// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db/compaction_picker.h" #ifndef __STDC_FORMAT_MACROS #define __STDC_FORMAT_MACROS #endif #include #include #include #include #include #include #include "db/column_family.h" #include "file/filename.h" #include "monitoring/statistics.h" #include "test_util/sync_point.h" #include "util/log_buffer.h" #include "util/random.h" #include "util/string_util.h" namespace rocksdb { namespace { uint64_t TotalCompensatedFileSize(const std::vector& files) { uint64_t sum = 0; for (size_t i = 0; i < files.size() && files[i]; i++) { sum += files[i]->compensated_file_size; } return sum; } } // anonymous namespace bool FindIntraL0Compaction(const std::vector& level_files, size_t min_files_to_compact, uint64_t max_compact_bytes_per_del_file, uint64_t max_compaction_bytes, CompactionInputFiles* comp_inputs) { size_t compact_bytes = static_cast(level_files[0]->fd.file_size); uint64_t compensated_compact_bytes = level_files[0]->compensated_file_size; size_t compact_bytes_per_del_file = port::kMaxSizet; // Compaction range will be [0, span_len). size_t span_len; // Pull in files until the amount of compaction work per deleted file begins // increasing or maximum total compaction size is reached. size_t new_compact_bytes_per_del_file = 0; for (span_len = 1; span_len < level_files.size(); ++span_len) { compact_bytes += static_cast(level_files[span_len]->fd.file_size); compensated_compact_bytes += level_files[span_len]->compensated_file_size; new_compact_bytes_per_del_file = compact_bytes / span_len; if (level_files[span_len]->being_compacted || new_compact_bytes_per_del_file > compact_bytes_per_del_file || compensated_compact_bytes > max_compaction_bytes) { break; } compact_bytes_per_del_file = new_compact_bytes_per_del_file; } if (span_len >= min_files_to_compact && compact_bytes_per_del_file < max_compact_bytes_per_del_file) { assert(comp_inputs != nullptr); comp_inputs->level = 0; for (size_t i = 0; i < span_len; ++i) { comp_inputs->files.push_back(level_files[i]); } return true; } return false; } // Determine compression type, based on user options, level of the output // file and whether compression is disabled. // If enable_compression is false, then compression is always disabled no // matter what the values of the other two parameters are. // Otherwise, the compression type is determined based on options and level. CompressionType GetCompressionType(const ImmutableCFOptions& ioptions, const VersionStorageInfo* vstorage, const MutableCFOptions& mutable_cf_options, int level, int base_level, const bool enable_compression) { if (!enable_compression) { // disable compression return kNoCompression; } // If bottommost_compression is set and we are compacting to the // bottommost level then we should use it. if (ioptions.bottommost_compression != kDisableCompressionOption && level >= (vstorage->num_non_empty_levels() - 1)) { return ioptions.bottommost_compression; } // If the user has specified a different compression level for each level, // then pick the compression for that level. if (!ioptions.compression_per_level.empty()) { assert(level == 0 || level >= base_level); int idx = (level == 0) ? 0 : level - base_level + 1; const int n = static_cast(ioptions.compression_per_level.size()) - 1; // It is possible for level_ to be -1; in that case, we use level // 0's compression. This occurs mostly in backwards compatibility // situations when the builder doesn't know what level the file // belongs to. Likewise, if level is beyond the end of the // specified compression levels, use the last value. return ioptions.compression_per_level[std::max(0, std::min(idx, n))]; } else { return mutable_cf_options.compression; } } CompressionOptions GetCompressionOptions(const ImmutableCFOptions& ioptions, const VersionStorageInfo* vstorage, int level, const bool enable_compression) { if (!enable_compression) { return ioptions.compression_opts; } // If bottommost_compression is set and we are compacting to the // bottommost level then we should use the specified compression options // for the bottmomost_compression. if (ioptions.bottommost_compression != kDisableCompressionOption && level >= (vstorage->num_non_empty_levels() - 1) && ioptions.bottommost_compression_opts.enabled) { return ioptions.bottommost_compression_opts; } return ioptions.compression_opts; } CompactionPicker::CompactionPicker(const ImmutableCFOptions& ioptions, const