// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "util/threadpool_imp.h" #include "monitoring/thread_status_util.h" #include "port/port.h" #ifndef OS_WIN # include <unistd.h> #endif #ifdef OS_LINUX # include <sys/syscall.h> #endif #include <algorithm> #include <atomic> #include <condition_variable> #include <mutex> #include <stdlib.h> #include <thread> #include <vector> namespace rocksdb { void ThreadPoolImpl::PthreadCall(const char* label, int result) { if (result != 0) { fprintf(stderr, "pthread %s: %s\n", label, strerror(result)); abort(); } } struct ThreadPoolImpl::Impl { Impl(); ~Impl(); void JoinThreads(bool wait_for_jobs_to_complete); void SetBackgroundThreadsInternal(int num, bool allow_reduce); int GetBackgroundThreads(); unsigned int GetQueueLen() const { return queue_len_.load(std::memory_order_relaxed); } void LowerIOPriority(); void WakeUpAllThreads() { bgsignal_.notify_all(); } void BGThread(size_t thread_id); void StartBGThreads(); void Submit(std::function<void()>&& schedule, std::function<void()>&& unschedule, void* tag); int UnSchedule(void* arg); void SetHostEnv(Env* env) { env_ = env; } Env* GetHostEnv() const { return env_; } bool HasExcessiveThread() const { return static_cast<int>(bgthreads_.size()) > total_threads_limit_; } // Return true iff the current thread is the excessive thread to terminate. // Always terminate the running thread that is added last, even if there are // more than one thread to terminate. bool IsLastExcessiveThread(size_t thread_id) const { return HasExcessiveThread() && thread_id == bgthreads_.size() - 1; } bool IsExcessiveThread(size_t thread_id) const { return static_cast<int>(thread_id) >= total_threads_limit_; } // Return the thread priority. // This would allow its member-thread to know its priority. Env::Priority GetThreadPriority() const { return priority_; } // Set the thread priority. void SetThreadPriority(Env::Priority priority) { priority_ = priority; } private: static void* BGThreadWrapper(void* arg); bool low_io_priority_; Env::Priority priority_; Env* env_; int total_threads_limit_; std::atomic_uint queue_len_; // Queue length. Used for stats reporting bool exit_all_threads_; bool wait_for_jobs_to_complete_; // Entry per Schedule()/Submit() call struct BGItem { void* tag = nullptr; std::function<void()> function; std::function<void()> unschedFunction; }; using BGQueue = std::deque<BGItem>; BGQueue queue_; std::mutex mu_; std::condition_variable bgsignal_; std::vector<port::Thread> bgthreads_; }; inline ThreadPoolImpl::Impl::Impl() : low_io_priority_(false), priority_(Env::LOW), env_(nullptr), total_threads_limit_(0), queue_len_(), exit_all_threads_(false), wait_for_jobs_to_complete_(false), queue_(), mu_(), bgsignal_(), bgthreads_() { } inline ThreadPoolImpl::Impl::~Impl() { assert(bgthreads_.size() == 0U); } void ThreadPoolImpl::Impl::JoinThreads(bool wait_for_jobs_to_complete) { std::unique_lock<std::mutex> lock(mu_); assert(!exit_all_threads_); wait_for_jobs_to_complete_ = wait_for_jobs_to_complete; exit_all_threads_ = true; // prevent threads from being recreated right after they're joined, in case // the user is concurrently submitting jobs. total_threads_limit_ = 0; lock.unlock(); bgsignal_.notify_all(); for (auto& th : bgthreads_) { th.join(); } bgthreads_.clear(); exit_all_threads_ = false; wait_for_jobs_to_complete_ = false; } inline void ThreadPoolImpl::Impl::LowerIOPriority() { std::lock_guard<std::mutex> lock(mu_); low_io_priority_ = true; } void ThreadPoolImpl::Impl::BGThread(size_t thread_id) { bool low_io_priority = false; while (true) { // Wait until there is