// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "cache/sharded_cache.h" #include #include #include #include "util/hash.h" #include "util/math.h" #include "util/mutexlock.h" namespace ROCKSDB_NAMESPACE { namespace { inline uint32_t HashSlice(const Slice& s) { return Lower32of64(GetSliceNPHash64(s)); } } // namespace ShardedCache::ShardedCache(size_t capacity, int num_shard_bits, bool strict_capacity_limit, std::shared_ptr allocator) : Cache(std::move(allocator)), shard_mask_((uint32_t{1} << num_shard_bits) - 1), capacity_(capacity), strict_capacity_limit_(strict_capacity_limit), last_id_(1) {} void ShardedCache::SetCapacity(size_t capacity) { uint32_t num_shards = GetNumShards(); const size_t per_shard = (capacity + (num_shards - 1)) / num_shards; MutexLock l(&capacity_mutex_); for (uint32_t s = 0; s < num_shards; s++) { GetShard(s)->SetCapacity(per_shard); } capacity_ = capacity; } void ShardedCache::SetStrictCapacityLimit(bool strict_capacity_limit) { uint32_t num_shards = GetNumShards(); MutexLock l(&capacity_mutex_); for (uint32_t s = 0; s < num_shards; s++) { GetShard(s)->SetStrictCapacityLimit(strict_capacity_limit); } strict_capacity_limit_ = strict_capacity_limit; } Status ShardedCache::Insert(const Slice& key, void* value, size_t charge, void (*deleter)(const Slice& key, void* value), Handle** handle, Priority priority) { uint32_t hash = HashSlice(key); return GetShard(Shard(hash)) ->Insert(key, hash, value, charge, deleter, handle, priority); } Status ShardedCache::Insert(const Slice& key, void* value, const CacheItemHelper* helper, size_t charge, Handle** handle, Priority priority) { uint32_t hash = HashSlice(key); if (!helper) { return Status::InvalidArgument(); } return GetShard(Shard(hash)) ->Insert(key, hash, value, helper, charge, handle, priority); } Cache::Handle* ShardedCache::Lookup(const Slice& key, Statistics* /*stats*/) { uint32_t hash = HashSlice(key); return GetShard(Shard(hash))->Lookup(key, hash); } Cache::Handle* ShardedCache::Lookup(const Slice& key, const CacheItemHelper* helper, const CreateCallback& create_cb, Priority priority, bool wait, Statistics* /*stats*/) { uint32_t hash = HashSlice(key); return GetShard(Shard(hash)) ->Lookup(key, hash, helper, create_cb, priority, wait); } bool ShardedCache::IsReady(Handle* handle) { uint32_t hash = GetHash(handle); return GetShard(Shard(hash))->IsReady(handle); } void ShardedCache::Wait(Handle* handle) { uint32_t hash = GetHash(handle); GetShard(Shard(hash))->Wait(handle); } bool ShardedCache::Ref(Handle* handle) { uint32_t hash = GetHash(handle); return GetShard(Shard(hash))->Ref(handle); } bool ShardedCache::Release(Handle* handle, bool force_erase) { uint32_t hash = GetHash(handle); return GetShard(Shard(hash))->Release(handle, force_erase); } bool ShardedCache::Release(Handle* handle, bool useful, bool force_erase) { uint32_t hash = GetHash(handle); return GetShard(Shard(hash))->Release(handle, useful, force_erase); } void ShardedCache::Erase(const Slice& key) { uint32_t hash = HashSlice(key); GetShard(Shard(hash))->Erase(key, hash); } uint64_t ShardedCache::NewId() { return last_id_.fetch_add(1, std::memory_order_relaxed); } size_t ShardedCache::GetCapacity() const { MutexLock l(&capacity_mutex_); return capacity_; } bool ShardedCache::HasStrictCapacityLimit() const { MutexLock l(&capacity_mutex_); return strict_capacity_limit_; } size_t ShardedCache::GetUsage() const { // We will not lock the cache when getting the usage from shards. uint32_t num_shards = GetNumShards(); size_t usage = 0; for (uint32_t s = 0; s < num_shards; s++) { usage += GetShard(s)->GetUsage(); } return usage; } size_t ShardedCache::GetUsage(Handle* handle) const { return GetCharge(handle); } size_t ShardedCache::GetPinnedUsage() const { // We will not lock the cache when getting the usage from shards. uint32_t num_shards = GetNumShards(); size_t usage = 0; for (uint32_t s = 0; s < num_shards; s++) { usage += GetShard(s)->GetPinnedUsage(); } return usage; } void ShardedCache::ApplyToAllEntries( const std::function& callback, const ApplyToAllEntriesOptions& opts) { uint32_t num_shards = GetNumShards(); // Iterate over part of each shard, rotating between shards, to // minimize impact on latency of concurrent operations. std::unique_ptr states(new uint32_t[num_shards]{}); uint32_t aepl_in_32 = static_cast( std::min(size_t{UINT32_MAX}, opts.average_entries_per_lock)); aepl_in_32 = std::min(aepl_in_32, uint32_t{1}); bool remaining_work; do { remaining_work = false; for (uint32_t s = 0; s < num_shards; s++) { if (states[s] != UINT32_MAX) { GetShard(s)->ApplyToSomeEntries(callback, aepl_in_32, &states[s]); remaining_work |= states[s] != UINT32_MAX; } } } while (remaining_work); } void ShardedCache::EraseUnRefEntries() { uint32_t num_shards = GetNumShards(); for (uint32_t s = 0; s < num_shards; s++) { GetShard(s)->EraseUnRefEntries(); } } std::string ShardedCache::GetPrintableOptions() const { std::string ret; ret.reserve(20000); const int kBufferSize = 200; char buffer[kBufferSize]; { MutexLock l(&capacity_mutex_); snprintf(buffer, kBufferSize, " capacity : %" ROCKSDB_PRIszt "\n", capacity_); ret.append(buffer); snprintf(buffer, kBufferSize, " num_shard_bits : %d\n", GetNumShardBits()); ret.append(buffer); snprintf(buffer, kBufferSize, " strict_capacity_limit : %d\n", strict_capacity_limit_); ret.append(buffer); } snprintf(buffer, kBufferSize, " memory_allocator : %s\n", memory_allocator() ? memory_allocator()->Name() : "None"); ret.append(buffer); ret.append(GetShard(0)->GetPrintableOptions()); return ret; } int GetDefaultCacheShardBits(size_t capacity) { int num_shard_bits = 0; size_t min_shard_size = 512L * 1024L; // Every shard is at least 512KB. size_t num_shards = capacity / min_shard_size; while (num_shards >>= 1) { if (++num_shard_bits >= 6) { // No more than 6. return num_shard_bits; } } return num_shard_bits; } int ShardedCache::GetNumShardBits() const { return BitsSetToOne(shard_mask_); } uint32_t ShardedCache::GetNumShards() const { return shard_mask_ + 1; } } // namespace ROCKSDB_NAMESPACE