InternalKeyComparator* icmp) : ioptions_(ioptions), icmp_(icmp) {} CompactionPicker::~CompactionPicker() {} // Delete this compaction from the list of running compactions. void CompactionPicker::ReleaseCompactionFiles(Compaction* c, Status status) { UnregisterCompaction(c); if (!status.ok()) { c->ResetNextCompactionIndex(); } } void CompactionPicker::GetRange(const CompactionInputFiles& inputs, InternalKey* smallest, InternalKey* largest) const { const int level = inputs.level; assert(!inputs.empty()); smallest->Clear(); largest->Clear(); if (level == 0) { for (size_t i = 0; i < inputs.size(); i++) { FileMetaData* f = inputs[i]; if (i == 0) { *smallest = f->smallest; *largest = f->largest; } else { if (icmp_->Compare(f->smallest, *smallest) < 0) { *smallest = f->smallest; } if (icmp_->Compare(f->largest, *largest) > 0) { *largest = f->largest; } } } } else { *smallest = inputs[0]->smallest; *largest = inputs[inputs.size() - 1]->largest; } } void CompactionPicker::GetRange(const CompactionInputFiles& inputs1, const CompactionInputFiles& inputs2, InternalKey* smallest, InternalKey* largest) const { assert(!inputs1.empty() || !inputs2.empty()); if (inputs1.empty()) { GetRange(inputs2, smallest, largest); } else if (inputs2.empty()) { GetRange(inputs1, smallest, largest); } else { InternalKey smallest1, smallest2, largest1, largest2; GetRange(inputs1, &smallest1, &largest1); GetRange(inputs2, &smallest2, &largest2); *smallest = icmp_->Compare(smallest1, smallest2) < 0 ? smallest1 : smallest2; *largest = icmp_->Compare(largest1, largest2) < 0 ? largest2 : largest1; } } void CompactionPicker::GetRange(const std::vector& inputs, InternalKey* smallest, InternalKey* largest) const { InternalKey current_smallest; InternalKey current_largest; bool initialized = false; for (const auto& in : inputs) { if (in.empty()) { continue; } GetRange(in, ¤t_smallest, ¤t_largest); if (!initialized) { *smallest = current_smallest; *largest = current_largest; initialized = true; } else { if (icmp_->Compare(current_smallest, *smallest) < 0) { *smallest = current_smallest; } if (icmp_->Compare(current_largest, *largest) > 0) { *largest = current_largest; } } } assert(initialized); } bool CompactionPicker::ExpandInputsToCleanCut(const std::string& /*cf_name*/, VersionStorageInfo* vstorage, CompactionInputFiles* inputs, InternalKey** next_smallest) { // This isn't good compaction assert(!inputs->empty()); const int level = inputs->level; // GetOverlappingInputs will always do the right thing for level-0. // So we don't need to do any expansion if level == 0. if (level == 0) { return true; } InternalKey smallest, largest; // Keep expanding inputs until we are sure that there is a "clean cut" // boundary between the files in input and the surrounding files. // This will ensure that no parts of a key are lost during compaction. int hint_index = -1; size_t old_size; do { old_size = inputs->size(); GetRange(*inputs, &smallest, &largest); inputs->clear(); vstorage->GetOverlappingInputs(level, &smallest, &largest, &inputs->files, hint_index, &hint_index, true, next_smallest); } while (inputs->size() > old_size); // we started off with inputs non-empty and the previous loop only grew // inputs. thus, inputs should be non-empty here assert(!inputs->empty()); // If, after the expansion, there are files that are already under // compaction, then we must drop/cancel this compaction. if (AreFilesInCompaction(inputs->files)) { return false; } return true; } bool CompactionPicker::RangeOverlapWithCompaction( const Slice& smallest_user_key, const Slice& largest_user_key, int level) const { const Comparator* ucmp = icmp_->user_comparator(); for (Compaction* c : compactions_in_progress_) { if (c->output_level() == level && ucmp->Compare(smallest_user_key, c->GetLargestUserKey()) <= 0 && ucmp->Compare(largest_user_key, c->GetSmallestUserKey()) >= 0) { // Overlap return true; } } // Did not overlap with any running compaction in level `level` return false; } bool CompactionPicker::FilesRangeOverlapWithCompaction( const std::vector& inputs, int level) const { bool is_empty = true; for (auto& in : inputs) { if (!in.empty()) { is_empty = false; break; } } if (is_empty) { // No files in inputs return false; } InternalKey smallest, largest; GetRange(inputs, &smallest, &largest); return RangeOverlapWithCompaction(smallest.user_key(), largest.user_key(), level); } // Returns true if any one of specified files are being compacted bool CompactionPicker::AreFilesInCompaction( const