an item that is ready to run std::unique_lock<std::mutex> lock(mu_); // Stop waiting if the thread needs to do work or needs to terminate. while (!exit_all_threads_ && !IsLastExcessiveThread(thread_id) && (queue_.empty() || IsExcessiveThread(thread_id))) { bgsignal_.wait(lock); } if (exit_all_threads_) { // mechanism to let BG threads exit safely if(!wait_for_jobs_to_complete_ || queue_.empty()) { break; } } if (IsLastExcessiveThread(thread_id)) { // Current thread is the last generated one and is excessive. // We always terminate excessive thread in the reverse order of // generation time. auto& terminating_thread = bgthreads_.back(); terminating_thread.detach(); bgthreads_.pop_back(); if (HasExcessiveThread()) { // There is still at least more excessive thread to terminate. WakeUpAllThreads(); } break; } auto func = std::move(queue_.front().function); queue_.pop_front(); queue_len_.store(static_cast<unsigned int>(queue_.size()), std::memory_order_relaxed); bool decrease_io_priority = (low_io_priority != low_io_priority_); lock.unlock(); #ifdef OS_LINUX if (decrease_io_priority) { #define IOPRIO_CLASS_SHIFT (13) #define IOPRIO_PRIO_VALUE(class, data) (((class) << IOPRIO_CLASS_SHIFT) | data) // Put schedule into IOPRIO_CLASS_IDLE class (lowest) // These system calls only have an effect when used in conjunction // with an I/O scheduler that supports I/O priorities. As at // kernel 2.6.17 the only such scheduler is the Completely // Fair Queuing (CFQ) I/O scheduler. // To change scheduler: // echo cfq > /sys/block/<device_name>/queue/schedule // Tunables to consider: // /sys/block/<device_name>/queue/slice_idle // /sys/block/<device_name>/queue/slice_sync syscall(SYS_ioprio_set, 1, // IOPRIO_WHO_PROCESS 0, // current thread IOPRIO_PRIO_VALUE(3, 0)); low_io_priority = true; } #else (void)decrease_io_priority; // avoid 'unused variable' error #endif func(); } } // Helper struct for passing arguments when creating threads. struct BGThreadMetadata { ThreadPoolImpl::Impl* thread_pool_; size_t thread_id_; // Thread count in the thread. BGThreadMetadata(ThreadPoolImpl::Impl* thread_pool, size_t thread_id) : thread_pool_(thread_pool), thread_id_(thread_id) {} }; void* ThreadPoolImpl::Impl::BGThreadWrapper(void* arg) { BGThreadMetadata* meta = reinterpret_cast<BGThreadMetadata*>(arg); size_t thread_id = meta->thread_id_; ThreadPoolImpl::Impl* tp = meta->thread_pool_; #ifdef ROCKSDB_USING_THREAD_STATUS // for thread-status ThreadStatusUtil::RegisterThread( tp->GetHostEnv(), (tp->GetThreadPriority() == Env::Priority::HIGH ? ThreadStatus::HIGH_PRIORITY : ThreadStatus::LOW_PRIORITY)); #endif delete meta; tp->BGThread(thread_id); #ifdef ROCKSDB_USING_THREAD_STATUS ThreadStatusUtil::UnregisterThread(); #endif return nullptr; } void ThreadPoolImpl::Impl::SetBackgroundThreadsInternal(int num, bool allow_reduce) { std::unique_lock<std::mutex> lock(mu_); if (exit_all_threads_) { lock.unlock(); return; } if (num > total_threads_limit_ || (num < total_threads_limit_ && allow_reduce)) { total_threads_limit_ = std::max(0, num); WakeUpAllThreads(); StartBGThreads(); } } int ThreadPoolImpl::Impl::GetBackgroundThreads() { std::unique_lock<std::mutex> lock(mu_); return total_threads_limit_; } void ThreadPoolImpl::Impl::StartBGThreads() { // Start background thread if necessary while ((int)bgthreads_.size() < total_threads_limit_) { port::Thread p_t(&BGThreadWrapper, new BGThreadMetadata(this, bgthreads_.size())); // Set the thread name to aid debugging #if defined(_GNU_SOURCE) && defined(__GLIBC_PREREQ) #if __GLIBC_PREREQ(2, 12) auto th_handle = p_t.native_handle(); char