// Copyright (c) 2011-present, Facebook, Inc. All rights reserved. // This source code is licensed under both the GPLv2 (found in the // COPYING file in the root directory) and Apache 2.0 License // (found in the LICENSE.Apache file in the root directory). // Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. // // An Env is an interface used by the rocksdb implementation to access // operating system functionality like the filesystem etc. Callers // may wish to provide a custom Env object when opening a database to // get fine gain control; e.g., to rate limit file system operations. // // All Env implementations are safe for concurrent access from // multiple threads without any external synchronization. #ifndef STORAGE_ROCKSDB_INCLUDE_ENV_H_ #define STORAGE_ROCKSDB_INCLUDE_ENV_H_ #include #include #include #include #include #include #include #include "rocksdb/status.h" #include "rocksdb/thread_status.h" #ifdef _WIN32 // Windows API macro interference #undef DeleteFile #undef GetCurrentTime #endif namespace rocksdb { class FileLock; class Logger; class RandomAccessFile; class SequentialFile; class Slice; class WritableFile; class RandomRWFile; class Directory; struct DBOptions; struct ImmutableDBOptions; struct MutableDBOptions; class RateLimiter; class ThreadStatusUpdater; struct ThreadStatus; using std::unique_ptr; using std::shared_ptr; const size_t kDefaultPageSize = 4 * 1024; // Options while opening a file to read/write struct EnvOptions { // Construct with default Options EnvOptions(); // Construct from Options explicit EnvOptions(const DBOptions& options); // If true, then use mmap to read data bool use_mmap_reads = false; // If true, then use mmap to write data bool use_mmap_writes = true; // If true, then use O_DIRECT for reading data bool use_direct_reads = false; // If true, then use O_DIRECT for writing data bool use_direct_writes = false; // If false, fallocate() calls are bypassed bool allow_fallocate = true; // If true, set the FD_CLOEXEC on open fd. bool set_fd_cloexec = true; // Allows OS to incrementally sync files to disk while they are being // written, in the background. Issue one request for every bytes_per_sync // written. 0 turns it off. // Default: 0 uint64_t bytes_per_sync = 0; // If true, we will preallocate the file with FALLOC_FL_KEEP_SIZE flag, which // means that file size won't change as part of preallocation. // If false, preallocation will also change the file size. This option will // improve the performance in workloads where you sync the data on every // write. By default, we set it to true for MANIFEST writes and false for // WAL writes bool fallocate_with_keep_size = true; // See DBOptions doc size_t compaction_readahead_size; // See DBOptions doc size_t random_access_max_buffer_size; // See DBOptions doc size_t writable_file_max_buffer_size = 1024 * 1024; // If not nullptr, write rate limiting is enabled for flush and compaction RateLimiter* rate_limiter = nullptr; }; class Env { public: struct FileAttributes { // File name std::string name; // Size of file in bytes uint64_t size_bytes; }; Env() : thread_status_updater_(nullptr) {} virtual ~Env(); // Return a default environment suitable for the current operating // system. Sophisticated users may wish to provide their own Env // implementation instead of relying on this default environment. // // The result of Default() belongs to rocksdb and must never be deleted. static Env* Default(); // Create a brand new sequentially-readable file with the specified name. // On success, stores a pointer to the new file in *result and returns OK. // On failure stores nullptr in *result and returns non-OK. If the file does // not exist, returns a non-OK status. // // The returned file will only be accessed by one thread at a time. virtual Status NewSequentialFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) = 0; // Create a brand new random access read-only file with the // specified name. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. If the file does not exist, returns a non-OK // status. // // The returned file may be concurrently accessed by multiple threads. virtual Status NewRandomAccessFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) = 0; // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status NewWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) = 0; // Create an object that writes to a new file with the specified // name. Deletes any existing file with the same name and creates a // new file. On success, stores a pointer to the new file in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status ReopenWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) { return Status::NotSupported(); } // Reuse an existing file by renaming it and opening it as writable. virtual Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, unique_ptr* result, const EnvOptions& options); // Open `fname` for random read and write, if file doesn't exist the file // will be created. On success, stores a pointer to the new file in // *result and returns OK. On failure returns non-OK. // // The returned file will only be accessed by one thread at a time. virtual Status NewRandomRWFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) { return Status::NotSupported("RandomRWFile is not implemented in this Env"); } // Create an object that represents a directory. Will fail if directory // doesn't exist. If the directory exists, it