadBlockContents(file, footer, ReadOptions(), prefixes_handle, &prefixes_contents, ioptions, true /* decompress */, Slice() /*compression dict*/, cache_options); if (!s.ok()) { return s; } BlockContents prefixes_meta_contents; s = ReadBlockContents(file, footer, ReadOptions(), prefixes_meta_handle, &prefixes_meta_contents, ioptions, true /* decompress */, Slice() /*compression dict*/, cache_options); if (!s.ok()) { // TODO: log error return Status::OK(); } BlockPrefixIndex* prefix_index = nullptr; s = BlockPrefixIndex::Create(hash_key_extractor, prefixes_contents.data, prefixes_meta_contents.data, &prefix_index); // TODO: log error if (s.ok()) { new_index_reader->index_block_->SetBlockPrefixIndex(prefix_index); } return Status::OK(); } virtual InternalIterator* NewIterator(BlockIter* iter = nullptr, bool total_order_seek = true) override { return index_block_->NewIterator(comparator_, iter, total_order_seek); } virtual size_t size() const override { return index_block_->size(); } virtual size_t usable_size() const override { return index_block_->usable_size(); } virtual size_t ApproximateMemoryUsage() const override { assert(index_block_); return index_block_->ApproximateMemoryUsage() + prefixes_contents_.data.size(); } private: HashIndexReader(const Comparator* comparator, std::unique_ptr&& index_block, Statistics* stats) : IndexReader(comparator, stats), index_block_(std::move(index_block)) { assert(index_block_ != nullptr); } ~HashIndexReader() { } std::unique_ptr index_block_; BlockContents prefixes_contents_; }; // CachableEntry represents the entries that *may* be fetched from block cache. // field `value` is the item we want to get. // field `cache_handle` is the cache handle to the block cache. If the value // was not read from cache, `cache_handle` will be nullptr. template struct BlockBasedTable::CachableEntry { CachableEntry(TValue* _value, Cache::Handle* _cache_handle) : value(_value), cache_handle(_cache_handle) {} CachableEntry() : CachableEntry(nullptr, nullptr) {} void Release(Cache* cache) { if (cache_handle) { cache->Release(cache_handle); value = nullptr; cache_handle = nullptr; } } bool IsSet() const { return cache_handle != nullptr; } TValue* value = nullptr; // if the entry is from the cache, cache_handle will be populated. Cache::Handle* cache_handle = nullptr; }; struct BlockBasedTable::Rep { Rep(const ImmutableCFOptions& _ioptions, const EnvOptions& _env_options, const BlockBasedTableOptions& _table_opt, const InternalKeyComparator& _internal_comparator, bool skip_filters) : ioptions(_ioptions), env_options(_env_options), table_options(_table_opt), filter_policy(skip_filters ? nullptr : _table_opt.filter_policy.get()), internal_comparator(_internal_comparator), filter_type(FilterType::kNoFilter), whole_key_filtering(_table_opt.whole_key_filtering), prefix_filtering(true), range_del_handle(BlockHandle::NullBlockHandle()), global_seqno(kDisableGlobalSequenceNumber) {} const ImmutableCFOptions& ioptions; const EnvOptions& env_options; const BlockBasedTableOptions& table_options; const FilterPolicy* const filter_policy; const InternalKeyComparator& internal_comparator; Status status; unique_ptr file; char cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t cache_key_prefix_size = 0; char persistent_cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t persistent_cache_key_prefix_size = 0; char compressed_cache_key_prefix[kMaxCacheKeyPrefixSize]; size_t compressed_cache_key_prefix_size = 0; uint64_t dummy_index_reader_offset = 0; // ID that is unique for the block cache. PersistentCacheOptions persistent_cache_options; // Footer contains the fixed table information Footer footer; // index_reader and filter will be populated and used only when // options.block_cache is nullptr; otherwise we will get the index block via // the block cache. unique_ptr index_reader; unique_ptr filter; enum class FilterType { kNoFilter, kFullFilter, kBlockFilter, }; FilterType filter_type; BlockHandle filter_handle; std::shared_ptr table_properties; // Block containing the data for the compression dictionary. We take ownership // for the entire block struct, even though we only use its Slice member. This // is easier because the Slice member depends on the continued existence of // another member ("allocation"). std::unique_ptr compression_dict_block; BlockBasedTableOptions::IndexType index_type; bool hash_index_allow_collision; bool whole_key_filtering; bool prefix_filtering; // TODO(kailiu) It is very ugly to use internal key in table, since table // module should not be relying on db module. However to make things easier // and compatible with existing code, we introduce a wrapper that allows // block to extract prefix without knowing if a key is internal or not. unique_ptr internal_prefix_transform; // only used in level 0 files: // when pin_l0_filter_and_index_blocks_in_cache is true, we do use the // LRU cache, but we always keep the filter & idndex block's handle checked // out here (=we don't call Release()), plus the parsed out objects // the LRU cache will never push flush them out, hence they're pinned CachableEntry filter_entry; CachableEntry index_entry; // range deletion meta-block is pinned through reader's lifetime when LRU // cache is enabled. CachableEntry range_del_entry; BlockHandle range_del_handle; // If global_seqno is used, all Keys in this file will have the same // seqno with value `global_seqno`. // // A value of kDisableGlobalSequenceNumber means that this feature is disabled // and every key have it's own seqno. SequenceNumber global_seqno; }; BlockBasedTable::~BlockBasedTable() { Close(); delete rep_; } // Helper function to setup the cache key's prefix for the Table. void BlockBasedTable::SetupCacheKeyPrefix(Rep* rep, uint64_t file_size) { assert(kMaxCacheKeyPrefixSize >= 10); rep->cache_key_prefix_size = 0; rep->compressed_cache_key_prefix_size = 0; if (rep->table_options.block_cache != nullptr) { GenerateCachePrefix(rep->table_options.block_cache.get(), rep->file->file(), &rep->cache_key_prefix[0], &rep->cache_key_prefix_size); // Create dummy offset of index reader which is beyond the file size. rep->dummy_index_reader_offset = file_size + rep->table_options.block_cache->NewId(); } if (rep->table_options.persistent_cache != nullptr) { GenerateCachePrefix(/*cache=*/nullptr, rep->file->file(), &rep->persistent_cache_key_prefix[0], &rep->persistent_cache_key_prefix_size); } if (rep->table_options.block_cache_compressed != nullptr) { GenerateCachePrefix(rep->table_options.block_cache_compressed.get(), rep->file->file(), &rep->compressed_cache_key_prefix[0], &rep->compressed_cache_key_prefix_size); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, RandomAccessFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (cc && *size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } void BlockBasedTable::GenerateCachePrefix(Cache* cc, WritableFile* file, char* buffer, size_t* size) { // generate an id from the file *size = file->GetUniqueId(buffer, kMaxCacheKeyPrefixSize); // If the prefix wasn't generated or was too long, // create one from the cache. if (*size == 0) { char* end = EncodeVarint64(buffer, cc->NewId()); *size = static_cast(end - buffer); } } namespace { // Return True if table_properties has `user_prop_name` has a `true` value // or it doesn't contain this property (for backward compatible). bool IsFeatureSupported(const TableProperties& table_properties, const std::string& user_prop_name, Logger* info_log) { auto& props = table_properties.user_collected_properties; auto pos = props.find(user_prop_name); // Older version doesn't have this value set. Skip this check. if (pos != props.end()) { if (pos->second == kPropFalse) { return false; } else if (pos->second != kPropTrue) { Log(InfoLogLevel::WARN_LEVEL, info_log, "Property %s has invalidate value %s", user_prop_name.c_str(), pos->second.c_str()); } } return true; } SequenceNumber GetGlobalSequenceNumber(const TableProperties& table_properties, Logger* info_log) { auto& props = table_properties.user_collected_properties; auto version_pos = props.find(ExternalSstFilePropertyNames::kVersion); auto seqno_pos = props.find(ExternalSstFilePropertyNames::kGlobalSeqno); if (version_pos == props.end()) { if (seqno_pos != props.end()) { // This is not an external sst file, global_seqno is not supported. assert(false); Log(InfoLogLevel::ERROR_LEVEL, info_log, "A non-external sst file have global seqno property with value %s", seqno_pos->second.c_str()); } return kDisableGlobalSequenceNumber; } uint32_t version = DecodeFixed32(version_pos->second.c_str()); if (version < 2) { if (seqno_pos != props.end() || version != 1) { // This is a v1 external sst file, global_seqno is not supported. assert(false); Log(InfoLogLevel::ERROR_LEVEL, info_log, "An external sst file with version %u have global seqno property " "with value %s", version, seqno_pos->second.c_str()); } return kDisableGlobalSequenceNumber; } SequenceNumber global_seqno = DecodeFixed64(seqno_pos->second.c_str()); if (global_seqno > kMaxSequenceNumber) { assert(false); Log(InfoLogLevel::ERROR_LEVEL, info_log, "An external sst file with version %u have global seqno property " "with value %llu, which is greater than kMaxSequenceNumber", version, global_seqno); } return global_seqno; } } // namespace Slice BlockBasedTable::GetCacheKey(const char* cache_key_prefix, size_t cache_key_prefix_size, const BlockHandle& handle, char* cache_key) { assert(cache_key != nullptr); assert(cache_key_prefix_size != 0); assert(cache_key_prefix_size <= kMaxCacheKeyPrefixSize); memcpy(cache_key, cache_key_prefix, cache_key_prefix_size); char* end = EncodeVarint64(cache_key + cache_key_prefix_size, handle.offset()); return Slice(cache_key, static_cast(end - cache_key)); } Status BlockBasedTable::Open(const ImmutableCFOptions& ioptions, const EnvOptions& env_options, const BlockBasedTableOptions& table_options, const InternalKeyComparator& internal_comparator, unique_ptr&& file, uint64_t file_size, unique_ptr* table_reader, const bool prefetch_index_and_filter_in_cache, const bool skip_filters, const int level) { table_reader->reset(); Footer footer; auto s = ReadFooterFromFile(file.get(), file_size, &footer, kBlockBasedTableMagicNumber); if (!s.ok()) { return s; } if (!BlockBasedTableSupportedVersion(footer.version())) { return Status::Corruption( "Unknown Footer version. Maybe this file was created with newer " "version of RocksDB?"); } // We've successfully read the footer and the index block: we're // ready to serve requests. // Better not mutate rep_ after the creation. eg. internal_prefix_transform // raw pointer will be used to create HashIndexReader, whose reset may // access a dangling pointer. Rep* rep = new BlockBasedTable::Rep(ioptions, env_options, table_options, internal_comparator, skip_filters); rep->file = std::move(file); rep->footer = footer; rep->index_type = table_options.index_type; rep->hash_index_allow_collision = table_options.hash_index_allow_collision; // We need to wrap data with internal_prefix_transform to make sure it can // handle prefix correctly. rep->internal_prefix_transform.reset( new InternalKeySliceTransform(rep->ioptions.prefix_extractor)); SetupCacheKeyPrefix(rep, file_size); unique_ptr new_table(new BlockBasedTable(rep)); // page cache options rep->persistent_cache_options = PersistentCacheOptions(rep->table_options.persistent_cache, std::string(rep->persistent_cache_key_prefix, rep->persistent_cache_key_prefix_size), rep->ioptions.statistics); // Read meta index std::unique_ptr meta; std::unique_ptr meta_iter; s = ReadMetaBlock(rep, &meta, &meta_iter); if (!s.ok()) { return s; } // Find filter handle and filter type if (rep->filter_policy) { for (auto prefix : {kFullFilterBlockPrefix, kFilterBlockPrefix}) { std::string filter_block_key = prefix; filter_block_key.append(rep->filter_policy->Name()); if (FindMetaBlock(meta_iter.get(), filter_block_key, &rep->filter_handle) .ok()) { rep->filter_type = (prefix == kFullFilterBlockPrefix) ? Rep::FilterType::kFullFilter : Rep::FilterType::kBlockFilter; break; } } } // Read the properties bool found_properties_block = true; s = SeekToPropertiesBlock(meta_iter.get(), &found_properties_block); if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Error when seeking to properties block from file: %s", s.ToString().c_str()); } else if (found_properties_block) { s = meta_iter->status(); TableProperties* table_properties = nullptr; if (s.ok()) { s = ReadProperties(meta_iter->value(), rep->file.get(), rep->footer, rep->ioptions, &table_properties); } if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Encountered error while reading data from properties " "block %s", s.ToString().c_str()); } else { rep->table_properties.reset(table_properties); } } else { Log(InfoLogLevel::ERROR_LEVEL, rep->ioptions.info_log, "Cannot find Properties block from file."); } // Read the compression dictionary meta block bool found_compression_dict; s = SeekToCompressionDictBlock(meta_iter.get(), &found_compression_dict); if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Error when seeking to compression dictionary block from file: %s", s.ToString().c_str()); } else if (found_compression_dict) { // TODO(andrewkr): Add to block cache if cache_index_and_filter_blocks is // true. unique_ptr compression_dict_block{new BlockContents()}; // TODO(andrewkr): ReadMetaBlock repeats SeekToCompressionDictBlock(). // maybe decode a handle from meta_iter // and do ReadBlockContents(handle) instead s = rocksdb::ReadMetaBlock(rep->file.get(), file_size, kBlockBasedTableMagicNumber, rep->ioptions, rocksdb::kCompressionDictBlock, compression_dict_block.get()); if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Encountered error while reading data from compression dictionary " "block %s", s.ToString().c_str()); } else { rep->compression_dict_block = std::move(compression_dict_block); } } // Read the range del meta block bool found_range_del_block; s = SeekToRangeDelBlock(meta_iter.get(), &found_range_del_block, &rep->range_del_handle); if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Error when seeking to range delete tombstones block from file: %s", s.ToString().c_str()); } else { if (found_range_del_block && !rep->range_del_handle.IsNull()) { ReadOptions read_options; s = MaybeLoadDataBlockToCache(rep, read_options, rep->range_del_handle, Slice() /* compression_dict */, &rep->range_del_entry); if (!s.ok()) { Log(InfoLogLevel::WARN_LEVEL, rep->ioptions.info_log, "Encountered error while reading data from range del block %s", s.ToString().c_str()); } } } // Determine whether whole key filtering is supported. if (rep->table_properties) { rep->whole_key_filtering &= IsFeatureSupported(*(rep->table_properties), BlockBasedTablePropertyNames::kWholeKeyFiltering, rep->ioptions.info_log); rep->prefix_filtering &= IsFeatureSupported( *(rep->table_properties), BlockBasedTablePropertyNames::kPrefixFiltering, rep->ioptions.info_log); rep->global_seqno = GetGlobalSequenceNumber(*(rep->table_properties), rep->ioptions.info_log); } // pre-fetching of blocks is turned on // Will use block cache for index/filter blocks access // Always prefetch index and filter for level 0 if (table_options.cache_index_and_filter_blocks) { if (prefetch_index_and_filter_in_cache || level == 0) { assert(table_options.block_cache != nullptr); // Hack: Call NewIndexIterator() to implicitly add index to the // block_cache // if pin_l0_filter_and_index_blocks_in_cache is true and this is // a level0 file, then we will pass in this pointer to rep->index // to NewIndexIterator(), which will save the index block in there // else it's a nullptr and nothing special happens CachableEntry* index_entry = nullptr; if (rep->table_options.pin_l0_filter_and_index_blocks_in_cache && level == 0) { index_entry = &rep->index_entry; } unique_ptr iter( new_table->NewIndexIterator(ReadOptions(), nullptr, index_entry)); s = iter->status(); if (s.ok()) { // Hack: Call GetFilter() to implicitly add filter to the block_cache auto filter_entry = new_table->GetFilter(); // if pin_l0_filter_and_index_blocks_in_cache is true, and this is // a level0 file, then save it in rep_->filter_entry; it will be // released in the destructor only, hence it will be pinned in the // cache while this reader is alive if (rep->table_options.pin_l0_filter_and_index_blocks_in_cache && level == 0) { rep->filter_entry = filter_entry; } else { filter_entry.Release(table_options.block_cache.get()); } } } } else { // If we don't use block cache for index/filter blocks access, we'll // pre-load these blocks, which will kept in member variables in Rep // and with a same life-time as this table object. IndexReader* index_reader = nullptr; s = new_table->CreateIndexReader(&index_reader, meta_iter.get()); if (s.ok()) { rep->index_reader.reset(index_reader); // Set filter block if (rep->filter_policy) { rep->filter.reset(ReadFilter(rep)); } } else { delete index_reader; } } if (s.ok()) { *table_reader = std::move(new_table); } return s; } void BlockBasedTable::SetupForCompaction() { switch (rep_->ioptions.access_hint_on_compaction_start) { case Options::NONE: break; case Options::NORMAL: rep_->file->file()->Hint(RandomAccessFile::NORMAL); break; case Options::SEQUENTIAL: rep_->file->file()->Hint(RandomAccessFile::SEQUENTIAL); break; case Options::WILLNEED: rep_->file->file()->Hint(RandomAccessFile::WILLNEED); break; default: assert(false); } compaction_optimized_ = true; } std::shared_ptr BlockBasedTable::GetTableProperties() const { return rep_->table_properties; } size_t BlockBasedTable::ApproximateMemoryUsage() const { size_t usage = 0; if (rep_->filter) { usage += rep_->filter->ApproximateMemoryUsage(); } if (rep_->index_reader) { usage += rep_->index_reader->ApproximateMemoryUsage(); } return usage; } // Load the meta-block from the file. On success, return the loaded meta block // and its iterator. Status BlockBasedTable::ReadMetaBlock(Rep* rep, std::unique_ptr* meta_block, std::unique_ptr* iter) { // TODO(sanjay): Skip this if footer.metaindex_handle() size indicates // it is an empty block. // TODO: we never really verify check sum for meta index block std::unique_ptr meta; Status s = ReadBlockFromFile( rep->file.get(), rep->footer, ReadOptions(), rep->footer.metaindex_handle(), &meta, rep->ioptions, true /* decompress */, Slice() /*compression dict*/, rep->persistent_cache_options, kDisableGlobalSequenceNumber, 0 /* read_amp_bytes_per_bit */); if (!s.ok()) { Log(InfoLogLevel::ERROR_LEVEL, rep->ioptions.info_log, "Encountered error while reading data from properties" " block %s", s.ToString().c_str()); return s; } *meta_block = std::move(meta); // meta block uses bytewise comparator. iter->reset(meta_block->get()->NewIterator(BytewiseComparator())); return Status::OK(); } Status BlockBasedTable::GetDataBlockFromCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, const ImmutableCFOptions& ioptions, const ReadOptions& read_options, BlockBasedTable::CachableEntry* block, uint32_t format_version, const Slice& compression_dict, size_t read_amp_bytes_per_bit) { Status s; Block* compressed_block = nullptr; Cache::Handle* block_cache_compressed_handle = nullptr; Statistics* statistics = ioptions.statistics; // Lookup uncompressed cache first if (block_cache != nullptr) { block->cache_handle = GetEntryFromCache(block_cache, block_cache_key, BLOCK_CACHE_DATA_MISS, BLOCK_CACHE_DATA_HIT, statistics); if (block->cache_handle != nullptr) { block->value = reinterpret_cast(block_cache->Value(block->cache_handle)); return s; } } // If not found, search from the compressed block cache. assert(block->cache_handle == nullptr && block->value == nullptr); if (block_cache_compressed == nullptr) { return s; } assert(!compressed_block_cache_key.empty()); block_cache_compressed_handle = block_cache_compressed->Lookup(compressed_block_cache_key); // if we found in the compressed cache, then uncompress and insert into // uncompressed cache if (block_cache_compressed_handle == nullptr) { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_MISS); return s; } // found compressed block RecordTick(statistics, BLOCK_CACHE_COMPRESSED_HIT); compressed_block = reinterpret_cast( block_cache_compressed->Value(block_cache_compressed_handle)); assert(compressed_block->compression_type() != kNoCompression); // Retrieve the uncompressed contents into a new buffer BlockContents contents; s = UncompressBlockContents(compressed_block->data(), compressed_block->size(), &contents, format_version, compression_dict, ioptions); // Insert uncompressed block into block cache if (s.ok()) { block->value = new Block(std::move(contents), compressed_block->global_seqno(), read_amp_bytes_per_bit, statistics); // uncompressed block assert(block->value->compression_type() == kNoCompression); if (block_cache != nullptr && block->value->cachable() && read_options.fill_cache) { s = block_cache->Insert( block_cache_key, block->value, block->value->usable_size(), &DeleteCachedEntry, &(block->cache_handle)); if (s.ok()) { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, block->value->usable_size()); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, block->value->usable_size()); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete block->value; block->value = nullptr; } } } // Release hold on compressed cache entry block_cache_compressed->Release(block_cache_compressed_handle); return s; } Status BlockBasedTable::PutDataBlockToCache( const Slice& block_cache_key, const Slice& compressed_block_cache_key, Cache* block_cache, Cache* block_cache_compressed, const ReadOptions& read_options, const ImmutableCFOptions& ioptions, CachableEntry* block, Block* raw_block, uint32_t format_version, const Slice& compression_dict, size_t read_amp_bytes_per_bit) { assert(raw_block->compression_type() == kNoCompression || block_cache_compressed != nullptr); Status s; // Retrieve the uncompressed contents into a new buffer BlockContents contents; Statistics* statistics = ioptions.statistics; if (raw_block->compression_type() != kNoCompression) { s = UncompressBlockContents(raw_block->data(), raw_block->size(), &contents, format_version, compression_dict, ioptions); } if (!s.ok()) { delete raw_block; return s; } if (raw_block->compression_type() != kNoCompression) { block->value = new Block(std::move(contents), raw_block->global_seqno(), read_amp_bytes_per_bit, statistics); // uncompressed block } else { block->value = raw_block; raw_block = nullptr; } // Insert compressed block into compressed block cache. // Release the hold on the compressed cache entry immediately. if (block_cache_compressed != nullptr && raw_block != nullptr && raw_block->cachable()) { s = block_cache_compressed->Insert(compressed_block_cache_key, raw_block, raw_block->usable_size(), &DeleteCachedEntry); if (s.ok()) { // Avoid the following code to delete this cached block. raw_block = nullptr; RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD); } else { RecordTick(statistics, BLOCK_CACHE_COMPRESSED_ADD_FAILURES); } } delete raw_block; // insert into uncompressed block cache assert((block->value->compression_type() == kNoCompression)); if (block_cache != nullptr && block->value->cachable()) { s = block_cache->Insert(block_cache_key, block->value, block->value->usable_size(), &DeleteCachedEntry, &(block->cache_handle)); if (s.ok()) { assert(block->cache_handle != nullptr); RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_ADD); RecordTick(statistics, BLOCK_CACHE_DATA_BYTES_INSERT, block->value->usable_size()); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, block->value->usable_size()); assert(reinterpret_cast( block_cache->Value(block->cache_handle)) == block->value); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete block->value; block->value = nullptr; } } return s; } FilterBlockReader* BlockBasedTable::ReadFilter(Rep* rep) { // TODO: We might want to unify with ReadBlockFromFile() if we start // requiring checksum verification in Table::Open. if (rep->filter_type == Rep::FilterType::kNoFilter) { return nullptr; } BlockContents block; if (!ReadBlockContents(rep->file.get(), rep->footer, ReadOptions(), rep->filter_handle, &block, rep->ioptions, false /* decompress */, Slice() /*compression dict*/, rep->persistent_cache_options) .ok()) { // Error reading the block return nullptr; } assert(rep->filter_policy); if (rep->filter_type == Rep::FilterType::kBlockFilter) { return new BlockBasedFilterBlockReader( rep->prefix_filtering ? rep->ioptions.prefix_extractor : nullptr, rep->table_options, rep->whole_key_filtering, std::move(block), rep->ioptions.statistics); } else if (rep->filter_type == Rep::FilterType::kFullFilter) { auto filter_bits_reader = rep->filter_policy->GetFilterBitsReader(block.data); if (filter_bits_reader != nullptr) { return new FullFilterBlockReader( rep->prefix_filtering ? rep->ioptions.prefix_extractor : nullptr, rep->whole_key_filtering, std::move(block), filter_bits_reader, rep->ioptions.statistics); } } // filter_type is either kNoFilter (exited the function at the first if), // kBlockFilter or kFullFilter. there is no way for the execution to come here assert(false); return nullptr; } BlockBasedTable::CachableEntry BlockBasedTable::GetFilter( bool no_io) const { // If cache_index_and_filter_blocks is false, filter should be pre-populated. // We will return rep_->filter anyway. rep_->filter can be nullptr if filter // read fails at Open() time. We don't want to reload again since it will // most probably fail again. if (!rep_->table_options.cache_index_and_filter_blocks) { return {rep_->filter.get(), nullptr /* cache handle */}; } Cache* block_cache = rep_->table_options.block_cache.get(); if (rep_->filter_policy == nullptr /* do not use filter */ || block_cache == nullptr /* no block cache at all */) { return {nullptr /* filter */, nullptr /* cache handle */}; } // we have a pinned filter block if (rep_->filter_entry.IsSet()) { return rep_->filter_entry; } PERF_TIMER_GUARD(read_filter_block_nanos); // Fetching from the cache char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->footer.metaindex_handle(), cache_key); Statistics* statistics = rep_->ioptions.statistics; auto cache_handle = GetEntryFromCache(block_cache, key, BLOCK_CACHE_FILTER_MISS, BLOCK_CACHE_FILTER_HIT, statistics); FilterBlockReader* filter = nullptr; if (cache_handle != nullptr) { filter = reinterpret_cast( block_cache->Value(cache_handle)); } else if (no_io) { // Do not invoke any io. return CachableEntry(); } else { filter = ReadFilter(rep_); if (filter != nullptr) { assert(filter->size() > 0); Status s = block_cache->Insert( key, filter, filter->size(), &DeleteCachedFilterEntry, &cache_handle, rep_->table_options.cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW); if (s.ok()) { RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_FILTER_ADD); RecordTick(statistics, BLOCK_CACHE_FILTER_BYTES_INSERT, filter->size()); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, filter->size()); } else { RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); delete filter; return CachableEntry(); } } } return { filter, cache_handle }; } InternalIterator* BlockBasedTable::NewIndexIterator( const ReadOptions& read_options, BlockIter* input_iter, CachableEntry* index_entry) { // index reader has already been pre-populated. if (rep_->index_reader) { return rep_->index_reader->NewIterator( input_iter, read_options.total_order_seek); } // we have a pinned index block if (rep_->index_entry.IsSet()) { return rep_->index_entry.value->NewIterator(input_iter, read_options.total_order_seek); } PERF_TIMER_GUARD(read_index_block_nanos); bool no_io = read_options.read_tier == kBlockCacheTier; Cache* block_cache = rep_->table_options.block_cache.get(); char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; auto key = GetCacheKeyFromOffset(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->dummy_index_reader_offset, cache_key); Statistics* statistics = rep_->ioptions.statistics; auto cache_handle = GetEntryFromCache(block_cache, key, BLOCK_CACHE_INDEX_MISS, BLOCK_CACHE_INDEX_HIT, statistics); if (cache_handle == nullptr && no_io) { if (input_iter != nullptr) { input_iter->SetStatus(Status::Incomplete("no blocking io")); return input_iter; } else { return NewErrorInternalIterator(Status::Incomplete("no blocking io")); } } IndexReader* index_reader = nullptr; if (cache_handle != nullptr) { index_reader = reinterpret_cast(block_cache->Value(cache_handle)); } else { // Create index reader and put it in the cache. Status s; TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:2"); s = CreateIndexReader(&index_reader); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:1"); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread2:3"); TEST_SYNC_POINT("BlockBasedTable::NewIndexIterator::thread1:4"); if (s.ok()) { assert(index_reader != nullptr); s = block_cache->Insert( key, index_reader, index_reader->usable_size(), &DeleteCachedIndexEntry, &cache_handle, rep_->table_options.cache_index_and_filter_blocks_with_high_priority ? Cache::Priority::HIGH : Cache::Priority::LOW); } if (s.ok()) { size_t usable_size = index_reader->usable_size(); RecordTick(statistics, BLOCK_CACHE_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_ADD); RecordTick(statistics, BLOCK_CACHE_INDEX_BYTES_INSERT, usable_size); RecordTick(statistics, BLOCK_CACHE_BYTES_WRITE, usable_size); } else { if (index_reader != nullptr) { delete index_reader; } RecordTick(statistics, BLOCK_CACHE_ADD_FAILURES); // make sure if something goes wrong, index_reader shall remain intact. if (input_iter != nullptr) { input_iter->SetStatus(s); return input_iter; } else { return NewErrorInternalIterator(s); } } } assert(cache_handle); auto* iter = index_reader->NewIterator( input_iter, read_options.total_order_seek); // the caller would like to take ownership of the index block // don't call RegisterCleanup() in this case, the caller will take care of it if (index_entry != nullptr) { *index_entry = {index_reader, cache_handle}; } else { iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, cache_handle); } return iter; } // Convert an index iterator value (i.e., an encoded BlockHandle) // into an iterator over the contents of the corresponding block. // If input_iter is null, new a iterator // If input_iter is not null, update this iter and return it InternalIterator* BlockBasedTable::NewDataBlockIterator( Rep* rep, const ReadOptions& ro, const Slice& index_value, BlockIter* input_iter) { PERF_TIMER_GUARD(new_table_block_iter_nanos); const bool no_io = (ro.read_tier == kBlockCacheTier); Cache* block_cache = rep->table_options.block_cache.get(); CachableEntry block; BlockHandle handle; Slice input = index_value; // We intentionally allow extra stuff in index_value so that we // can add more features in the future. Status s = handle.DecodeFrom(&input); Slice compression_dict; if (s.ok()) { if (rep->compression_dict_block) { compression_dict = rep->compression_dict_block->data; } s = MaybeLoadDataBlockToCache(rep, ro, handle, compression_dict, &block); } // Didn't get any data from block caches. if (s.ok() && block.value == nullptr) { if (no_io) { // Could not read from block_cache and can't do IO if (input_iter != nullptr) { input_iter->SetStatus(Status::Incomplete("no blocking io")); return input_iter; } else { return NewErrorInternalIterator(Status::Incomplete("no blocking io")); } } std::unique_ptr block_value; s = ReadBlockFromFile( rep->file.get(), rep->footer, ro, handle, &block_value, rep->ioptions, true /* compress */, compression_dict, rep->persistent_cache_options, rep->global_seqno, rep->table_options.read_amp_bytes_per_bit); if (s.ok()) { block.value = block_value.release(); } } InternalIterator* iter; if (s.ok()) { assert(block.value != nullptr); iter = block.value->NewIterator(&rep->internal_comparator, input_iter, true, rep->ioptions.statistics); if (block.cache_handle != nullptr) { iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, block.cache_handle); } else { iter->RegisterCleanup(&DeleteHeldResource, block.value, nullptr); } } else { assert(block.value == nullptr); if (input_iter != nullptr) { input_iter->SetStatus(s); iter = input_iter; } else { iter = NewErrorInternalIterator(s); } } return iter; } Status BlockBasedTable::MaybeLoadDataBlockToCache( Rep* rep, const ReadOptions& ro, const BlockHandle& handle, Slice compression_dict, CachableEntry* block_entry) { const bool no_io = (ro.read_tier == kBlockCacheTier); Cache* block_cache = rep->table_options.block_cache.get(); Cache* block_cache_compressed = rep->table_options.block_cache_compressed.get(); // If either block cache is enabled, we'll try to read from it. Status s; if (block_cache != nullptr || block_cache_compressed != nullptr) { Statistics* statistics = rep->ioptions.statistics; char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; char compressed_cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice key, /* key to the block cache */ ckey /* key to the compressed block cache */; // create key for block cache if (block_cache != nullptr) { key = GetCacheKey(rep->cache_key_prefix, rep->cache_key_prefix_size, handle, cache_key); } if (block_cache_compressed != nullptr) { ckey = GetCacheKey(rep->compressed_cache_key_prefix, rep->compressed_cache_key_prefix_size, handle, compressed_cache_key); } s = GetDataBlockFromCache( key, ckey, block_cache, block_cache_compressed, rep->ioptions, ro, block_entry, rep->table_options.format_version, compression_dict, rep->table_options.read_amp_bytes_per_bit); if (block_entry->value == nullptr && !no_io && ro.fill_cache) { std::unique_ptr raw_block; { StopWatch sw(rep->ioptions.env, statistics, READ_BLOCK_GET_MICROS); s = ReadBlockFromFile( rep->file.get(), rep->footer, ro, handle, &raw_block, rep->ioptions, block_cache_compressed == nullptr, compression_dict, rep->persistent_cache_options, rep->global_seqno, rep->table_options.read_amp_bytes_per_bit); } if (s.ok()) { s = PutDataBlockToCache( key, ckey, block_cache, block_cache_compressed, ro, rep->ioptions, block_entry, raw_block.release(), rep->table_options.format_version, compression_dict, rep->table_options.read_amp_bytes_per_bit); } } } return s; } BlockBasedTable::BlockEntryIteratorState::BlockEntryIteratorState( BlockBasedTable* table, const ReadOptions& read_options, bool skip_filters) : TwoLevelIteratorState(table->rep_->ioptions.prefix_extractor != nullptr), table_(table), read_options_(read_options), skip_filters_(skip_filters) {} InternalIterator* BlockBasedTable::BlockEntryIteratorState::NewSecondaryIterator( const Slice& index_value) { // Return a block iterator on the index partition return NewDataBlockIterator(table_->rep_, read_options_, index_value); } bool BlockBasedTable::BlockEntryIteratorState::PrefixMayMatch( const Slice& internal_key) { if (read_options_.total_order_seek || skip_filters_) { return true; } return table_->PrefixMayMatch(internal_key); } // This will be broken if the user specifies an unusual implementation // of Options.comparator, or if the user specifies an unusual // definition of prefixes in BlockBasedTableOptions.filter_policy. // In particular, we require the following three properties: // // 1) key.starts_with(prefix(key)) // 2) Compare(prefix(key), key) <= 0. // 3) If Compare(key1, key2) <= 0, then Compare(prefix(key1), prefix(key2)) <= 0 // // Otherwise, this method guarantees no I/O will be incurred. // // REQUIRES: this method shouldn't be called while the DB lock is held. bool BlockBasedTable::PrefixMayMatch(const Slice& internal_key) { if (!rep_->filter_policy) { return true; } assert(rep_->ioptions.prefix_extractor != nullptr); auto user_key = ExtractUserKey(internal_key); if (!rep_->ioptions.prefix_extractor->InDomain(user_key) || rep_->table_properties->prefix_extractor_name.compare( rep_->ioptions.prefix_extractor->Name()) != 0) { return true; } auto prefix = rep_->ioptions.prefix_extractor->Transform(user_key); InternalKey internal_key_prefix(prefix, kMaxSequenceNumber, kTypeValue); auto internal_prefix = internal_key_prefix.Encode(); bool may_match = true; Status s; // To prevent any io operation in this method, we set `read_tier` to make // sure we always read index or filter only when they have already been // loaded to memory. ReadOptions no_io_read_options; no_io_read_options.read_tier = kBlockCacheTier; // First, try check with full filter auto filter_entry = GetFilter(true /* no io */); FilterBlockReader* filter = filter_entry.value; if (filter != nullptr) { if (!filter->IsBlockBased()) { may_match = filter->PrefixMayMatch(prefix); } else { // Then, try find it within each block unique_ptr iiter(NewIndexIterator(no_io_read_options)); iiter->Seek(internal_prefix); if (!iiter->Valid()) { // we're past end of file // if it's incomplete, it means that we avoided I/O // and we're not really sure that we're past the end // of the file may_match = iiter->status().IsIncomplete(); } else if (ExtractUserKey(iiter->key()) .starts_with(ExtractUserKey(internal_prefix))) { // we need to check for this subtle case because our only // guarantee is that "the key is a string >= last key in that data // block" according to the doc/table_format.txt spec. // // Suppose iiter->key() starts with the desired prefix; it is not // necessarily the case that the corresponding data block will // contain the prefix, since iiter->key() need not be in the // block. However, the next data block may contain