std::vector& files) { for (size_t i = 0; i < files.size(); i++) { if (files[i]->being_compacted) { return true; } } return false; } Compaction* CompactionPicker::CompactFiles( const CompactionOptions& compact_options, const std::vector& input_files, int output_level, VersionStorageInfo* vstorage, const MutableCFOptions& mutable_cf_options, uint32_t output_path_id) { assert(input_files.size()); // This compaction output should not overlap with a running compaction as // `SanitizeCompactionInputFiles` should've checked earlier and db mutex // shouldn't have been released since. assert(!FilesRangeOverlapWithCompaction(input_files, output_level)); CompressionType compression_type; if (compact_options.compression == kDisableCompressionOption) { int base_level; if (ioptions_.compaction_style == kCompactionStyleLevel) { base_level = vstorage->base_level(); } else { base_level = 1; } compression_type = GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level, base_level); } else { // TODO(ajkr): `CompactionOptions` offers configurable `CompressionType` // without configurable `CompressionOptions`, which is inconsistent. compression_type = compact_options.compression; } auto c = new Compaction( vstorage, ioptions_, mutable_cf_options, input_files, output_level, compact_options.output_file_size_limit, mutable_cf_options.max_compaction_bytes, output_path_id, compression_type, GetCompressionOptions(ioptions_, vstorage, output_level), compact_options.max_subcompactions, /* grandparents */ {}, true); RegisterCompaction(c); return c; } Status CompactionPicker::GetCompactionInputsFromFileNumbers( std::vector* input_files, std::unordered_set* input_set, const VersionStorageInfo* vstorage, const CompactionOptions& /*compact_options*/) const { if (input_set->size() == 0U) { return Status::InvalidArgument( "Compaction must include at least one file."); } assert(input_files); std::vector matched_input_files; matched_input_files.resize(vstorage->num_levels()); int first_non_empty_level = -1; int last_non_empty_level = -1; // TODO(yhchiang): use a lazy-initialized mapping from // file_number to FileMetaData in Version. for (int level = 0; level < vstorage->num_levels(); ++level) { for (auto file : vstorage->LevelFiles(level)) { auto iter = input_set->find(file->fd.GetNumber()); if (iter != input_set->end()) { matched_input_files[level].files.push_back(file); input_set->erase(iter); last_non_empty_level = level; if (first_non_empty_level == -1) { first_non_empty_level = level; } } } } if (!input_set->empty()) { std::string message( "Cannot find matched SST files for the following file numbers:"); for (auto fn : *input_set) { message += " "; message += ToString(fn); } return Status::InvalidArgument(message); } for (int level = first_non_empty_level; level <= last_non_empty_level; ++level) { matched_input_files[level].level = level; input_files->emplace_back(std::move(matched_input_files[level])); } return Status::OK(); } // Returns true if any one of the parent files are being compacted bool CompactionPicker::IsRangeInCompaction(VersionStorageInfo* vstorage, const InternalKey* smallest, const InternalKey* largest, int level, int* level_index) { std::vector inputs; assert(level < NumberLevels()); vstorage->GetOverlappingInputs(level, smallest, largest, &inputs, level_index ? *level_index : 0, level_index); return AreFilesInCompaction(inputs); } // Populates the set of inputs of all other levels that overlap with the // start level. // Now we assume all levels except start level and output level are empty. // Will also attempt to expand "start level" if that doesn't expand // "output level" or cause "level" to include a file for compaction that has an // overlapping user-key with another file. // REQUIRES: input_level and output_level are different // REQUIRES: inputs->empty() == false // Returns false if files on parent level are currently in compaction, which // means that we can't compact them bool CompactionPicker::SetupOtherInputs( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, CompactionInputFiles* inputs, CompactionInputFiles* output_level_inputs, int* parent_index, int base_index) { assert(!inputs->empty()); assert(output_level_inputs->empty()); const int input_level = inputs->level; const int output_level = output_level_inputs->level; if (input_level == output_level) { // no possibility of conflict return true; } // For now, we only support merging two levels, start level and