// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include <cinttypes> #include "db/builder.h" #include "db/db_impl/db_impl.h" #include "db/error_handler.h" #include "db/periodic_work_scheduler.h" #include "env/composite_env_wrapper.h" #include "file/read_write_util.h" #include "file/sst_file_manager_impl.h" #include "file/writable_file_writer.h" #include "monitoring/persistent_stats_history.h" #include "options/options_helper.h" #include "rocksdb/table.h" #include "rocksdb/wal_filter.h" #include "test_util/sync_point.h" #include "util/rate_limiter.h" namespace ROCKSDB_NAMESPACE { Options SanitizeOptions(const std::string& dbname, const Options& src, bool read_only) { auto db_options = SanitizeOptions(dbname, DBOptions(src), read_only); ImmutableDBOptions immutable_db_options(db_options); auto cf_options = SanitizeOptions(immutable_db_options, ColumnFamilyOptions(src)); return Options(db_options, cf_options); } DBOptions SanitizeOptions(const std::string& dbname, const DBOptions& src, bool read_only) { DBOptions result(src); if (result.env == nullptr) { result.env = Env::Default(); } // result.max_open_files means an "infinite" open files. if (result.max_open_files != -1) { int max_max_open_files = port::GetMaxOpenFiles(); if (max_max_open_files == -1) { max_max_open_files = 0x400000; } ClipToRange(&result.max_open_files, 20, max_max_open_files); TEST_SYNC_POINT_CALLBACK("SanitizeOptions::AfterChangeMaxOpenFiles", &result.max_open_files); } if (result.info_log == nullptr && !read_only) { Status s = CreateLoggerFromOptions(dbname, result, &result.info_log); if (!s.ok()) { // No place suitable for logging result.info_log = nullptr; } } if (!result.write_buffer_manager) { result.write_buffer_manager.reset( new WriteBufferManager(result.db_write_buffer_size)); } auto bg_job_limits = DBImpl::GetBGJobLimits( result.max_background_flushes, result.max_background_compactions, result.max_background_jobs, true /* parallelize_compactions */); result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_compactions, Env::Priority::LOW); result.env->IncBackgroundThreadsIfNeeded(bg_job_limits.max_flushes, Env::Priority::HIGH); if (result.rate_limiter.get() != nullptr) { if (result.bytes_per_sync == 0) { result.bytes_per_sync = 1024 * 1024; } } if (result.delayed_write_rate == 0) { if (result.rate_limiter.get() != nullptr) { result.delayed_write_rate = result.rate_limiter->GetBytesPerSecond(); } if (result.delayed_write_rate == 0) { result.delayed_write_rate = 16 * 1024 * 1024; } } if (result.WAL_ttl_seconds > 0 || result.WAL_size_limit_MB > 0) { result.recycle_log_file_num = false; } if (result.recycle_log_file_num && (result.wal_recovery_mode == WALRecoveryMode::kTolerateCorruptedTailRecords || result.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery || result.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency)) { // - kTolerateCorruptedTailRecords is inconsistent with recycle log file // feature. WAL recycling expects recovery success upon encountering a // corrupt record at the point where new data ends and recycled data // remains at the tail. However, `kTolerateCorruptedTailRecords` must fail // upon encountering any such corrupt record, as it cannot differentiate // between this and a real corruption, which would cause committed updates // to be truncated -- a violation of the recovery guarantee. // - kPointInTimeRecovery and kAbsoluteConsistency are incompatible with // recycle log file feature temporarily due to a bug found introducing a // hole in the recovered data // (https://github.com/facebook/rocksdb/pull/7252#issuecomment-673766236). // Besides this bug, we believe the features are fundamentally compatible. result.recycle_log_file_num = 0; } if (result.wal_dir.empty()) { // Use dbname as default result.wal_dir = dbname; } if (result.wal_dir.back() == '/') { result.wal_dir = result.wal_dir.substr(0, result.wal_dir.size() - 1); } if (result.db_paths.size() == 0) { result.db_paths.emplace_back(dbname, std::numeric_limits<uint64_t>::max()); } if (result.use_direct_reads && result.compaction_readahead_size == 0) { TEST_SYNC_POINT_CALLBACK("SanitizeOptions:direct_io", nullptr); result.compaction_readahead_size = 1024 * 1024 * 2; } if (result.compaction_readahead_size > 0 || result.use_direct_reads) { result.new_table_reader_for_compaction_inputs = true; } // Force flush on DB open if 2PC is enabled, since with 2PC we have no // guarantee that consecutive log files have consecutive sequence id, which // make recovery complicated. if (result.allow_2pc) { result.avoid_flush_during_recovery = false; } #ifndef ROCKSDB_LITE ImmutableDBOptions immutable_db_options(result); if (!IsWalDirSameAsDBPath(&immutable_db_options)) { // Either the WAL dir and db_paths[0]/db_name are not the same, or we // cannot tell for sure. In either case, assume they're different and // explicitly cleanup the trash log files (bypass DeleteScheduler) // Do this first so even if we end up calling // DeleteScheduler::CleanupDirectory on the same dir later, it will be // safe std::vector<std::string> filenames; Status s = result.env->GetChildren(result.wal_dir, &filenames); s.PermitUncheckedError(); //**TODO: What to do on error? for (std::string& filename : filenames) { if (filename.find(".log.trash", filename.length() - std::string(".log.trash").length()) != std::string::npos) { std::string trash_file = result.wal_dir + "/" + filename; result.env->DeleteFile(trash_file).PermitUncheckedError(); } } } // When the DB is stopped, it's possible that there are some .trash files that // were not deleted yet, when we open the DB we will find these .trash files // and schedule them to be deleted (or delete immediately if SstFileManager // was not used) auto sfm = static_cast<SstFileManagerImpl*>(result.sst_file_manager.get()); for (size_t i = 0; i < result.db_paths.size(); i++) { DeleteScheduler::CleanupDirectory(result.env, sfm, result.db_paths[i].path) .PermitUncheckedError(); } // Create a default SstFileManager for purposes of tracking compaction size // and facilitating recovery from out of space errors. if (result.sst_file_manager.get() == nullptr) { std::shared_ptr<SstFileManager> sst_file_manager( NewSstFileManager(result.env, result.info_log)); result.sst_file_manager = sst_file_manager; } #endif // !ROCKSDB_LITE if (!result.paranoid_checks) { result.skip_checking_sst_file_sizes_on_db_open = true; ROCKS_LOG_INFO(result.info_log, "file size check will be skipped during open."); } return result; } namespace { Status ValidateOptionsByTable( const DBOptions& db_opts, const std::vector<ColumnFamilyDescriptor>& column_families) { Status s; for (auto cf : column_families) { s = ValidateOptions(db_opts, cf.options); if (!s.ok()) { return s; } } return Status::OK(); } } // namespace Status DBImpl::ValidateOptions( const DBOptions& db_options, const std::vector<ColumnFamilyDescriptor>& column_families) { Status s; for (auto& cfd : column_families) { s = ColumnFamilyData::ValidateOptions(db_options, cfd.options); if (!s.ok()) { return s; } } s = ValidateOptions(db_options); return s; } Status DBImpl::ValidateOptions(const DBOptions& db_options) { if (db_options.db_paths.size() > 4) { return Status::NotSupported( "More than four DB paths are not supported yet. "); } if (db_options.allow_mmap_reads && db_options.use_direct_reads) { // Protect against assert in PosixMMapReadableFile constructor return Status::NotSupported( "If memory mapped reads (allow_mmap_reads) are enabled " "then direct I/O reads (use_direct_reads) must be disabled. "); } if (db_options.allow_mmap_writes && db_options.use_direct_io_for_flush_and_compaction) { return Status::NotSupported( "If memory mapped writes (allow_mmap_writes) are enabled " "then direct I/O writes (use_direct_io_for_flush_and_compaction) must " "be disabled. "); } if (db_options.keep_log_file_num == 0) { return Status::InvalidArgument("keep_log_file_num must be greater than 0"); } if (db_options.unordered_write && !db_options.allow_concurrent_memtable_write) { return Status::InvalidArgument( "unordered_write is incompatible with !allow_concurrent_memtable_write"); } if (db_options.unordered_write && db_options.enable_pipelined_write) { return Status::InvalidArgument( "unordered_write is incompatible with enable_pipelined_write"); } if (db_options.atomic_flush && db_options.enable_pipelined_write) { return Status::InvalidArgument( "atomic_flush is incompatible with enable_pipelined_write"); } // TODO remove this restriction if (db_options.atomic_flush && db_options.best_efforts_recovery) { return Status::InvalidArgument( "atomic_flush is currently incompatible with best-efforts recovery"); } return Status::OK(); } Status DBImpl::NewDB(std::vector<std::string>* new_filenames) { VersionEdit new_db; Status s = SetIdentityFile(env_, dbname_); if (!s.ok()) { return s; } if (immutable_db_options_.write_dbid_to_manifest) { std::string temp_db_id; GetDbIdentityFromIdentityFile(&temp_db_id); new_db.SetDBId(temp_db_id); } new_db.SetLogNumber(0); new_db.SetNextFile(2); new_db.SetLastSequence(0); ROCKS_LOG_INFO(immutable_db_options_.info_log, "Creating manifest 1 \n"); const std::string manifest = DescriptorFileName(dbname_, 1); { if (fs_->FileExists(manifest, IOOptions(), nullptr).ok()) { fs_->DeleteFile(manifest, IOOptions(), nullptr).PermitUncheckedError(); } std::unique_ptr<FSWritableFile> file; FileOptions file_options = fs_->OptimizeForManifestWrite(file_options_); s = NewWritableFile(fs_.get(), manifest, &file, file_options); if (!s.ok()) { return s; } FileTypeSet tmp_set = immutable_db_options_.checksum_handoff_file_types; file->SetPreallocationBlockSize( immutable_db_options_.manifest_preallocation_size); std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter( std::move(file), manifest, file_options, immutable_db_options_.clock, io_tracer_, nullptr /* stats */, immutable_db_options_.listeners, nullptr, tmp_set.Contains(FileType::kDescriptorFile))); log::Writer log(std::move(file_writer), 0, false); std::string record; new_db.EncodeTo(&record); s = log.AddRecord(record); if (s.ok()) { s = SyncManifest(&immutable_db_options_, log.file()); } } if (s.ok()) { // Make "CURRENT" file that points to the new manifest file. s = SetCurrentFile(fs_.get(), dbname_, 1, directories_.GetDbDir()); if (new_filenames) { new_filenames->emplace_back( manifest.substr(manifest.find_last_of("/\\") + 1)); } } else { fs_->DeleteFile(manifest, IOOptions(), nullptr).PermitUncheckedError(); } return s; } IOStatus DBImpl::CreateAndNewDirectory( FileSystem* fs, const std::string& dirname, std::unique_ptr<FSDirectory>* directory) { // We call CreateDirIfMissing() as the directory may already exist (if we // are reopening a DB), when this happens we don't want creating the // directory to cause an error. However, we need to check if creating the // directory fails or else we may get an obscure message about the lock // file not existing. One real-world example of this occurring is if // env->CreateDirIfMissing() doesn't create intermediate directories, e.g. // when dbname_ is "dir/db" but when "dir" doesn't exist. IOStatus io_s = fs->CreateDirIfMissing(dirname, IOOptions(), nullptr); if (!io_s.ok()) { return io_s; } return fs->NewDirectory(dirname, IOOptions(), directory, nullptr); } IOStatus Directories::SetDirectories(FileSystem* fs, const std::string& dbname, const std::string& wal_dir, const std::vector<DbPath>& data_paths) { IOStatus io_s = DBImpl::CreateAndNewDirectory(fs, dbname, &db_dir_); if (!io_s.ok()) { return io_s; } if (!wal_dir.empty() && dbname != wal_dir) { io_s = DBImpl::CreateAndNewDirectory(fs, wal_dir, &wal_dir_); if (!io_s.ok()) { return io_s; } } data_dirs_.clear(); for (auto& p : data_paths) { const std::string db_path = p.path; if (db_path == dbname) { data_dirs_.emplace_back(nullptr); } else { std::unique_ptr<FSDirectory> path_directory; io_s = DBImpl::CreateAndNewDirectory(fs, db_path, &path_directory); if (!io_s.ok()) { return io_s; } data_dirs_.emplace_back(path_directory.release()); } } assert(data_dirs_.size() == data_paths.size()); return IOStatus::OK(); } Status DBImpl::Recover( const std::vector<ColumnFamilyDescriptor>& column_families, bool read_only, bool error_if_wal_file_exists, bool error_if_data_exists_in_wals, uint64_t* recovered_seq) { mutex_.AssertHeld(); bool is_new_db = false; assert(db_lock_ == nullptr); std::vector<std::string> files_in_dbname; if (!read_only) { Status s = directories_.SetDirectories(fs_.get(), dbname_, immutable_db_options_.wal_dir, immutable_db_options_.db_paths); if (!s.ok()) { return s; } s = env_->LockFile(LockFileName(dbname_), &db_lock_); if (!s.ok()) { return s; } std::string current_fname = CurrentFileName(dbname_); // Path to any MANIFEST file in the db dir. It does not matter which one. // Since best-efforts recovery ignores CURRENT file, existence of a // MANIFEST indicates the recovery to recover existing db. If no MANIFEST // can be found, a new db will be created. std::string manifest_path; if (!immutable_db_options_.best_efforts_recovery) { s = env_->FileExists(current_fname); } else { s = Status::NotFound(); Status io_s = env_->GetChildren(dbname_, &files_in_dbname); if (!io_s.ok()) { s = io_s; files_in_dbname.clear(); } for (const std::string& file : files_in_dbname) { uint64_t number = 0; FileType type = kWalFile; // initialize if (ParseFileName(file, &number, &type) && type == kDescriptorFile) { // Found MANIFEST (descriptor log), thus best-efforts recovery does // not have to treat the db as empty. s = Status::OK(); manifest_path = dbname_ + "/" + file; break; } } } if (s.IsNotFound()) { if (immutable_db_options_.create_if_missing) { s = NewDB(&files_in_dbname); is_new_db = true; if (!s.ok()) { return s; } } else { return Status::InvalidArgument( current_fname, "does not exist (create_if_missing is false)"); } } else if (s.ok()) { if (immutable_db_options_.error_if_exists) { return Status::InvalidArgument(dbname_, "exists (error_if_exists is true)"); } } else { // Unexpected error reading file assert(s.IsIOError()); return s; } // Verify compatibility of file_options_ and filesystem { std::unique_ptr<FSRandomAccessFile> idfile; FileOptions customized_fs(file_options_); customized_fs.use_direct_reads |= immutable_db_options_.use_direct_io_for_flush_and_compaction; const std::string& fname = manifest_path.empty() ? current_fname : manifest_path; s = fs_->NewRandomAccessFile(fname, customized_fs, &idfile, nullptr); if (!s.ok()) { std::string error_str = s.ToString(); // Check if unsupported Direct I/O is the root cause customized_fs.use_direct_reads = false; s = fs_->NewRandomAccessFile(fname, customized_fs, &idfile, nullptr); if (s.ok()) { return Status::InvalidArgument( "Direct I/O is not supported by the specified DB."); } else { return Status::InvalidArgument( "Found options incompatible with filesystem", error_str.c_str()); } } } } else if (immutable_db_options_.best_efforts_recovery) { assert(files_in_dbname.empty()); Status s = env_->GetChildren(dbname_, &files_in_dbname); if (s.IsNotFound()) { return Status::InvalidArgument(dbname_, "does not