the prefix, so // we return true to play it safe. may_match = true; } else if (filter->IsBlockBased()) { // iiter->key() does NOT start with the desired prefix. Because // Seek() finds the first key that is >= the seek target, this // means that iiter->key() > prefix. Thus, any data blocks coming // after the data block corresponding to iiter->key() cannot // possibly contain the key. Thus, the corresponding data block // is the only on could potentially contain the prefix. Slice handle_value = iiter->value(); BlockHandle handle; s = handle.DecodeFrom(&handle_value); assert(s.ok()); may_match = filter->PrefixMayMatch(prefix, handle.offset()); } } } Statistics* statistics = rep_->ioptions.statistics; RecordTick(statistics, BLOOM_FILTER_PREFIX_CHECKED); if (!may_match) { RecordTick(statistics, BLOOM_FILTER_PREFIX_USEFUL); } // if rep_->filter_entry is not set, we should call Release(); otherwise // don't call, in this case we have a local copy in rep_->filter_entry, // it's pinned to the cache and will be released in the destructor if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } return may_match; } InternalIterator* BlockBasedTable::NewIterator(const ReadOptions& read_options, Arena* arena, bool skip_filters) { return NewTwoLevelIterator( new BlockEntryIteratorState(this, read_options, skip_filters), NewIndexIterator(read_options), arena); } InternalIterator* BlockBasedTable::NewRangeTombstoneIterator( const ReadOptions& read_options) { if (rep_->range_del_handle.IsNull()) { // The block didn't exist, nullptr indicates no range tombstones. return nullptr; } if (rep_->range_del_entry.cache_handle != nullptr) { // We have a handle to an uncompressed block cache entry that's held for // this table's lifetime. Increment its refcount before returning an // iterator based on it since the returned iterator may outlive this table // reader. assert(rep_->range_del_entry.value != nullptr); Cache* block_cache = rep_->table_options.block_cache.get(); assert(block_cache != nullptr); if (block_cache->Ref(rep_->range_del_entry.cache_handle)) { auto iter = rep_->range_del_entry.value->NewIterator( &rep_->internal_comparator, nullptr /* iter */, true /* total_order_seek */, rep_->ioptions.statistics); iter->RegisterCleanup(&ReleaseCachedEntry, block_cache, rep_->range_del_entry.cache_handle); return iter; } } std::string str; rep_->range_del_handle.EncodeTo(&str); // The meta-block exists but isn't in uncompressed block cache (maybe because // it is disabled), so go through the full lookup process. return NewDataBlockIterator(rep_, read_options, Slice(str)); } bool BlockBasedTable::FullFilterKeyMayMatch(const ReadOptions& read_options, FilterBlockReader* filter, const Slice& internal_key) const { if (filter == nullptr || filter->IsBlockBased()) { return true; } Slice user_key = ExtractUserKey(internal_key); if (filter->whole_key_filtering()) { return filter->KeyMayMatch(user_key); } if (!read_options.total_order_seek && rep_->ioptions.prefix_extractor && rep_->table_properties->prefix_extractor_name.compare( rep_->ioptions.prefix_extractor->Name()) == 0 && rep_->ioptions.prefix_extractor->InDomain(user_key) && !filter->PrefixMayMatch( rep_->ioptions.prefix_extractor->Transform(user_key))) { return false; } return true; } Status BlockBasedTable::Get(const ReadOptions& read_options, const Slice& key, GetContext* get_context, bool skip_filters) { Status s; CachableEntry filter_entry; if (!skip_filters) { filter_entry = GetFilter(read_options.read_tier == kBlockCacheTier); } FilterBlockReader* filter = filter_entry.value; // First check the full filter // If full filter not useful, Then go into each block if (!FullFilterKeyMayMatch(read_options, filter, key)) { RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); } else { BlockIter iiter_on_stack; auto iiter = NewIndexIterator(read_options, &iiter_on_stack); std::unique_ptr iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr(iiter); } PinnedIteratorsManager* pinned_iters_mgr = get_context->pinned_iters_mgr(); bool pin_blocks = pinned_iters_mgr && pinned_iters_mgr->PinningEnabled(); bool done = false; for (iiter->Seek(key); iiter->Valid() && !done; iiter->Next()) { Slice handle_value = iiter->value(); BlockHandle handle; bool not_exist_in_filter = filter != nullptr && filter->IsBlockBased() == true && handle.DecodeFrom(&handle_value).ok() && !filter->KeyMayMatch(ExtractUserKey(key), handle.offset()); if (not_exist_in_filter) { // Not found // TODO: think about interaction with Merge. If a user key cannot // cross one data block, we should be fine. RecordTick(rep_->ioptions.statistics, BLOOM_FILTER_USEFUL); break; } else { BlockIter biter; NewDataBlockIterator(rep_, read_options, iiter->value(), &biter); if (read_options.read_tier == kBlockCacheTier && biter.status().IsIncomplete()) { // couldn't get block from block_cache // Update Saver.state to Found because we are only looking for whether // we can guarantee the key is not there when "no_io" is set get_context->MarkKeyMayExist(); break; } if (!biter.status().ok()) { s = biter.status(); break; } // Call the *saver function on each entry/block until it returns false for (biter.Seek(key); biter.Valid(); biter.Next()) { ParsedInternalKey parsed_key; if (!ParseInternalKey(biter.key(), &parsed_key)) { s = Status::Corruption(Slice()); } if (!get_context->SaveValue(parsed_key, biter.value(), pin_blocks)) { done = true; break; } } s = biter.status(); if (pin_blocks && get_context->State() == GetContext::kMerge) { // Pin blocks as long as we are merging biter.DelegateCleanupsTo(pinned_iters_mgr); } } } if (s.ok()) { s = iiter->status(); } } // if rep_->filter_entry is not set, we should call Release(); otherwise // don't call, in this case we have a local copy in rep_->filter_entry, // it's pinned to the cache and will be released in the destructor if (!rep_->filter_entry.IsSet()) { filter_entry.Release(rep_->table_options.block_cache.get()); } return s; } Status BlockBasedTable::Prefetch(const Slice* const begin, const Slice* const end) { auto& comparator = rep_->internal_comparator; // pre-condition if (begin && end && comparator.Compare(*begin, *end) > 0) { return Status::InvalidArgument(*begin, *end); } BlockIter iiter_on_stack; auto iiter = NewIndexIterator(ReadOptions(), &iiter_on_stack); std::unique_ptr iiter_unique_ptr; if (iiter != &iiter_on_stack) { iiter_unique_ptr = std::unique_ptr(iiter); } if (!iiter->status().ok()) { // error opening index iterator return iiter->status(); } // indicates if we are on the last page that need to be pre-fetched bool prefetching_boundary_page = false; for (begin ? iiter->Seek(*begin) : iiter->SeekToFirst(); iiter->Valid(); iiter->Next()) { Slice block_handle = iiter->value(); if (end && comparator.Compare(iiter->key(), *end) >= 0) { if (prefetching_boundary_page) { break; } // The index entry represents the last key in the data block. // We should load this page into memory as well, but no more prefetching_boundary_page = true; } // Load the block specified by the block_handle into the block cache BlockIter biter; NewDataBlockIterator(rep_, ReadOptions(), block_handle, &biter); if (!biter.status().ok()) { // there was an unexpected error while pre-fetching return biter.status(); } } return Status::OK(); } bool BlockBasedTable::TEST_KeyInCache(const ReadOptions& options, const Slice& key) { std::unique_ptr iiter(NewIndexIterator(options)); iiter->Seek(key); assert(iiter->Valid()); CachableEntry block; BlockHandle handle; Slice