output level. // We need to assert other levels are empty. for (int l = input_level + 1; l < output_level; l++) { assert(vstorage->NumLevelFiles(l) == 0); } InternalKey smallest, largest; // Get the range one last time. GetRange(*inputs, &smallest, &largest); // Populate the set of next-level files (inputs_GetOutputLevelInputs()) to // include in compaction vstorage->GetOverlappingInputs(output_level, &smallest, &largest, &output_level_inputs->files, *parent_index, parent_index); if (AreFilesInCompaction(output_level_inputs->files)) { return false; } if (!output_level_inputs->empty()) { if (!ExpandInputsToCleanCut(cf_name, vstorage, output_level_inputs)) { return false; } } // See if we can further grow the number of inputs in "level" without // changing the number of "level+1" files we pick up. We also choose NOT // to expand if this would cause "level" to include some entries for some // user key, while excluding other entries for the same user key. This // can happen when one user key spans multiple files. if (!output_level_inputs->empty()) { const uint64_t limit = mutable_cf_options.max_compaction_bytes; const uint64_t output_level_inputs_size = TotalCompensatedFileSize(output_level_inputs->files); const uint64_t inputs_size = TotalCompensatedFileSize(inputs->files); bool expand_inputs = false; CompactionInputFiles expanded_inputs; expanded_inputs.level = input_level; // Get closed interval of output level InternalKey all_start, all_limit; GetRange(*inputs, *output_level_inputs, &all_start, &all_limit); bool try_overlapping_inputs = true; vstorage->GetOverlappingInputs(input_level, &all_start, &all_limit, &expanded_inputs.files, base_index, nullptr); uint64_t expanded_inputs_size = TotalCompensatedFileSize(expanded_inputs.files); if (!ExpandInputsToCleanCut(cf_name, vstorage, &expanded_inputs)) { try_overlapping_inputs = false; } if (try_overlapping_inputs && expanded_inputs.size() > inputs->size() && output_level_inputs_size + expanded_inputs_size < limit && !AreFilesInCompaction(expanded_inputs.files)) { InternalKey new_start, new_limit; GetRange(expanded_inputs, &new_start, &new_limit); CompactionInputFiles expanded_output_level_inputs; expanded_output_level_inputs.level = output_level; vstorage->GetOverlappingInputs(output_level, &new_start, &new_limit, &expanded_output_level_inputs.files, *parent_index, parent_index); assert(!expanded_output_level_inputs.empty()); if (!AreFilesInCompaction(expanded_output_level_inputs.files) && ExpandInputsToCleanCut(cf_name, vstorage, &expanded_output_level_inputs) && expanded_output_level_inputs.size() == output_level_inputs->size()) { expand_inputs = true; } } if (!expand_inputs) { vstorage->GetCleanInputsWithinInterval(input_level, &all_start, &all_limit, &expanded_inputs.files, base_index, nullptr); expanded_inputs_size = TotalCompensatedFileSize(expanded_inputs.files); if (expanded_inputs.size() > inputs->size() && output_level_inputs_size + expanded_inputs_size < limit && !AreFilesInCompaction(expanded_inputs.files)) { expand_inputs = true; } } if (expand_inputs) { ROCKS_LOG_INFO(ioptions_.info_log, "[%s] Expanding@%d %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt "(%" PRIu64 "+%" PRIu64 " bytes) to %" ROCKSDB_PRIszt "+%" ROCKSDB_PRIszt " (%" PRIu64 "+%" PRIu64 " bytes)\n", cf_name.c_str(), input_level, inputs->size(), output_level_inputs->size(), inputs_size, output_level_inputs_size, expanded_inputs.size(), output_level_inputs->size(), expanded_inputs_size, output_level_inputs_size); inputs->files = expanded_inputs.files; } } return true; } void CompactionPicker::GetGrandparents( VersionStorageInfo* vstorage, const CompactionInputFiles& inputs, const CompactionInputFiles& output_level_inputs, std::vector* grandparents) { InternalKey start, limit; GetRange(inputs, output_level_inputs, &start, &limit); // Compute the set of grandparent files that overlap this compaction // (parent == level+1; grandparent == level+2) if (output_level_inputs.level + 1 < NumberLevels()) { vstorage->GetOverlappingInputs(output_level_inputs.level + 1, &start, &limit, grandparents); } } Compaction* CompactionPicker::CompactRange( const std::string& cf_name, const MutableCFOptions& mutable_cf_options, VersionStorageInfo* vstorage, int input_level, int output_level, const CompactRangeOptions& compact_range_options, const InternalKey* begin, const InternalKey* end, InternalKey** compaction_end, bool* manual_conflict, uint64_t