// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). #pragma once #include #include "rocksdb/slice.h" #include "port/port.h" #include #include namespace rocksdb { class Slice; class Allocator; class Logger; class DynamicBloom { public: // allocator: pass allocator to bloom filter, hence trace the usage of memory // total_bits: fixed total bits for the bloom // num_probes: number of hash probes for a single key // locality: If positive, optimize for cache line locality, 0 otherwise. // hash_func: customized hash function // huge_page_tlb_size: if >0, try to allocate bloom bytes from huge page TLB // withi this page size. Need to reserve huge pages for // it to be allocated, like: // sysctl -w vm.nr_hugepages=20 // See linux doc Documentation/vm/hugetlbpage.txt explicit DynamicBloom(Allocator* allocator, uint32_t total_bits, uint32_t locality = 0, uint32_t num_probes = 6, uint32_t (*hash_func)(const Slice& key) = nullptr, size_t huge_page_tlb_size = 0, Logger* logger = nullptr); explicit DynamicBloom(uint32_t num_probes = 6, uint32_t (*hash_func)(const Slice& key) = nullptr); void SetTotalBits(Allocator* allocator, uint32_t total_bits, uint32_t locality, size_t huge_page_tlb_size, Logger* logger); ~DynamicBloom() {} // Assuming single threaded access to this function. void Add(const Slice& key); // Like Add, but may be called concurrent with other functions. void AddConcurrently(const Slice& key); // Assuming single threaded access to this function. void AddHash(uint32_t hash); // Like AddHash, but may be called concurrent with other functions. void AddHashConcurrently(uint32_t hash); // Multithreaded access to this function is OK bool MayContain(const Slice& key) const; // Multithreaded access to this function is OK bool MayContainHash(uint32_t hash) const; void Prefetch(uint32_t h); uint32_t GetNumBlocks() const { return kNumBlocks; } Slice GetRawData() const { return Slice(reinterpret_cast(data_), GetTotalBits() / 8); } void SetRawData(unsigned char* raw_data, uint32_t total_bits, uint32_t num_blocks = 0); uint32_t GetTotalBits() const { return kTotalBits; } bool IsInitialized() const { return kNumBlocks > 0 || kTotalBits > 0; } private: uint32_t kTotalBits; uint32_t kNumBlocks; const uint32_t kNumProbes; uint32_t (*hash_func_)(const Slice& key); std::atomic* data_; // or_func(ptr, mask) should effect *ptr |= mask with the appropriate // concurrency safety, working with bytes. template void AddHash(uint32_t hash, const OrFunc& or_func); }; inline void DynamicBloom::Add(const Slice& key) { AddHash(hash_func_(key)); } inline void DynamicBloom::AddConcurrently(const Slice& key) { AddHashConcurrently(hash_func_(key)); } inline void DynamicBloom::AddHash(uint32_t hash) { AddHash(hash, [](std::atomic* ptr, uint8_t mask) { ptr->store(ptr->load(std::memory_order_relaxed) | mask, std::memory_order_relaxed); }); } inline void DynamicBloom::AddHashConcurrently(uint32_t hash) { AddHash(hash, [](std::atomic* ptr, uint8_t mask) { // Happens-before between AddHash and MaybeContains is handled by // access to versions_->LastSequence(), so all we have to do here is // avoid races (so we don't give the compiler a license to mess up // our code) and not lose bits. std::memory_order_relaxed is enough // for that. if ((mask & ptr->load(std::memory_order_relaxed)) != mask) { ptr->fetch_or(mask, std::memory_order_relaxed); } }); } inline bool DynamicBloom::MayContain(const Slice& key) const { return (MayContainHash(hash_func_(key))); } inline void DynamicBloom::Prefetch(uint32_t h) { if (kNumBlocks != 0) { uint32_t b = ((h >> 11 | (h << 21)) % kNumBlocks) * (CACHE_LINE_SIZE * 8); PREFETCH(&(data_[b / 8]), 0, 3); } } inline bool DynamicBloom::MayContainHash(uint32_t h) const { assert(IsInitialized()); const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits if (kNumBlocks != 0) { uint32_t b = ((h >> 11 | (h << 21)) % kNumBlocks) * (CACHE_LINE_SIZE * 8); for (uint32_t i = 0; i < kNumProbes; ++i) { // Since CACHE_LINE_SIZE is defined as 2^n, this line will be optimized // to a simple and operation by compiler. const uint32_t bitpos = b + (h % (CACHE_LINE_SIZE * 8)); uint8_t byteval = data_[bitpos / 8].load(std::memory_order_relaxed); if ((byteval & (1 << (bitpos % 8))) == 0) { return false; } // Rotate h so that we don't reuse the same bytes. h = h / (CACHE_LINE_SIZE * 8) + (h % (CACHE_LINE_SIZE * 8)) * (0x20000000U / CACHE_LINE_SIZE); h += delta; } } else { for (uint32_t i = 0; i < kNumProbes; ++i) { const uint32_t bitpos = h % kTotalBits; uint8_t byteval = data_[bitpos / 8].load(std::memory_order_relaxed); if ((byteval & (1 << (bitpos % 8))) == 0) { return false; } h += delta; } } return true; } template inline void DynamicBloom::AddHash(uint32_t h, const OrFunc& or_func) { assert(IsInitialized()); const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits if (kNumBlocks != 0) { uint32_t b = ((h >> 11 | (h << 21)) % kNumBlocks) * (CACHE_LINE_SIZE * 8); for (uint32_t i = 0; i < kNumProbes; ++i) { // Since CACHE_LINE_SIZE is defined as 2^n, this line will be optimized // to a simple and operation by compiler. const uint32_t bitpos = b + (h % (CACHE_LINE_SIZE * 8)); or_func(&data_[bitpos / 8], (1 << (bitpos % 8))); // Rotate h so that we don't reuse the same bytes. h = h / (CACHE_LINE_SIZE * 8) + (h % (CACHE_LINE_SIZE * 8)) * (0x20000000U / CACHE_LINE_SIZE); h += delta; } } else { for (uint32_t i = 0; i < kNumProbes; ++i) { const uint32_t bitpos = h % kTotalBits; or_func(&data_[bitpos / 8], (1 << (bitpos % 8))); h += delta; } } } } // rocksdb