exist (open for read only)"); } else if (s.IsIOError()) { return s; } assert(s.ok()); } assert(db_id_.empty()); Status s; bool missing_table_file = false; if (!immutable_db_options_.best_efforts_recovery) { s = versions_->Recover(column_families, read_only, &db_id_); } else { assert(!files_in_dbname.empty()); s = versions_->TryRecover(column_families, read_only, files_in_dbname, &db_id_, &missing_table_file); if (s.ok()) { // TryRecover may delete previous column_family_set_. column_family_memtables_.reset( new ColumnFamilyMemTablesImpl(versions_->GetColumnFamilySet())); } } if (!s.ok()) { return s; } s = SetDBId(read_only); if (s.ok() && !read_only) { s = DeleteUnreferencedSstFiles(); } if (immutable_db_options_.paranoid_checks && s.ok()) { s = CheckConsistency(); } if (s.ok() && !read_only) { std::map<std::string, std::shared_ptr<FSDirectory>> created_dirs; for (auto cfd : *versions_->GetColumnFamilySet()) { s = cfd->AddDirectories(&created_dirs); if (!s.ok()) { return s; } } } // DB mutex is already held if (s.ok() && immutable_db_options_.persist_stats_to_disk) { s = InitPersistStatsColumnFamily(); } std::vector<std::string> files_in_wal_dir; if (s.ok()) { // Initial max_total_in_memory_state_ before recovery wals. Log recovery // may check this value to decide whether to flush. max_total_in_memory_state_ = 0; for (auto cfd : *versions_->GetColumnFamilySet()) { auto* mutable_cf_options = cfd->GetLatestMutableCFOptions(); max_total_in_memory_state_ += mutable_cf_options->write_buffer_size * mutable_cf_options->max_write_buffer_number; } SequenceNumber next_sequence(kMaxSequenceNumber); default_cf_handle_ = new ColumnFamilyHandleImpl( versions_->GetColumnFamilySet()->GetDefault(), this, &mutex_); default_cf_internal_stats_ = default_cf_handle_->cfd()->internal_stats(); // TODO(Zhongyi): handle single_column_family_mode_ when // persistent_stats is enabled single_column_family_mode_ = versions_->GetColumnFamilySet()->NumberOfColumnFamilies() == 1; // Recover from all newer log files than the ones named in the // descriptor (new log files may have been added by the previous // incarnation without registering them in the descriptor). // // Note that prev_log_number() is no longer used, but we pay // attention to it in case we are recovering a database // produced by an older version of rocksdb. if (!immutable_db_options_.best_efforts_recovery) { s = env_->GetChildren(immutable_db_options_.wal_dir, &files_in_wal_dir); } if (s.IsNotFound()) { return Status::InvalidArgument("wal_dir not found", immutable_db_options_.wal_dir); } else if (!s.ok()) { return s; } std::unordered_map<uint64_t, std::string> wal_files; for (const auto& file : files_in_wal_dir) { uint64_t number; FileType type; if (ParseFileName(file, &number, &type) && type == kWalFile) { if (is_new_db) { return Status::Corruption( "While creating a new Db, wal_dir contains " "existing log file: ", file); } else { wal_files[number] = LogFileName(immutable_db_options_.wal_dir, number); } } } if (immutable_db_options_.track_and_verify_wals_in_manifest) { if (!immutable_db_options_.best_efforts_recovery) { // Verify WALs in MANIFEST. s = versions_->GetWalSet().CheckWals(env_, wal_files); } // else since best effort recovery does not recover from WALs, no need // to check WALs. } else if (!versions_->GetWalSet().GetWals().empty()) { // Tracking is disabled, clear previously tracked WALs from MANIFEST, // otherwise, in the future, if WAL tracking is enabled again, // since the WALs deleted when WAL tracking is disabled are not persisted // into MANIFEST, WAL check may fail. VersionEdit edit; WalNumber max_wal_number = versions_->GetWalSet().GetWals().rbegin()->first; edit.DeleteWalsBefore(max_wal_number + 1); s = versions_->LogAndApplyToDefaultColumnFamily(&edit, &mutex_); } if (!s.ok()) { return s; } if (!wal_files.empty()) { if (error_if_wal_file_exists) { return Status::Corruption( "The db was opened in readonly mode with error_if_wal_file_exists" "flag but a WAL file already exists"); } else if (error_if_data_exists_in_wals) { for (auto& wal_file : wal_files) { uint64_t bytes; s = env_->GetFileSize(wal_file.second, &bytes); if (s.ok()) { if (bytes > 0) { return Status::Corruption( "error_if_data_exists_in_wals is set but there are data " " in WAL files."); } } } } } if (!wal_files.empty()) { // Recover in the order in which the wals were generated std::vector<uint64_t> wals; wals.reserve(wal_files.size()); for (const auto& wal_file : wal_files) { wals.push_back(wal_file.first); } std::sort(wals.begin(), wals.end()); bool corrupted_wal_found = false; s = RecoverLogFiles(wals, &next_sequence, read_only, &corrupted_wal_found); if (corrupted_wal_found && recovered_seq != nullptr) { *recovered_seq = next_sequence; } if (!s.ok()) { // Clear memtables if recovery failed for (auto cfd : *versions_->GetColumnFamilySet()) { cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), kMaxSequenceNumber); } } } } if (read_only) { // If we are opening as read-only, we need to update options_file_number_ // to reflect the most recent OPTIONS file. It does not matter for regular // read-write db instance because options_file_number_ will later be // updated to versions_->NewFileNumber() in RenameTempFileToOptionsFile. std::vector<std::string> filenames; if (s.ok()) { const std::string normalized_dbname = NormalizePath(dbname_); const std::string normalized_wal_dir = NormalizePath(immutable_db_options_.wal_dir); if (immutable_db_options_.best_efforts_recovery) { filenames = std::move(files_in_dbname); } else if (normalized_dbname == normalized_wal_dir) { filenames = std::move(files_in_wal_dir); } else { s = env_->GetChildren(GetName(), &filenames); } } if (s.ok()) { uint64_t number = 0; uint64_t options_file_number = 0; FileType type; for (const auto& fname : filenames) { if (ParseFileName(fname, &number, &type) && type == kOptionsFile) { options_file_number = std::max(number, options_file_number); } } versions_->options_file_number_ = options_file_number; } } return s; } Status DBImpl::PersistentStatsProcessFormatVersion() { mutex_.AssertHeld(); Status s; // persist version when stats CF doesn't exist bool should_persist_format_version = !persistent_stats_cfd_exists_; mutex_.Unlock(); if (persistent_stats_cfd_exists_) { // Check persistent stats format version compatibility. Drop and recreate // persistent stats CF if format version is incompatible uint64_t format_version_recovered = 0; Status s_format = DecodePersistentStatsVersionNumber( this, StatsVersionKeyType::kFormatVersion, &format_version_recovered); uint64_t compatible_version_recovered = 0; Status s_compatible = DecodePersistentStatsVersionNumber( this, StatsVersionKeyType::kCompatibleVersion, &compatible_version_recovered); // abort reading from existing stats CF if any of following is true: // 1. failed to read format version or compatible version from disk // 2. sst's format version is greater than current format version, meaning // this sst is encoded with a newer RocksDB release, and current compatible // version is below the sst's compatible version if (!s_format.ok() || !s_compatible.ok() || (kStatsCFCurrentFormatVersion < format_version_recovered && kStatsCFCompatibleFormatVersion < compatible_version_recovered)) { if (!s_format.ok() || !s_compatible.ok()) { ROCKS_LOG_WARN( immutable_db_options_.info_log, "Recreating persistent stats column family since reading " "persistent stats version key failed. Format key: %s, compatible " "key: %s", s_format.ToString().c_str(), s_compatible.ToString().c_str()); } else { ROCKS_LOG_WARN( immutable_db_options_.info_log, "Recreating persistent stats column family due to corrupted or " "incompatible format version. Recovered format: %" PRIu64 "; recovered format compatible since: %" PRIu64 "\n", format_version_recovered, compatible_version_recovered); } s = DropColumnFamily(persist_stats_cf_handle_); if (s.ok()) { s = DestroyColumnFamilyHandle(persist_stats_cf_handle_); } ColumnFamilyHandle* handle = nullptr; if (s.ok()) { ColumnFamilyOptions cfo; OptimizeForPersistentStats(&cfo); s = CreateColumnFamily(cfo, kPersistentStatsColumnFamilyName, &handle); } if (s.ok()) { persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle); // should also persist version here because old stats CF is discarded should_persist_format_version = true; } } } if (should_persist_format_version) { // Persistent stats CF being created for the first time, need to write // format version key WriteBatch batch; if (s.ok()) { s = batch.Put(persist_stats_cf_handle_, kFormatVersionKeyString, ToString(kStatsCFCurrentFormatVersion)); } if (s.ok()) { s = batch.Put(persist_stats_cf_handle_, kCompatibleVersionKeyString, ToString(kStatsCFCompatibleFormatVersion)); } if (s.ok()) { WriteOptions wo; wo.low_pri = true; wo.no_slowdown = true; wo.sync = false; s = Write(wo, &batch); } } mutex_.Lock(); return s; } Status DBImpl::InitPersistStatsColumnFamily() { mutex_.AssertHeld(); assert(!persist_stats_cf_handle_); ColumnFamilyData* persistent_stats_cfd = versions_->GetColumnFamilySet()->GetColumnFamily( kPersistentStatsColumnFamilyName); persistent_stats_cfd_exists_ = persistent_stats_cfd != nullptr; Status s; if (persistent_stats_cfd != nullptr) { // We are recovering from a DB which already contains persistent stats CF, // the CF is already created in VersionSet::ApplyOneVersionEdit, but // column family handle was not. Need to explicitly create handle here. persist_stats_cf_handle_ = new ColumnFamilyHandleImpl(persistent_stats_cfd, this, &mutex_); } else { mutex_.Unlock(); ColumnFamilyHandle* handle = nullptr; ColumnFamilyOptions cfo; OptimizeForPersistentStats(&cfo); s = CreateColumnFamily(cfo, kPersistentStatsColumnFamilyName, &handle); persist_stats_cf_handle_ = static_cast<ColumnFamilyHandleImpl*>(handle); mutex_.Lock(); } return s; } // REQUIRES: wal_numbers are sorted in ascending order Status DBImpl::RecoverLogFiles(const std::vector<uint64_t>& wal_numbers, SequenceNumber* next_sequence, bool read_only, bool* corrupted_wal_found) { struct LogReporter : public log::Reader::Reporter { Env* env; Logger* info_log; const char* fname; Status* status; // nullptr if immutable_db_options_.paranoid_checks==false void Corruption(size_t bytes, const Status& s) override { ROCKS_LOG_WARN(info_log, "%s%s: dropping %d bytes; %s", (status == nullptr ? "(ignoring error) " : ""), fname, static_cast<int>(bytes), s.ToString().c_str()); if (status != nullptr && status->ok()) { *status = s; } } }; mutex_.AssertHeld(); Status status; std::unordered_map<int, VersionEdit> version_edits; // no need to refcount because iteration is under mutex for (auto cfd : *versions_->GetColumnFamilySet()) { VersionEdit edit; edit.SetColumnFamily(cfd->GetID()); version_edits.insert({cfd->GetID(), edit}); } int job_id = next_job_id_.fetch_add(1); { auto stream = event_logger_.Log(); stream << "job" << job_id << "event" << "recovery_started"; stream << "wal_files"; stream.StartArray(); for (auto wal_number : wal_numbers) { stream << wal_number; } stream.EndArray(); } #ifndef ROCKSDB_LITE if (immutable_db_options_.wal_filter != nullptr) { std::map<std::string, uint32_t> cf_name_id_map; std::map<uint32_t, uint64_t> cf_lognumber_map; for (auto cfd : *versions_->GetColumnFamilySet()) { cf_name_id_map.insert(std::make_pair(cfd->GetName(), cfd->GetID())); cf_lognumber_map.insert( std::make_pair(cfd->GetID(), cfd->GetLogNumber())); } immutable_db_options_.wal_filter->ColumnFamilyLogNumberMap(cf_lognumber_map, cf_name_id_map); } #endif bool stop_replay_by_wal_filter = false; bool stop_replay_for_corruption = false; bool flushed = false; uint64_t corrupted_wal_number = kMaxSequenceNumber; uint64_t min_wal_number = MinLogNumberToKeep(); for (auto wal_number : wal_numbers) { if (wal_number < min_wal_number) { ROCKS_LOG_INFO(immutable_db_options_.info_log, "Skipping log #%" PRIu64 " since it is older than min log to keep #%" PRIu64, wal_number, min_wal_number); continue; } // The previous incarnation may not have written any MANIFEST // records after allocating this log number. So we manually // update the file number allocation counter in VersionSet. versions_->MarkFileNumberUsed(wal_number); // Open the log file std::string fname = LogFileName(immutable_db_options_.wal_dir, wal_number); ROCKS_LOG_INFO(immutable_db_options_.info_log, "Recovering log #%" PRIu64 " mode %d", wal_number, static_cast<int>(immutable_db_options_.wal_recovery_mode)); auto logFileDropped = [this, &fname]() { uint64_t bytes; if (env_->GetFileSize(fname, &bytes).ok()) { auto info_log = immutable_db_options_.info_log.get(); ROCKS_LOG_WARN(info_log, "%s: dropping %d bytes", fname.c_str(), static_cast<int>(bytes)); } }; if (stop_replay_by_wal_filter) { logFileDropped(); continue; } std::unique_ptr<SequentialFileReader> file_reader; { std::unique_ptr<FSSequentialFile> file; status = fs_->NewSequentialFile(fname, fs_->OptimizeForLogRead(file_options_), &file, nullptr); if (!status.ok()) { MaybeIgnoreError(&status); if (!status.ok()) { return status; } else { // Fail with one log file, but that's ok. // Try next one. continue; } } file_reader.reset(new SequentialFileReader( std::move(file), fname, immutable_db_options_.log_readahead_size, io_tracer_)); } // Create the log reader. LogReporter reporter; reporter.env = env_; reporter.info_log = immutable_db_options_.info_log.get(); reporter.fname = fname.c_str(); if (!immutable_db_options_.paranoid_checks || immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kSkipAnyCorruptedRecords) { reporter.status = nullptr; } else { reporter.status = &status; } // We intentially make log::Reader do checksumming even if // paranoid_checks==false so that corruptions cause entire commits // to be skipped instead of propagating bad information (like overly // large sequence numbers). log::Reader reader(immutable_db_options_.info_log, std::move(file_reader), &reporter, true /*checksum*/, wal_number); // Determine if we should tolerate incomplete records at the tail end of the // Read all the records and add to a memtable std::string scratch; Slice record; WriteBatch batch; TEST_SYNC_POINT_CALLBACK("DBImpl::RecoverLogFiles:BeforeReadWal", /*arg=*/nullptr); while (!stop_replay_by_wal_filter && reader.ReadRecord(&record, &scratch, immutable_db_options_.wal_recovery_mode) && status.ok()) { if (record.size() < WriteBatchInternal::kHeader) { reporter.Corruption(record.size(), Status::Corruption("log record too small")); continue; } status = WriteBatchInternal::SetContents(&batch, record); if (!status.ok()) { return status; } SequenceNumber sequence = WriteBatchInternal::Sequence(&batch); if (immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) { // In point-in-time recovery mode, if sequence id of log files are // consecutive, we continue recovery despite corruption. This could // happen when we open and write to a corrupted DB, where sequence id // will start from the last sequence id we recovered. if (sequence == *next_sequence) { stop_replay_for_corruption = false; } if (stop_replay_for_corruption) { logFileDropped(); break; } } #ifndef ROCKSDB_LITE if (immutable_db_options_.wal_filter != nullptr) { WriteBatch new_batch; bool batch_changed = false; WalFilter::WalProcessingOption wal_processing_option = immutable_db_options_.wal_filter->LogRecordFound( wal_number, fname, batch, &new_batch, &batch_changed); switch (wal_processing_option) { case WalFilter::WalProcessingOption::kContinueProcessing: // do nothing, proceeed normally break; case WalFilter::WalProcessingOption::kIgnoreCurrentRecord: // skip current record continue; case WalFilter::WalProcessingOption::kStopReplay: // skip current record and stop replay stop_replay_by_wal_filter = true; continue; case WalFilter::WalProcessingOption::kCorruptedRecord: { status = Status::Corruption("Corruption reported by Wal Filter ", immutable_db_options_.wal_filter->Name()); MaybeIgnoreError(&status); if (!status.ok()) { reporter.Corruption(record.size(), status); continue; } break; } default: { assert(false); // unhandled case status = Status::NotSupported( "Unknown WalProcessingOption returned" " by Wal Filter ", immutable_db_options_.wal_filter->Name()); MaybeIgnoreError(&status); if (!status.ok()) { return status; } else { // Ignore the error with current record processing. continue; } } } if (batch_changed) { // Make sure that the count in the new batch is // within the orignal count. int new_count = WriteBatchInternal::Count(&new_batch); int original_count = WriteBatchInternal::Count(&batch); if (new_count > original_count) { ROCKS_LOG_FATAL( immutable_db_options_.info_log, "Recovering log #%" PRIu64 " mode %d log filter %s returned " "more records (%d) than original (%d) which is not allowed. " "Aborting recovery.", wal_number, static_cast<int>(immutable_db_options_.wal_recovery_mode), immutable_db_options_.wal_filter->Name(), new_count, original_count); status = Status::NotSupported( "More than original # of records " "returned by Wal Filter ", immutable_db_options_.wal_filter->Name()); return status; } // Set the same sequence number in the new_batch // as the original batch. WriteBatchInternal::SetSequence(&new_batch, WriteBatchInternal::Sequence(&batch)); batch = new_batch; } } #endif // ROCKSDB_LITE // If column family was not found, it might mean that the WAL write // batch references to the column family that was dropped after the // insert. We don't want to fail the whole write batch in that case -- // we just ignore the update. // That's why we set ignore missing column families to true bool has_valid_writes = false; status = WriteBatchInternal::InsertInto( &batch, column_family_memtables_.get(), &flush_scheduler_, &trim_history_scheduler_, true, wal_number, this, false /* concurrent_memtable_writes */, next_sequence, &has_valid_writes, seq_per_batch_, batch_per_txn_); MaybeIgnoreError(&status); if (!status.ok()) { // We are treating this as a failure while reading since we read valid // blocks that do not form coherent data reporter.Corruption(record.size(), status); continue; } if (has_valid_writes && !read_only) { // we can do this because this is called before client has access to the // DB and there is only a single thread operating on DB ColumnFamilyData* cfd; while ((cfd = flush_scheduler_.TakeNextColumnFamily()) != nullptr) { cfd->UnrefAndTryDelete(); // If this asserts, it means that InsertInto failed in // filtering updates to already-flushed column families assert(cfd->GetLogNumber() <= wal_number); auto iter = version_edits.find(cfd->GetID()); assert(iter != version_edits.end()); VersionEdit* edit = &iter->second; status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit); if (!status.ok()) { // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. return status; } flushed = true; cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), *next_sequence); } } } if (!status.ok()) { if (status.IsNotSupported()) { // We should not treat NotSupported as corruption. It is rather a clear // sign that we are processing a WAL that is produced by an incompatible // version of the code. return status; } if (immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kSkipAnyCorruptedRecords) { // We should ignore all errors unconditionally status = Status::OK(); } else if (immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) { if (status.IsIOError()) { ROCKS_LOG_ERROR(immutable_db_options_.info_log, "IOError during point-in-time reading log #%" PRIu64 " seq #%" PRIu64 ". %s. This likely mean loss of synced WAL, " "thus recovery fails.", wal_number, *next_sequence, status.ToString().c_str()); return status; } // We should ignore the error but not continue replaying status = Status::OK(); stop_replay_for_corruption = true; corrupted_wal_number = wal_number; if (corrupted_wal_found != nullptr) { *corrupted_wal_found = true; } ROCKS_LOG_INFO(immutable_db_options_.info_log, "Point in time recovered to log #%" PRIu64 " seq #%" PRIu64, wal_number, *next_sequence); } else { assert(immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kTolerateCorruptedTailRecords || immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency); return status; } } flush_scheduler_.Clear(); trim_history_scheduler_.Clear(); auto last_sequence = *next_sequence - 1; if ((*next_sequence != kMaxSequenceNumber) && (versions_->LastSequence() <= last_sequence)) { versions_->SetLastAllocatedSequence(last_sequence); versions_->SetLastPublishedSequence(last_sequence); versions_->SetLastSequence(last_sequence); } } // Compare the corrupted log number to all columnfamily's current log number. // Abort Open() if any column family's log number is greater than // the corrupted log number, which means CF contains data beyond the point of // corruption. This could during PIT recovery when the WAL is corrupted and // some (but not all) CFs are flushed // Exclude the PIT case where no log is dropped after the corruption point. // This is to cover the case for empty wals after corrupted log, in which we // don't reset stop_replay_for_corruption. if (stop_replay_for_corruption == true && (immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery || immutable_db_options_.wal_recovery_mode == WALRecoveryMode::kTolerateCorruptedTailRecords)) { for (auto cfd : *versions_->GetColumnFamilySet()) { // One special case cause cfd->GetLogNumber() > corrupted_wal_number but // the CF is still consistent: If a new column family is created during // the flush and the WAL sync fails at the same time, the new CF points to // the new WAL but the old WAL is curropted. Since the new CF is empty, it // is still consistent. We add the check of CF sst file size to avoid the // false positive alert. // Note that, the check of (cfd->GetLiveSstFilesSize() > 0) may leads to // the ignorance of a very rare inconsistency case caused in data // canclation. One CF is empty due to KV deletion. But those operations // are in the WAL. If the WAL is corrupted, the status of this CF might // not be consistent with others. However, the consistency check will be // bypassed due to empty CF. // TODO: a better and complete implementation is needed to ensure strict // consistency check in WAL recovery including hanlding the tailing // issues. if (cfd->GetLogNumber() > corrupted_wal_number && cfd->GetLiveSstFilesSize() > 0) { ROCKS_LOG_ERROR(immutable_db_options_.info_log, "Column family inconsistency: SST file contains data" " beyond the point of corruption."); return Status::Corruption("SST file is ahead of WALs in CF " + cfd->GetName()); } } } // True if there's any data in the WALs; if not, we can skip re-processing // them later bool data_seen = false; if (!read_only) { // no