max_file_num_to_ignore) { // CompactionPickerFIFO has its own implementation of compact range assert(ioptions_.compaction_style != kCompactionStyleFIFO); if (input_level == ColumnFamilyData::kCompactAllLevels) { assert(ioptions_.compaction_style == kCompactionStyleUniversal); // Universal compaction with more than one level always compacts all the // files together to the last level. assert(vstorage->num_levels() > 1); // DBImpl::CompactRange() set output level to be the last level if (ioptions_.allow_ingest_behind) { assert(output_level == vstorage->num_levels() - 2); } else { assert(output_level == vstorage->num_levels() - 1); } // DBImpl::RunManualCompaction will make full range for universal compaction assert(begin == nullptr); assert(end == nullptr); *compaction_end = nullptr; int start_level = 0; for (; start_level < vstorage->num_levels() && vstorage->NumLevelFiles(start_level) == 0; start_level++) { } if (start_level == vstorage->num_levels()) { return nullptr; } if ((start_level == 0) && (!level0_compactions_in_progress_.empty())) { *manual_conflict = true; // Only one level 0 compaction allowed return nullptr; } std::vector inputs(vstorage->num_levels() - start_level); for (int level = start_level; level < vstorage->num_levels(); level++) { inputs[level - start_level].level = level; auto& files = inputs[level - start_level].files; for (FileMetaData* f : vstorage->LevelFiles(level)) { files.push_back(f); } if (AreFilesInCompaction(files)) { *manual_conflict = true; return nullptr; } } // 2 non-exclusive manual compactions could run at the same time producing // overlaping outputs in the same level. if (FilesRangeOverlapWithCompaction(inputs, output_level)) { // This compaction output could potentially conflict with the output // of a currently running compaction, we cannot run it. *manual_conflict = true; return nullptr; } Compaction* c = new Compaction( vstorage, ioptions_, mutable_cf_options, std::move(inputs), output_level, MaxFileSizeForLevel(mutable_cf_options, output_level, ioptions_.compaction_style), /* max_compaction_bytes */ LLONG_MAX, compact_range_options.target_path_id, GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level, 1), GetCompressionOptions(ioptions_, vstorage, output_level), compact_range_options.max_subcompactions, /* grandparents */ {}, /* is manual */ true); RegisterCompaction(c); return c; } CompactionInputFiles inputs; inputs.level = input_level; bool covering_the_whole_range = true; // All files are 'overlapping' in universal style compaction. // We have to compact the entire range in one shot. if (ioptions_.compaction_style == kCompactionStyleUniversal) { begin = nullptr; end = nullptr; } vstorage->GetOverlappingInputs(input_level, begin, end, &inputs.files); if (inputs.empty()) { return nullptr; } if ((input_level == 0) && (!level0_compactions_in_progress_.empty())) { // Only one level 0 compaction allowed TEST_SYNC_POINT("CompactionPicker::CompactRange:Conflict"); *manual_conflict = true; return nullptr; } // Avoid compacting too much in one shot in case the range is large. // But we cannot do this for level-0 since level-0 files can overlap // and we must not pick one file and drop another older file if the // two files overlap. if (input_level > 0) { const uint64_t limit = mutable_cf_options.max_compaction_bytes; uint64_t total = 0; for (size_t i = 0; i + 1 < inputs.size(); ++i) { uint64_t s = inputs[i]->compensated_file_size; total += s; if (total >= limit) { covering_the_whole_range = false; inputs.files.resize(i + 1); break; } } } assert(compact_range_options.target_path_id < static_cast(ioptions_.cf_paths.size())); // for BOTTOM LEVEL compaction only, use max_file_num_to_ignore to filter out // files that are created during the current compaction. if (compact_range_options.bottommost_level_compaction == BottommostLevelCompaction::kForceOptimized && max_file_num_to_ignore != port::kMaxUint64) { assert(input_level == output_level); // inputs_shrunk holds a continuous subset of input files which were all // created before the current manual compaction std::vector inputs_shrunk; size_t skip_input_index = inputs.size(); for (size_t i = 0; i < inputs.size(); ++i) { if (inputs[i]->fd.GetNumber() < max_file_num_to_ignore) { inputs_shrunk.push_back(inputs[i]); } else if (!inputs_shrunk.empty()) { // inputs[i] was created during the current manual compaction and // need to be skipped skip_input_index = i; break; } } if (inputs_shrunk.empty()) { return