input = iiter->value(); Status s = handle.DecodeFrom(&input); assert(s.ok()); Cache* block_cache = rep_->table_options.block_cache.get(); assert(block_cache != nullptr); char cache_key_storage[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; Slice cache_key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, handle, cache_key_storage); Slice ckey; s = GetDataBlockFromCache( cache_key, ckey, block_cache, nullptr, rep_->ioptions, options, &block, rep_->table_options.format_version, rep_->compression_dict_block ? rep_->compression_dict_block->data : Slice(), 0 /* read_amp_bytes_per_bit */); assert(s.ok()); bool in_cache = block.value != nullptr; if (in_cache) { ReleaseCachedEntry(block_cache, block.cache_handle); } return in_cache; } // REQUIRES: The following fields of rep_ should have already been populated: // 1. file // 2. index_handle, // 3. options // 4. internal_comparator // 5. index_type Status BlockBasedTable::CreateIndexReader( IndexReader** index_reader, InternalIterator* preloaded_meta_index_iter) { // Some old version of block-based tables don't have index type present in // table properties. If that's the case we can safely use the kBinarySearch. auto index_type_on_file = BlockBasedTableOptions::kBinarySearch; if (rep_->table_properties) { auto& props = rep_->table_properties->user_collected_properties; auto pos = props.find(BlockBasedTablePropertyNames::kIndexType); if (pos != props.end()) { index_type_on_file = static_cast( DecodeFixed32(pos->second.c_str())); } } auto file = rep_->file.get(); auto comparator = &rep_->internal_comparator; const Footer& footer = rep_->footer; if (index_type_on_file == BlockBasedTableOptions::kHashSearch && rep_->ioptions.prefix_extractor == nullptr) { Log(InfoLogLevel::WARN_LEVEL, rep_->ioptions.info_log, "BlockBasedTableOptions::kHashSearch requires " "options.prefix_extractor to be set." " Fall back to binary search index."); index_type_on_file = BlockBasedTableOptions::kBinarySearch; } switch (index_type_on_file) { case BlockBasedTableOptions::kTwoLevelIndexSearch: { return PartitionIndexReader::Create( this, file, footer, footer.index_handle(), rep_->ioptions, comparator, index_reader, rep_->persistent_cache_options); } case BlockBasedTableOptions::kBinarySearch: { return BinarySearchIndexReader::Create( file, footer, footer.index_handle(), rep_->ioptions, comparator, index_reader, rep_->persistent_cache_options); } case BlockBasedTableOptions::kHashSearch: { std::unique_ptr meta_guard; std::unique_ptr meta_iter_guard; auto meta_index_iter = preloaded_meta_index_iter; if (meta_index_iter == nullptr) { auto s = ReadMetaBlock(rep_, &meta_guard, &meta_iter_guard); if (!s.ok()) { // we simply fall back to binary search in case there is any // problem with prefix hash index loading. Log(InfoLogLevel::WARN_LEVEL, rep_->ioptions.info_log, "Unable to read the metaindex block." " Fall back to binary search index."); return BinarySearchIndexReader::Create( file, footer, footer.index_handle(), rep_->ioptions, comparator, index_reader, rep_->persistent_cache_options); } meta_index_iter = meta_iter_guard.get(); } return HashIndexReader::Create( rep_->internal_prefix_transform.get(), footer, file, rep_->ioptions, comparator, footer.index_handle(), meta_index_iter, index_reader, rep_->hash_index_allow_collision, rep_->persistent_cache_options); } default: { std::string error_message = "Unrecognized index type: " + ToString(rep_->index_type); return Status::InvalidArgument(error_message.c_str()); } } } uint64_t BlockBasedTable::ApproximateOffsetOf(const Slice& key) { unique_ptr index_iter(NewIndexIterator(ReadOptions())); index_iter->Seek(key); uint64_t result; if (index_iter->Valid()) { BlockHandle handle; Slice input = index_iter->value(); Status s = handle.DecodeFrom(&input); if (s.ok()) { result = handle.offset(); } else { // Strange: we can't decode the block handle in the index block. // We'll just return the offset of the metaindex block, which is // close to the whole file size for this case. result = rep_->footer.metaindex_handle().offset(); } } else { // key is past the last key in the file. If table_properties is not // available, approximate the offset by returning the offset of the // metaindex block (which is right near the end of the file). result = 0; if (rep_->table_properties) { result = rep_->table_properties->data_size; } // table_properties is not present in the table. if (result == 0) { result = rep_->footer.metaindex_handle().offset(); } } return result; } bool BlockBasedTable::TEST_filter_block_preloaded() const { return rep_->filter != nullptr; } bool BlockBasedTable::TEST_index_reader_preloaded() const { return rep_->index_reader != nullptr; } Status BlockBasedTable::GetKVPairsFromDataBlocks( std::vector* kv_pair_blocks) { std::unique_ptr blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { // Cannot read Index Block return s; } for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } std::unique_ptr datablock_iter; datablock_iter.reset( NewDataBlockIterator(rep_, ReadOptions(), blockhandles_iter->value())); s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped continue; } KVPairBlock kv_pair_block; for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { // Error reading the block - Skipped break; } const Slice& key = datablock_iter->key(); const Slice& value = datablock_iter->value(); std::string key_copy = std::string(key.data(), key.size()); std::string value_copy = std::string(value.data(), value.size()); kv_pair_block.push_back( std::make_pair(std::move(key_copy), std::move(value_copy))); } kv_pair_blocks->push_back(std::move(kv_pair_block)); } return Status::OK(); } Status BlockBasedTable::DumpTable(WritableFile* out_file) { // Output Footer out_file->Append( "Footer Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->footer.ToString().c_str()); out_file->Append("\n"); // Output MetaIndex out_file->Append( "Metaindex Details:\n" "--------------------------------------\n"); std::unique_ptr meta; std::unique_ptr meta_iter; Status s = ReadMetaBlock(rep_, &meta, &meta_iter); if (s.ok()) { for (meta_iter->SeekToFirst(); meta_iter->Valid(); meta_iter->Next()) { s = meta_iter->status(); if (!s.ok()) { return s; } if (meta_iter->key() == rocksdb::kPropertiesBlock) { out_file->Append(" Properties block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (meta_iter->key() == rocksdb::kCompressionDictBlock) { out_file->Append(" Compression dictionary block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (strstr(meta_iter->key().ToString().c_str(), "filter.rocksdb.") != nullptr) { out_file->Append(" Filter block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } else if (meta_iter->key() == rocksdb::kRangeDelBlock) { out_file->Append(" Range deletion block handle: "); out_file->Append(meta_iter->value().ToString(true).c_str()); out_file->Append("\n"); } } out_file->Append("\n"); } else { return s; } // Output TableProperties const rocksdb::TableProperties* table_properties; table_properties = rep_->table_properties.get(); if (table_properties != nullptr) { out_file->Append( "Table Properties:\n" "--------------------------------------\n" " "); out_file->Append(table_properties->ToString("\n ", ": ").c_str()); out_file->Append("\n"); } // Output Filter blocks if (!rep_->filter && !table_properties->filter_policy_name.empty()) { // Support only BloomFilter as off now rocksdb::BlockBasedTableOptions table_options; table_options.filter_policy.reset(rocksdb::NewBloomFilterPolicy(1)); if (table_properties->filter_policy_name.compare( table_options.filter_policy->Name()) == 0) { std::string filter_block_key = kFilterBlockPrefix; filter_block_key.append(table_properties->filter_policy_name); BlockHandle handle; if (FindMetaBlock(meta_iter.get(), filter_block_key, &handle).ok()) { BlockContents block; if (ReadBlockContents( rep_->file.get(), rep_->footer, ReadOptions(), handle, &block, rep_->ioptions, false /*decompress*/, Slice() /*compression dict*/, rep_->persistent_cache_options) .ok()) { rep_->filter.reset(new BlockBasedFilterBlockReader( rep_->ioptions.prefix_extractor, table_options, table_options.whole_key_filtering, std::move(block), rep_->ioptions.statistics)); } } } } if (rep_->filter) { out_file->Append( "Filter Details:\n" "--------------------------------------\n" " "); out_file->Append(rep_->filter->ToString().c_str()); out_file->Append("\n"); } // Output Index block s = DumpIndexBlock(out_file); if (!s.ok()) { return s; } // Output compression dictionary if (rep_->compression_dict_block != nullptr) { auto compression_dict = rep_->compression_dict_block->data; out_file->Append( "Compression Dictionary:\n" "--------------------------------------\n"); out_file->Append(" size (bytes): "); out_file->Append(rocksdb::ToString(compression_dict.size())); out_file->Append("\n\n"); out_file->Append(" HEX "); out_file->Append(compression_dict.ToString(true).c_str()); out_file->Append("\n\n"); } // Output range deletions block auto* range_del_iter = NewRangeTombstoneIterator(ReadOptions()); if (range_del_iter != nullptr) { range_del_iter->SeekToFirst(); if (range_del_iter->Valid()) { out_file->Append( "Range deletions:\n" "--------------------------------------\n" " "); for (; range_del_iter->Valid(); range_del_iter->Next()) { DumpKeyValue(range_del_iter->key(), range_del_iter->value(), out_file); } out_file->Append("\n"); } delete range_del_iter; } // Output Data blocks s = DumpDataBlocks(out_file); return s; } void BlockBasedTable::Close() { rep_->filter_entry.Release(rep_->table_options.block_cache.get()); rep_->index_entry.Release(rep_->table_options.block_cache.get()); rep_->range_del_entry.Release(rep_->table_options.block_cache.get()); // cleanup index and filter blocks to avoid accessing dangling pointer if (!rep_->table_options.no_block_cache) { char cache_key[kMaxCacheKeyPrefixSize + kMaxVarint64Length]; // Get the filter block key auto key = GetCacheKey(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->footer.metaindex_handle(), cache_key); rep_->table_options.block_cache.get()->Erase(key); // Get the index block key key = GetCacheKeyFromOffset(rep_->cache_key_prefix, rep_->cache_key_prefix_size, rep_->dummy_index_reader_offset, cache_key); rep_->table_options.block_cache.get()->Erase(key); } } Status BlockBasedTable::DumpIndexBlock(WritableFile* out_file) { out_file->Append( "Index Details:\n" "--------------------------------------\n"); std::unique_ptr blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } out_file->Append(" Block key hex dump: Data block handle\n"); out_file->Append(" Block key ascii\n\n"); for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } Slice key = blockhandles_iter->key(); InternalKey ikey; ikey.DecodeFrom(key); out_file->Append(" HEX "); out_file->Append(ikey.user_key().ToString(true).c_str()); out_file->Append(": "); out_file->Append(blockhandles_iter->value().ToString(true).c_str()); out_file->Append("\n"); std::string str_key = ikey.user_key().ToString(); std::string res_key(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { res_key.append(&str_key[i], 1); res_key.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append("\n ------\n"); } out_file->Append("\n"); return Status::OK(); } Status BlockBasedTable::DumpDataBlocks(WritableFile* out_file) { std::unique_ptr blockhandles_iter( NewIndexIterator(ReadOptions())); Status s = blockhandles_iter->status(); if (!s.ok()) { out_file->Append("Can not read Index Block \n\n"); return s; } uint64_t datablock_size_min = std::numeric_limits::max(); uint64_t datablock_size_max = 0; uint64_t datablock_size_sum = 0; size_t block_id = 1; for (blockhandles_iter->SeekToFirst(); blockhandles_iter->Valid(); block_id++, blockhandles_iter->Next()) { s = blockhandles_iter->status(); if (!s.ok()) { break; } Slice bh_val = blockhandles_iter->value(); BlockHandle bh; bh.DecodeFrom(&bh_val); uint64_t datablock_size = bh.size(); datablock_size_min = std::min(datablock_size_min, datablock_size); datablock_size_max = std::max(datablock_size_max, datablock_size); datablock_size_sum += datablock_size; out_file->Append("Data Block # "); out_file->Append(rocksdb::ToString(block_id)); out_file->Append(" @ "); out_file->Append(blockhandles_iter->value().ToString(true).c_str()); out_file->Append("\n"); out_file->Append("--------------------------------------\n"); std::unique_ptr datablock_iter; datablock_iter.reset( NewDataBlockIterator(rep_, ReadOptions(), blockhandles_iter->value())); s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n\n"); continue; } for (datablock_iter->SeekToFirst(); datablock_iter->Valid(); datablock_iter->Next()) { s = datablock_iter->status(); if (!s.ok()) { out_file->Append("Error reading the block - Skipped \n"); break; } DumpKeyValue(datablock_iter->key(), datablock_iter->value(), out_file); } out_file->Append("\n"); } uint64_t num_datablocks = block_id - 1; if (num_datablocks) { double datablock_size_avg = static_cast(datablock_size_sum) / num_datablocks; out_file->Append("Data Block Summary:\n"); out_file->Append("--------------------------------------"); out_file->Append("\n # data blocks: "); out_file->Append(rocksdb::ToString(num_datablocks)); out_file->Append("\n min data block size: "); out_file->Append(rocksdb::ToString(datablock_size_min)); out_file->Append("\n max data block size: "); out_file->Append(rocksdb::ToString(datablock_size_max)); out_file->Append("\n avg data block size: "); out_file->Append(rocksdb::ToString(datablock_size_avg)); out_file->Append("\n"); } return Status::OK(); } void BlockBasedTable::DumpKeyValue(const Slice& key, const Slice& value, WritableFile* out_file) { InternalKey ikey; ikey.DecodeFrom(key); out_file->Append(" HEX "); out_file->Append(ikey.user_key().ToString(true).c_str()); out_file->Append(": "); out_file->Append(value.ToString(true).c_str()); out_file->Append("\n"); std::string str_key = ikey.user_key().ToString(); std::string str_value = value.ToString(); std::string res_key(""), res_value(""); char cspace = ' '; for (size_t i = 0; i < str_key.size(); i++) { res_key.append(&str_key[i], 1); res_key.append(1, cspace); } for (size_t i = 0; i < str_value.size(); i++) { res_value.append(&str_value[i], 1); res_value.append(1, cspace); } out_file->Append(" ASCII "); out_file->Append(res_key.c_str()); out_file->Append(": "); out_file->Append(res_value.c_str()); out_file->Append("\n ------\n"); } namespace { void DeleteCachedFilterEntry(const Slice& key, void* value) { FilterBlockReader* filter = reinterpret_cast(value); if (filter->statistics() != nullptr) { RecordTick(filter->statistics(), BLOCK_CACHE_FILTER_BYTES_EVICT, filter->size()); } delete filter; } void DeleteCachedIndexEntry(const Slice& key, void* value) { IndexReader* index_reader = reinterpret_cast(value); if (index_reader->statistics() != nullptr) { RecordTick(index_reader->statistics(), BLOCK_CACHE_INDEX_BYTES_EVICT, index_reader->usable_size()); } delete index_reader; } } // anonymous namespace } // namespace rocksdb