need to refcount since client still doesn't have access // to the DB and can not drop column families while we iterate const WalNumber max_wal_number = wal_numbers.back(); for (auto cfd : *versions_->GetColumnFamilySet()) { auto iter = version_edits.find(cfd->GetID()); assert(iter != version_edits.end()); VersionEdit* edit = &iter->second; if (cfd->GetLogNumber() > max_wal_number) { // Column family cfd has already flushed the data // from all wals. Memtable has to be empty because // we filter the updates based on wal_number // (in WriteBatch::InsertInto) assert(cfd->mem()->GetFirstSequenceNumber() == 0); assert(edit->NumEntries() == 0); continue; } TEST_SYNC_POINT_CALLBACK( "DBImpl::RecoverLogFiles:BeforeFlushFinalMemtable", /*arg=*/nullptr); // flush the final memtable (if non-empty) if (cfd->mem()->GetFirstSequenceNumber() != 0) { // If flush happened in the middle of recovery (e.g. due to memtable // being full), we flush at the end. Otherwise we'll need to record // where we were on last flush, which make the logic complicated. if (flushed || !immutable_db_options_.avoid_flush_during_recovery) { status = WriteLevel0TableForRecovery(job_id, cfd, cfd->mem(), edit); if (!status.ok()) { // Recovery failed break; } flushed = true; cfd->CreateNewMemtable(*cfd->GetLatestMutableCFOptions(), versions_->LastSequence()); } data_seen = true; } // Update the log number info in the version edit corresponding to this // column family. Note that the version edits will be written to MANIFEST // together later. // writing wal_number in the manifest means that any log file // with number strongly less than (wal_number + 1) is already // recovered and should be ignored on next reincarnation. // Since we already recovered max_wal_number, we want all wals // with numbers `<= max_wal_number` (includes this one) to be ignored if (flushed || cfd->mem()->GetFirstSequenceNumber() == 0) { edit->SetLogNumber(max_wal_number + 1); } } if (status.ok()) { // we must mark the next log number as used, even though it's // not actually used. that is because VersionSet assumes // VersionSet::next_file_number_ always to be strictly greater than any // log number versions_->MarkFileNumberUsed(max_wal_number + 1); autovector<ColumnFamilyData*> cfds; autovector<const MutableCFOptions*> cf_opts; autovector<autovector<VersionEdit*>> edit_lists; for (auto* cfd : *versions_->GetColumnFamilySet()) { cfds.push_back(cfd); cf_opts.push_back(cfd->GetLatestMutableCFOptions()); auto iter = version_edits.find(cfd->GetID()); assert(iter != version_edits.end()); edit_lists.push_back({&iter->second}); } std::unique_ptr<VersionEdit> wal_deletion; if (immutable_db_options_.track_and_verify_wals_in_manifest) { wal_deletion.reset(new VersionEdit); wal_deletion->DeleteWalsBefore(max_wal_number + 1); edit_lists.back().push_back(wal_deletion.get()); } // write MANIFEST with update status = versions_->LogAndApply(cfds, cf_opts, edit_lists, &mutex_, directories_.GetDbDir(), /*new_descriptor_log=*/true); } } if (status.ok()) { if (data_seen && !flushed) { status = RestoreAliveLogFiles(wal_numbers); } else { // If there's no data in the WAL, or we flushed all the data, still // truncate the log file. If the process goes into a crash loop before // the file is deleted, the preallocated space will never get freed. const bool truncate = !read_only; GetLogSizeAndMaybeTruncate(wal_numbers.back(), truncate, nullptr) .PermitUncheckedError(); } } event_logger_.Log() << "job" << job_id << "event" << "recovery_finished"; return status; } Status DBImpl::GetLogSizeAndMaybeTruncate(uint64_t wal_number, bool truncate, LogFileNumberSize* log_ptr) { LogFileNumberSize log(wal_number); std::string fname = LogFileName(immutable_db_options_.wal_dir, wal_number); Status s; // This gets the appear size of the wals, not including preallocated space. s = env_->GetFileSize(fname, &log.size); if (s.ok() && truncate) { std::unique_ptr<FSWritableFile> last_log; Status truncate_status = fs_->ReopenWritableFile( fname, fs_->OptimizeForLogWrite( file_options_, BuildDBOptions(immutable_db_options_, mutable_db_options_)), &last_log, nullptr); if (truncate_status.ok()) { truncate_status = last_log->Truncate(log.size, IOOptions(), nullptr); } if (truncate_status.ok()) { truncate_status = last_log->Close(IOOptions(), nullptr); } // Not a critical error if fail to truncate. if (!truncate_status.ok() && !truncate_status.IsNotSupported()) { ROCKS_LOG_WARN(immutable_db_options_.info_log, "Failed to truncate log #%" PRIu64 ": %s", wal_number, truncate_status.ToString().c_str()); } } if (log_ptr) { *log_ptr = log; } return s; } Status DBImpl::RestoreAliveLogFiles(const std::vector<uint64_t>& wal_numbers) { if (wal_numbers.empty()) { return Status::OK(); } Status s; mutex_.AssertHeld(); assert(immutable_db_options_.avoid_flush_during_recovery); if (two_write_queues_) { log_write_mutex_.Lock(); } // Mark these as alive so they'll be considered for deletion later by // FindObsoleteFiles() total_log_size_ = 0; log_empty_ = false; for (auto wal_number : wal_numbers) { // We preallocate space for wals, but then after a crash and restart, those // preallocated space are not needed anymore. It is likely only the last // log has such preallocated space, so we only truncate for the last log. LogFileNumberSize log; s = GetLogSizeAndMaybeTruncate( wal_number, /*truncate=*/(wal_number == wal_numbers.back()), &log); if (!s.ok()) { break; } total_log_size_ += log.size; alive_log_files_.push_back(log); } if (two_write_queues_) { log_write_mutex_.Unlock(); } return s; } Status DBImpl::WriteLevel0TableForRecovery(int job_id, ColumnFamilyData* cfd, MemTable* mem, VersionEdit* edit) { mutex_.AssertHeld(); const uint64_t start_micros = immutable_db_options_.clock->NowMicros(); FileMetaData meta; std::vector<BlobFileAddition> blob_file_additions; std::unique_ptr<std::list<uint64_t>::iterator> pending_outputs_inserted_elem( new std::list<uint64_t>::iterator( CaptureCurrentFileNumberInPendingOutputs())); meta.fd = FileDescriptor(versions_->NewFileNumber(), 0, 0); ReadOptions ro; ro.total_order_seek = true; Arena arena; Status s; TableProperties table_properties; { ScopedArenaIterator iter(mem->NewIterator(ro, &arena)); ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "[%s] [WriteLevel0TableForRecovery]" " Level-0 table #%" PRIu64 ": started", cfd->GetName().c_str(), meta.fd.GetNumber()); // Get the latest mutable cf options while the mutex is still locked const MutableCFOptions mutable_cf_options = *cfd->GetLatestMutableCFOptions(); bool paranoid_file_checks = cfd->GetLatestMutableCFOptions()->paranoid_file_checks; int64_t _current_time = 0; immutable_db_options_.clock->GetCurrentTime(&_current_time) .PermitUncheckedError(); // ignore error const uint64_t current_time = static_cast<uint64_t>(_current_time); meta.oldest_ancester_time = current_time; { auto write_hint = cfd->CalculateSSTWriteHint(0); mutex_.Unlock(); SequenceNumber earliest_write_conflict_snapshot; std::vector<SequenceNumber> snapshot_seqs = snapshots_.GetAll(&earliest_write_conflict_snapshot); auto snapshot_checker = snapshot_checker_.get(); if (use_custom_gc_ && snapshot_checker == nullptr) { snapshot_checker = DisableGCSnapshotChecker::Instance(); } std::vector<std::unique_ptr<FragmentedRangeTombstoneIterator>> range_del_iters; auto range_del_iter = mem->NewRangeTombstoneIterator(ro, kMaxSequenceNumber); if (range_del_iter != nullptr) { range_del_iters.emplace_back(range_del_iter); } IOStatus io_s; TableBuilderOptions