nullptr; } if (inputs.size() != inputs_shrunk.size()) { inputs.files.swap(inputs_shrunk); } // set covering_the_whole_range to false if there is any file that need to // be compacted in the range of inputs[skip_input_index+1, inputs.size()) for (size_t i = skip_input_index + 1; i < inputs.size(); ++i) { if (inputs[i]->fd.GetNumber() < max_file_num_to_ignore) { covering_the_whole_range = false; } } } InternalKey key_storage; InternalKey* next_smallest = &key_storage; if (ExpandInputsToCleanCut(cf_name, vstorage, &inputs, &next_smallest) == false) { // manual compaction is now multi-threaded, so it can // happen that ExpandWhileOverlapping fails // we handle it higher in RunManualCompaction *manual_conflict = true; return nullptr; } if (covering_the_whole_range || !next_smallest) { *compaction_end = nullptr; } else { **compaction_end = *next_smallest; } CompactionInputFiles output_level_inputs; if (output_level == ColumnFamilyData::kCompactToBaseLevel) { assert(input_level == 0); output_level = vstorage->base_level(); assert(output_level > 0); } output_level_inputs.level = output_level; if (input_level != output_level) { int parent_index = -1; if (!SetupOtherInputs(cf_name, mutable_cf_options, vstorage, &inputs, &output_level_inputs, &parent_index, -1)) { // manual compaction is now multi-threaded, so it can // happen that SetupOtherInputs fails // we handle it higher in RunManualCompaction *manual_conflict = true; return nullptr; } } std::vector compaction_inputs({inputs}); if (!output_level_inputs.empty()) { compaction_inputs.push_back(output_level_inputs); } for (size_t i = 0; i < compaction_inputs.size(); i++) { if (AreFilesInCompaction(compaction_inputs[i].files)) { *manual_conflict = true; return nullptr; } } // 2 non-exclusive manual compactions could run at the same time producing // overlaping outputs in the same level. if (FilesRangeOverlapWithCompaction(compaction_inputs, output_level)) { // This compaction output could potentially conflict with the output // of a currently running compaction, we cannot run it. *manual_conflict = true; return nullptr; } std::vector grandparents; GetGrandparents(vstorage, inputs, output_level_inputs, &grandparents); Compaction* compaction = new Compaction( vstorage, ioptions_, mutable_cf_options, std::move(compaction_inputs), output_level, MaxFileSizeForLevel(mutable_cf_options, output_level, ioptions_.compaction_style, vstorage->base_level(), ioptions_.level_compaction_dynamic_level_bytes), mutable_cf_options.max_compaction_bytes, compact_range_options.target_path_id, GetCompressionType(ioptions_, vstorage, mutable_cf_options, output_level, vstorage->base_level()), GetCompressionOptions(ioptions_, vstorage, output_level), compact_range_options.max_subcompactions, std::move(grandparents), /* is manual compaction */ true); TEST_SYNC_POINT_CALLBACK("CompactionPicker::CompactRange:Return", compaction); RegisterCompaction(compaction); // Creating a compaction influences the compaction score because the score // takes running compactions into account (by skipping files that are already // being compacted). Since we just changed compaction score, we recalculate it // here vstorage->ComputeCompactionScore(ioptions_, mutable_cf_options); return compaction; } #ifndef ROCKSDB_LITE namespace { // Test whether two files have overlapping key-ranges. bool HaveOverlappingKeyRanges(const Comparator* c, const SstFileMetaData& a, const SstFileMetaData& b) { if (c->Compare(a.smallestkey, b.smallestkey) >= 0) { if (c->Compare(a.smallestkey, b.largestkey) <= 0) { // b.smallestkey <= a.smallestkey <= b.largestkey return true; } } else if (c->Compare(a.largestkey, b.smallestkey) >= 0) { // a.smallestkey < b.smallestkey <= a.largestkey return true; } if (c->Compare(a.largestkey, b.largestkey) <= 0) { if (c->Compare(a.largestkey, b.smallestkey) >= 0) { // b.smallestkey <= a.largestkey <= b.largestkey return true; } } else if (c->Compare(a.smallestkey, b.largestkey) <= 0) { // a.smallestkey <= b.largestkey < a.largestkey return true; } return false; } } // namespace Status CompactionPicker::SanitizeCompactionInputFilesForAllLevels( std::unordered_set* input_files, const ColumnFamilyMetaData& cf_meta, const int output_level) const { auto& levels = cf_meta.levels; auto comparator = icmp_->user_comparator(); // TODO(yhchiang): add is_adjustable to CompactionOptions // the smallest and largest key of the current compaction input std::string smallestkey; std::string