name_buf[16]; snprintf(name_buf, sizeof name_buf, "rocksdb:bg%" ROCKSDB_PRIszt, bgthreads_.size()); name_buf[sizeof name_buf - 1] = '\0'; pthread_setname_np(th_handle, name_buf); #endif #endif bgthreads_.push_back(std::move(p_t)); } } void ThreadPoolImpl::Impl::Submit(std::function<void()>&& schedule, std::function<void()>&& unschedule, void* tag) { std::lock_guard<std::mutex> lock(mu_); if (exit_all_threads_) { return; } StartBGThreads(); // Add to priority queue queue_.push_back(BGItem()); auto& item = queue_.back(); item.tag = tag; item.function = std::move(schedule); item.unschedFunction = std::move(unschedule); queue_len_.store(static_cast<unsigned int>(queue_.size()), std::memory_order_relaxed); if (!HasExcessiveThread()) { // Wake up at least one waiting thread. bgsignal_.notify_one(); } else { // Need to wake up all threads to make sure the one woken // up is not the one to terminate. WakeUpAllThreads(); } } int ThreadPoolImpl::Impl::UnSchedule(void* arg) { int count = 0; std::vector<std::function<void()>> candidates; { std::lock_guard<std::mutex> lock(mu_); // Remove from priority queue BGQueue::iterator it = queue_.begin(); while (it != queue_.end()) { if (arg == (*it).tag) { if (it->unschedFunction) { candidates.push_back(std::move(it->unschedFunction)); } it = queue_.erase(it); count++; } else { ++it; } } queue_len_.store(static_cast<unsigned int>(queue_.size()), std::memory_order_relaxed); } // Run unschedule functions outside the mutex for (auto& f : candidates) { f(); } return count; } ThreadPoolImpl::ThreadPoolImpl() : impl_(new Impl()) { } ThreadPoolImpl::~ThreadPoolImpl() { } void ThreadPoolImpl::JoinAllThreads() { impl_->JoinThreads(false); } void ThreadPoolImpl::SetBackgroundThreads(int num) { impl_->SetBackgroundThreadsInternal(num, true); } int ThreadPoolImpl::GetBackgroundThreads() { return impl_->GetBackgroundThreads(); } unsigned int ThreadPoolImpl::GetQueueLen() const { return impl_->GetQueueLen(); } void ThreadPoolImpl::WaitForJobsAndJoinAllThreads() { impl_->JoinThreads(true); } void ThreadPoolImpl::LowerIOPriority() { impl_->LowerIOPriority(); } void ThreadPoolImpl::IncBackgroundThreadsIfNeeded(int num) { impl_->SetBackgroundThreadsInternal(num, false); } void ThreadPoolImpl::SubmitJob(const std::function<void()>& job) { auto copy(job); impl_->Submit(std::move(copy), std::function<void()>(), nullptr); } void ThreadPoolImpl::SubmitJob(std::function<void()>&& job) { impl_->Submit(std::move(job), std::function<void()>(), nullptr); } void ThreadPoolImpl::Schedule(void(*function)(void* arg1), void* arg, void* tag, void(*unschedFunction)(void* arg)) { std::function<void()> fn = [arg, function] { function(arg); }; std::function<void()> unfn; if (unschedFunction != nullptr) { auto uf = [arg, unschedFunction] { unschedFunction(arg); }; unfn = std::move(uf); } impl_->Submit(std::move(fn), std::move(unfn), tag); } int ThreadPoolImpl::UnSchedule(void* arg) { return impl_->UnSchedule(arg); } void ThreadPoolImpl::SetHostEnv(Env* env) { impl_->SetHostEnv(env); } Env* ThreadPoolImpl::GetHostEnv() const { return impl_->GetHostEnv(); } // Return the thread priority. // This would allow its member-thread to know its priority. Env::Priority ThreadPoolImpl::GetThreadPriority() const { return impl_->GetThreadPriority(); } // Set the thread priority. void ThreadPoolImpl::SetThreadPriority(Env::Priority priority) { impl_->SetThreadPriority(priority); } ThreadPool* NewThreadPool(int num_threads) { ThreadPoolImpl* thread_pool = new ThreadPoolImpl(); thread_pool->SetBackgroundThreads(num_threads); return thread_pool; } } // namespace rocksdb