tboptions( *cfd->ioptions(), mutable_cf_options, cfd->internal_comparator(), cfd->int_tbl_prop_collector_factories(), GetCompressionFlush(*cfd->ioptions(), mutable_cf_options), mutable_cf_options.compression_opts, cfd->GetID(), cfd->GetName(), 0 /* level */, false /* is_bottommost */, TableFileCreationReason::kRecovery, current_time, 0 /* oldest_key_time */, 0 /* file_creation_time */, db_id_, db_session_id_, 0 /* target_file_size */, meta.fd.GetNumber()); s = BuildTable( dbname_, versions_.get(), immutable_db_options_, tboptions, file_options_for_compaction_, cfd->table_cache(), iter.get(), std::move(range_del_iters), &meta, &blob_file_additions, snapshot_seqs, earliest_write_conflict_snapshot, snapshot_checker, paranoid_file_checks, cfd->internal_stats(), &io_s, io_tracer_, &event_logger_, job_id, Env::IO_HIGH, nullptr /* table_properties */, write_hint, nullptr /*full_history_ts_low*/, &blob_callback_); LogFlush(immutable_db_options_.info_log); ROCKS_LOG_DEBUG(immutable_db_options_.info_log, "[%s] [WriteLevel0TableForRecovery]" " Level-0 table #%" PRIu64 ": %" PRIu64 " bytes %s", cfd->GetName().c_str(), meta.fd.GetNumber(), meta.fd.GetFileSize(), s.ToString().c_str()); mutex_.Lock(); io_s.PermitUncheckedError(); // TODO(AR) is this correct, or should we // return io_s if not ok()? } } ReleaseFileNumberFromPendingOutputs(pending_outputs_inserted_elem); // Note that if file_size is zero, the file has been deleted and // should not be added to the manifest. const bool has_output = meta.fd.GetFileSize() > 0; constexpr int level = 0; if (s.ok() && has_output) { edit->AddFile(level, meta.fd.GetNumber(), meta.fd.GetPathId(), meta.fd.GetFileSize(), meta.smallest, meta.largest, meta.fd.smallest_seqno, meta.fd.largest_seqno, meta.marked_for_compaction, meta.oldest_blob_file_number, meta.oldest_ancester_time, meta.file_creation_time, meta.file_checksum, meta.file_checksum_func_name); for (const auto& blob : blob_file_additions) { edit->AddBlobFile(blob); } } InternalStats::CompactionStats stats(CompactionReason::kFlush, 1); stats.micros = immutable_db_options_.clock->NowMicros() - start_micros; if (has_output) { stats.bytes_written = meta.fd.GetFileSize(); stats.num_output_files = 1; } const auto& blobs = edit->GetBlobFileAdditions(); for (const auto& blob : blobs) { stats.bytes_written_blob += blob.GetTotalBlobBytes(); } stats.num_output_files_blob = static_cast<int>(blobs.size()); cfd->internal_stats()->AddCompactionStats(level, Env::Priority::USER, stats); cfd->internal_stats()->AddCFStats( InternalStats::BYTES_FLUSHED, stats.bytes_written + stats.bytes_written_blob); RecordTick(stats_, COMPACT_WRITE_BYTES, meta.fd.GetFileSize()); return s; } Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) { DBOptions db_options(options); ColumnFamilyOptions cf_options(options); std::vector<ColumnFamilyDescriptor> column_families; column_families.push_back( ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options)); if (db_options.persist_stats_to_disk) { column_families.push_back( ColumnFamilyDescriptor(kPersistentStatsColumnFamilyName, cf_options)); } std::vector<ColumnFamilyHandle*> handles; Status s = DB::Open(db_options, dbname, column_families, &handles, dbptr); if (s.ok()) { if (db_options.persist_stats_to_disk) { assert(handles.size() == 2); } else { assert(handles.size() == 1); } // i can delete the handle since DBImpl is always holding a reference to // default column family if (db_options.persist_stats_to_disk && handles[1] != nullptr) { delete handles[1]; } delete handles[0]; } return s; } Status DB::Open(const DBOptions& db_options, const std::string& dbname, const std::vector<ColumnFamilyDescriptor>& column_families, std::vector<ColumnFamilyHandle*>* handles, DB** dbptr) { const bool kSeqPerBatch = true; const bool kBatchPerTxn = true; return DBImpl::Open(db_options, dbname, column_families, handles, dbptr, !kSeqPerBatch, kBatchPerTxn); } IOStatus DBImpl::CreateWAL(uint64_t log_file_num, uint64_t recycle_log_number, size_t preallocate_block_size, log::Writer** new_log) { IOStatus io_s; std::unique_ptr<FSWritableFile> lfile; DBOptions db_options = BuildDBOptions(immutable_db_options_, mutable_db_options_); FileOptions opt_file_options = fs_->OptimizeForLogWrite(file_options_, db_options); std::string log_fname = LogFileName(immutable_db_options_.wal_dir, log_file_num); if (recycle_log_number) { ROCKS_LOG_INFO(immutable_db_options_.info_log, "reusing log %" PRIu64 " from recycle list\n", recycle_log_number); std::string old_log_fname = LogFileName(immutable_db_options_.wal_dir, recycle_log_number); TEST_SYNC_POINT("DBImpl::CreateWAL:BeforeReuseWritableFile1"); TEST_SYNC_POINT("DBImpl::CreateWAL:BeforeReuseWritableFile2"); io_s = fs_->ReuseWritableFile(log_fname, old_log_fname, opt_file_options, &lfile, /*dbg=*/nullptr); } else { io_s = NewWritableFile(fs_.get(), log_fname, &lfile, opt_file_options); } if (io_s.ok()) { lfile->SetWriteLifeTimeHint(CalculateWALWriteHint()); lfile->SetPreallocationBlockSize(preallocate_block_size); const auto& listeners = immutable_db_options_.listeners; FileTypeSet tmp_set = immutable_db_options_.checksum_handoff_file_types; std::unique_ptr<WritableFileWriter> file_writer(new WritableFileWriter( std::move(lfile), log_fname, opt_file_options, immutable_db_options_.clock, io_tracer_, nullptr /* stats */, listeners, nullptr, tmp_set.Contains(FileType::kWalFile))); *new_log = new log::Writer(std::move(file_writer), log_file_num, immutable_db_options_.recycle_log_file_num > 0, immutable_db_options_.manual_wal_flush); } return io_s; } Status DBImpl::Open(const DBOptions& db_options, const std::string& dbname, const std::vector<ColumnFamilyDescriptor>& column_families, std::vector<ColumnFamilyHandle*>* handles, DB** dbptr, const bool seq_per_batch, const bool batch_per_txn) { Status s = ValidateOptionsByTable(db_options, column_families); if (!s.ok()) { return s; } s = ValidateOptions(db_options, column_families); if (!s.ok()) { return s; } *dbptr = nullptr; handles->clear(); size_t max_write_buffer_size = 0; for (auto cf : column_families) { max_write_buffer_size = std::max(max_write_buffer_size, cf.options.write_buffer_size); } DBImpl* impl = new DBImpl(db_options, dbname, seq_per_batch, batch_per_txn); s = impl->env_->CreateDirIfMissing(impl->immutable_db_options_.wal_dir); if (s.ok()) { std::vector<std::string> paths; for (auto& db_path : impl->immutable_db_options_.db_paths) { paths.emplace_back(db_path.path); } for (auto& cf : column_families) { for (auto& cf_path : cf.options.cf_paths) { paths.emplace_back(cf_path.path); } } for (auto& path : paths) { s = impl->env_->CreateDirIfMissing(path); if (!s.ok()) { break; } } // For recovery from NoSpace() error, we can only handle // the case where the database is stored in a single path if (paths.size() <= 1) { impl->error_handler_.EnableAutoRecovery(); } } if (s.ok()) { s = impl->CreateArchivalDirectory(); } if (!s.ok()) { delete impl; return s; } impl->wal_in_db_path_ = IsWalDirSameAsDBPath(&impl->immutable_db_options_); impl->mutex_.Lock(); // Handles create_if_missing, error_if_exists uint64_t recovered_seq(kMaxSequenceNumber); s = impl->Recover(column_families, false, false, false, &recovered_seq); if (s.ok()) { uint64_t new_log_number = impl->versions_->NewFileNumber(); log::Writer* new_log = nullptr; const size_t preallocate_block_size = impl->GetWalPreallocateBlockSize(max_write_buffer_size); s = impl->CreateWAL(new_log_number, 0 /*recycle_log_number*/, preallocate_block_size, &new_log); if (s.ok()) { InstrumentedMutexLock wl(&impl->log_write_mutex_); impl->logfile_number_ = new_log_number; assert(new_log != nullptr); assert(impl->logs_.empty()); impl->logs_.emplace_back(new_log_number, new_log); } if (s.ok()) { // set column family handles for (auto cf : column_families) { auto cfd = impl->versions_->GetColumnFamilySet()->GetColumnFamily(cf.name); if (cfd != nullptr) { handles->push_back( new ColumnFamilyHandleImpl(cfd, impl, &impl->mutex_)); impl->NewThreadStatusCfInfo(cfd); } else { if (db_options.create_missing_column_families) { // missing column family, create it ColumnFamilyHandle* handle; impl->mutex_.Unlock(); s = impl->CreateColumnFamily(cf.options, cf.name, &handle); impl->mutex_.Lock(); if (s.ok()) { handles->push_back(handle); } else { break; } } else { s = Status::InvalidArgument("Column family not found", cf.name); break; } } } } if (s.ok()) { SuperVersionContext sv_context(/* create_superversion */ true); for (auto cfd : *impl->versions_->GetColumnFamilySet()) { impl->InstallSuperVersionAndScheduleWork( cfd, &sv_context, *cfd->GetLatestMutableCFOptions()); } sv_context.Clean(); if (impl->two_write_queues_) { impl->log_write_mutex_.Lock(); } impl->alive_log_files_.push_back( DBImpl::LogFileNumberSize(impl->logfile_number_)); if (impl->two_write_queues_) { impl->log_write_mutex_.Unlock(); } impl->DeleteObsoleteFiles(); s = impl->directories_.GetDbDir()->Fsync(IOOptions(), nullptr); } if (s.ok()) { // In WritePrepared there could be gap in sequence numbers. This breaks // the trick we use in kPointInTimeRecovery which assumes the first seq in // the log right after the corrupted log is one larger than the last seq // we read from the wals. To let this trick keep working, we add a dummy // entry with the expected sequence to the first log right after recovery. // In non-WritePrepared case also the new log after recovery could be // empty, and thus missing the consecutive seq hint to distinguish // middle-log corruption to corrupted-log-remained-after-recovery. This // case also will be addressed by a dummy write. if (recovered_seq != kMaxSequenceNumber) { WriteBatch empty_batch; WriteBatchInternal::SetSequence(&empty_batch, recovered_seq); WriteOptions write_options; uint64_t log_used, log_size; log::Writer* log_writer = impl->logs_.back().writer; s = impl->WriteToWAL(empty_batch, log_writer, &log_used, &log_size); if (s.ok()) { // Need to fsync, otherwise it might get lost after a power reset. s = impl->FlushWAL(false); if (s.ok()) { s = log_writer->file()->Sync(impl->immutable_db_options_.use_fsync); } } } } } if (s.ok() && impl->immutable_db_options_.persist_stats_to_disk) { // try to read format version s = impl->PersistentStatsProcessFormatVersion(); } if (s.ok()) { for (auto cfd : *impl->versions_->GetColumnFamilySet()) { if (cfd->ioptions()->compaction_style == kCompactionStyleFIFO) { auto* vstorage = cfd->current()->storage_info(); for (int i = 1; i < vstorage->num_levels(); ++i) { int num_files = vstorage->NumLevelFiles(i); if (num_files > 0) { s = Status::InvalidArgument( "Not all files are at level 0. Cannot " "open with FIFO compaction style."); break; } } } if (!cfd->mem()->IsSnapshotSupported()) { impl->is_snapshot_supported_ = false; } if (cfd->ioptions()->merge_operator != nullptr && !cfd->mem()->IsMergeOperatorSupported()) { s = Status::InvalidArgument( "The memtable of column family %s does not support merge operator " "its options.merge_operator is non-null", cfd->GetName().c_str()); } if (!s.ok()) { break; } } } TEST_SYNC_POINT("DBImpl::Open:Opened"); Status persist_options_status; if (s.ok()) { // Persist RocksDB Options before scheduling the compaction. // The WriteOptionsFile() will release and lock the mutex internally. persist_options_status = impl->WriteOptionsFile( false /*need_mutex_lock*/, false /*need_enter_write_thread*/); *dbptr = impl; impl->opened_successfully_ = true; impl->MaybeScheduleFlushOrCompaction(); } else { persist_options_status.PermitUncheckedError(); } impl->mutex_.Unlock(); #ifndef ROCKSDB_LITE auto sfm = static_cast<SstFileManagerImpl*>( impl->immutable_db_options_.sst_file_manager.get()); if (s.ok() && sfm) { // Set Statistics ptr for SstFileManager to dump the stats of // DeleteScheduler. sfm->SetStatisticsPtr(impl->immutable_db_options_.statistics); ROCKS_LOG_INFO(impl->immutable_db_options_.info_log, "SstFileManager instance %p", sfm); // Notify SstFileManager about all sst files that already exist in // db_paths[0] and cf_paths[0] when the DB is opened. // SstFileManagerImpl needs to know sizes of the files. For files whose size // we already know (sst files that appear in manifest - typically that's the // vast majority of all files), we'll pass the size to SstFileManager. // For all other files SstFileManager will query the size from filesystem. std::vector<LiveFileMetaData> metadata; // TODO: Once GetLiveFilesMetaData supports blob files, update the logic // below to get known_file_sizes for blob files. impl->mutex_.Lock(); impl->versions_->GetLiveFilesMetaData(&metadata); impl->mutex_.Unlock(); std::unordered_map<std::string, uint64_t> known_file_sizes; for (const auto& md : metadata) { std::string name = md.name; if (!name.empty() && name[0] == '/') { name = name.substr(1); } known_file_sizes[name] = md.size; } std::vector<std::string> paths; paths.emplace_back(impl->immutable_db_options_.db_paths[0].path); for (auto& cf : column_families) { if (!cf.options.cf_paths.empty()) { paths.emplace_back(cf.options.cf_paths[0].path); } } // Remove duplicate paths. std::sort(paths.begin(), paths.end()); paths.erase(std::unique(paths.begin(), paths.end()), paths.end()); for (auto& path : paths) { std::vector<std::string> existing_files; impl->immutable_db_options_.env->GetChildren(path, &existing_files) .PermitUncheckedError(); //**TODO: What do to on error? for (auto& file_name : existing_files) { uint64_t file_number; FileType file_type; std::string file_path = path + "/" + file_name; if (ParseFileName(file_name, &file_number, &file_type) && (file_type == kTableFile || file_type == kBlobFile)) { // TODO: Check for errors from OnAddFile? if (known_file_sizes.count(file_name)) { // We're assuming that each sst file name exists in at most one of // the paths. sfm->OnAddFile(file_path, known_file_sizes.at(file_name)) .PermitUncheckedError(); } else { sfm->OnAddFile(file_path).PermitUncheckedError(); } } } } // Reserve some disk buffer space. This is a heuristic - when we run out // of disk space, this ensures that there is atleast write_buffer_size // amount of free space before we resume DB writes. In low disk space // conditions, we want to avoid a lot of small L0 files due to frequent // WAL write failures and resultant forced flushes sfm->ReserveDiskBuffer(max_write_buffer_size, impl->immutable_db_options_.db_paths[0].path); } #endif // !ROCKSDB_LITE if (s.ok()) { ROCKS_LOG_HEADER(impl->immutable_db_options_.info_log, "DB pointer %p", impl); LogFlush(impl->immutable_db_options_.info_log); assert(impl->TEST_WALBufferIsEmpty()); // If the assert above fails then we need to FlushWAL before returning // control back to the user. if (!persist_options_status.ok()) { s = Status::IOError( "DB::Open() failed --- Unable to persist Options file", persist_options_status.ToString()); } } else { ROCKS_LOG_WARN(impl->immutable_db_options_.info_log, "Persisting Option File error: %s", persist_options_status.ToString().c_str()); } if (s.ok()) { impl->StartPeriodicWorkScheduler(); } else { for (auto* h : *handles) { delete h; } handles->clear(); delete impl; *dbptr = nullptr; } return s; } } // namespace ROCKSDB_NAMESPACE