largestkey; // a flag for initializing smallest and largest key bool is_first = false; const int kNotFound = -1; // For each level, it does the following things: // 1. Find the first and the last compaction input files // in the current level. // 2. Include all files between the first and the last // compaction input files. // 3. Update the compaction key-range. // 4. For all remaining levels, include files that have // overlapping key-range with the compaction key-range. for (int l = 0; l <= output_level; ++l) { auto& current_files = levels[l].files; int first_included = static_cast(current_files.size()); int last_included = kNotFound; // identify the first and the last compaction input files // in the current level. for (size_t f = 0; f < current_files.size(); ++f) { if (input_files->find(TableFileNameToNumber(current_files[f].name)) != input_files->end()) { first_included = std::min(first_included, static_cast(f)); last_included = std::max(last_included, static_cast(f)); if (is_first == false) { smallestkey = current_files[f].smallestkey; largestkey = current_files[f].largestkey; is_first = true; } } } if (last_included == kNotFound) { continue; } if (l != 0) { // expend the compaction input of the current level if it // has overlapping key-range with other non-compaction input // files in the same level. while (first_included > 0) { if (comparator->Compare(current_files[first_included - 1].largestkey, current_files[first_included].smallestkey) < 0) { break; } first_included--; } while (last_included < static_cast(current_files.size()) - 1) { if (comparator->Compare(current_files[last_included + 1].smallestkey, current_files[last_included].largestkey) > 0) { break; } last_included++; } } else if (output_level > 0) { last_included = static_cast(current_files.size() - 1); } // include all files between the first and the last compaction input files. for (int f = first_included; f <= last_included; ++f) { if (current_files[f].being_compacted) { return Status::Aborted("Necessary compaction input file " + current_files[f].name + " is currently being compacted."); } input_files->insert(TableFileNameToNumber(current_files[f].name)); } // update smallest and largest key if (l == 0) { for (int f = first_included; f <= last_included; ++f) { if (comparator->Compare(smallestkey, current_files[f].smallestkey) > 0) { smallestkey = current_files[f].smallestkey; } if (comparator->Compare(largestkey, current_files[f].largestkey) < 0) { largestkey = current_files[f].largestkey; } } } else { if (comparator->Compare(smallestkey, current_files[first_included].smallestkey) > 0) { smallestkey = current_files[first_included].smallestkey; } if (comparator->Compare(largestkey, current_files[last_included].largestkey) < 0) { largestkey = current_files[last_included].largestkey; } } SstFileMetaData aggregated_file_meta; aggregated_file_meta.smallestkey = smallestkey; aggregated_file_meta.largestkey = largestkey; // For all lower levels, include all overlapping files. // We need to add overlapping files from the current level too because even // if there no input_files in level l, we would still need to add files // which overlap with the range containing the input_files in levels 0 to l // Level 0 doesn't need to be handled this way because files are sorted by // time and not by key for (int m = std::max(l, 1); m <= output_level; ++m) { for (auto& next_lv_file : levels[m].files) { if (HaveOverlappingKeyRanges(comparator, aggregated_file_meta, next_lv_file)) { if (next_lv_file.being_compacted) { return Status::Aborted( "File " + next_lv_file.name + " that has overlapping key range with one of the compaction " " input file is currently being compacted."); } input_files->insert(TableFileNameToNumber(next_lv_file.name)); } } } } if (RangeOverlapWithCompaction(smallestkey, largestkey, output_level)) { return Status::Aborted( "A running compaction is writing to the same output level in an " "overlapping key range"); } return Status::OK(); } Status CompactionPicker::SanitizeCompactionInputFiles( std::unordered_set* input_files, const ColumnFamilyMetaData& cf_meta, const int output_level) const { assert(static_cast(cf_meta.levels.size()) - 1 == cf_meta.levels[cf_meta.levels.size() - 1].level); if (output_level >= static_cast(cf_meta.levels.size())) { return Status::InvalidArgument( "Output level for column family " + cf_meta.name + " must between [0, " + ToString(cf_meta.levels[cf_meta.levels.size() - 1].level) + "]."); } if (output_level > MaxOutputLevel()) { return Status::InvalidArgument( "Exceed the maximum output level defined by " "the current compaction algorithm --- " + ToString(MaxOutputLevel())); } if (output_level < 0) { return Status::InvalidArgument("Output level cannot be negative."); } if (input_files->size() == 0) { return Status::InvalidArgument( "A compaction must contain at least one file."); } Status s = SanitizeCompactionInputFilesForAllLevels(input_files, cf_meta, output_level); if (!s.ok()) { return s; } // for all input files, check whether the file number matches // any currently-existing files. for (auto file_num : *input_files) { bool found = false; for (const auto& level_meta : cf_meta.levels) { for (const auto& file_meta : level_meta.files) { if (file_num == TableFileNameToNumber(file_meta.name)) { if (file_meta.being_compacted) { return Status::Aborted("Specified compaction input file " + MakeTableFileName("", file_num) + " is already being compacted."); } found = true; break; } } if (found) { break; } } if (!found) { return Status::InvalidArgument( "Specified compaction input file " + MakeTableFileName("", file_num) + " does not exist in column family " + cf_meta.name + "."); } } return Status::OK(); } #endif // !ROCKSDB_LITE void CompactionPicker::RegisterCompaction(Compaction* c) { if (c == nullptr) { return; } assert(ioptions_.compaction_style != kCompactionStyleLevel || c->output_level() == 0 || !FilesRangeOverlapWithCompaction(*c->inputs(), c->output_level())); if (c->start_level() == 0 || ioptions_.compaction_style == kCompactionStyleUniversal) { level0_compactions_in_progress_.insert(c); } compactions_in_progress_.insert(c); } void CompactionPicker::UnregisterCompaction(Compaction* c) { if (c == nullptr) { return; } if (c->start_level() == 0 || ioptions_.compaction_style == kCompactionStyleUniversal) { level0_compactions_in_progress_.erase(c); } compactions_in_progress_.erase(c); } void CompactionPicker::PickFilesMarkedForCompaction( const std::string& cf_name, VersionStorageInfo* vstorage, int* start_level, int* output_level, CompactionInputFiles* start_level_inputs) { if (vstorage->FilesMarkedForCompaction().empty()) { return; } auto continuation = [&, cf_name](std::pair level_file) { // If it's being compacted it has nothing to do here. // If this assert() fails that means that some function marked some // files as being_compacted, but didn't call ComputeCompactionScore() assert(!level_file.second->being_compacted); *start_level = level_file.first; *output_level = (*start_level == 0) ? vstorage->base_level() : *start_level + 1; if (*start_level == 0 && !level0_compactions_in_progress()->empty()) { return false; } start_level_inputs->files = {level_file.second}; start_level_inputs->level = *start_level; return ExpandInputsToCleanCut(cf_name, vstorage, start_level_inputs); }; // take a chance on a random file first Random64 rnd(/* seed */ reinterpret_cast(vstorage)); size_t random_file_index = static_cast(rnd.Uniform( static_cast(vstorage->FilesMarkedForCompaction().size()))); if (continuation(vstorage->FilesMarkedForCompaction()[random_file_index])) { // found the compaction! return; } for (auto& level_file : vstorage->FilesMarkedForCompaction()) { if (continuation(level_file)) { // found the compaction! return; } } start_level_inputs->files.clear(); } bool CompactionPicker::GetOverlappingL0Files( VersionStorageInfo* vstorage, CompactionInputFiles* start_level_inputs, int output_level, int* parent_index) { // Two level 0 compaction won't run at the same time, so don't need to worry // about files on level 0 being compacted. assert(level0_compactions_in_progress()->empty()); InternalKey smallest, largest; GetRange(*start_level_inputs, &smallest, &largest); // Note that the next call will discard the file we placed in // c->inputs_[0] earlier and replace it with an overlapping set // which will include the picked file. start_level_inputs->files.clear(); vstorage->GetOverlappingInputs(0, &smallest, &largest, &(start_level_inputs->files)); // If we include more L0 files in the same compaction run it can // cause the 'smallest' and 'largest' key to get extended to a // larger range. So, re-invoke GetRange to get the new key range GetRange(*start_level_inputs, &smallest, &largest); if (IsRangeInCompaction(vstorage, &smallest, &largest, output_level, parent_index)) { return false; } assert(!start_level_inputs->files.empty()); return true; } } // namespace rocksdb