will open the directory // and create a new Directory object. // // On success, stores a pointer to the new Directory in // *result and returns OK. On failure stores nullptr in *result and // returns non-OK. virtual Status NewDirectory(const std::string& name, unique_ptr* result) = 0; // Returns OK if the named file exists. // NotFound if the named file does not exist, // the calling process does not have permission to determine // whether this file exists, or if the path is invalid. // IOError if an IO Error was encountered virtual Status FileExists(const std::string& fname) = 0; // Store in *result the names of the children of the specified directory. // The names are relative to "dir". // Original contents of *results are dropped. // Returns OK if "dir" exists and "*result" contains its children. // NotFound if "dir" does not exist, the calling process does not have // permission to access "dir", or if "dir" is invalid. // IOError if an IO Error was encountered virtual Status GetChildren(const std::string& dir, std::vector* result) = 0; // Store in *result the attributes of the children of the specified directory. // In case the implementation lists the directory prior to iterating the files // and files are concurrently deleted, the deleted files will be omitted from // result. // The name attributes are relative to "dir". // Original contents of *results are dropped. // Returns OK if "dir" exists and "*result" contains its children. // NotFound if "dir" does not exist, the calling process does not have // permission to access "dir", or if "dir" is invalid. // IOError if an IO Error was encountered virtual Status GetChildrenFileAttributes(const std::string& dir, std::vector* result); // Delete the named file. virtual Status DeleteFile(const std::string& fname) = 0; // Create the specified directory. Returns error if directory exists. virtual Status CreateDir(const std::string& dirname) = 0; // Creates directory if missing. Return Ok if it exists, or successful in // Creating. virtual Status CreateDirIfMissing(const std::string& dirname) = 0; // Delete the specified directory. virtual Status DeleteDir(const std::string& dirname) = 0; // Store the size of fname in *file_size. virtual Status GetFileSize(const std::string& fname, uint64_t* file_size) = 0; // Store the last modification time of fname in *file_mtime. virtual Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) = 0; // Rename file src to target. virtual Status RenameFile(const std::string& src, const std::string& target) = 0; // Hard Link file src to target. virtual Status LinkFile(const std::string& src, const std::string& target) { return Status::NotSupported("LinkFile is not supported for this Env"); } virtual Status AreFilesSame(const std::string& first, const std::string& second, bool* res) { return Status::NotSupported("AreFilesSame is not supported for this Env"); } // Lock the specified file. Used to prevent concurrent access to // the same db by multiple processes. On failure, stores nullptr in // *lock and returns non-OK. // // On success, stores a pointer to the object that represents the // acquired lock in *lock and returns OK. The caller should call // UnlockFile(*lock) to release the lock. If the process exits, // the lock will be automatically released. // // If somebody else already holds the lock, finishes immediately // with a failure. I.e., this call does not wait for existing locks // to go away. // // May create the named file if it does not already exist. virtual Status LockFile(const std::string& fname, FileLock** lock) = 0; // Release the lock acquired by a previous successful call to LockFile. // REQUIRES: lock was returned by a successful LockFile() call // REQUIRES: lock has not already been unlocked. virtual Status UnlockFile(FileLock* lock) = 0; // Priority for scheduling job in thread pool enum Priority { BOTTOM, LOW, HIGH, TOTAL }; // Priority for requesting bytes in rate limiter scheduler enum IOPriority { IO_LOW = 0, IO_HIGH = 1, IO_TOTAL = 2 }; // Arrange to run "(*function)(arg)" once in a background thread, in // the thread pool specified by pri. By default, jobs go to the 'LOW' // priority thread pool. // "function" may run in an unspecified thread. Multiple functions // added to the same Env may run concurrently in different threads. // I.e., the caller may not assume that background work items are // serialized. // When the UnSchedule function is called, the unschedFunction // registered at the time of Schedule is invoked with arg as a parameter. virtual void Schedule(void (*function)(void* arg), void* arg, Priority pri = LOW, void* tag = nullptr, void (*unschedFunction)(void* arg) = 0) = 0; // Arrange to remove jobs for given arg from the queue_ if they are not // already scheduled. Caller is expected to have exclusive lock on arg. virtual int UnSchedule(void* arg, Priority pri) { return 0; } // Start a new thread, invoking "function(arg)" within the new thread. // When "function(arg)" returns, the thread will be destroyed. virtual void StartThread(void (*function)(void* arg), void* arg) = 0; // Wait for all threads started by StartThread to terminate. virtual void WaitForJoin() {} // Get thread pool queue length for specific thread pool. virtual unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const { return 0; } // *path is set to a temporary directory that can be used for testing. It may // or many not have just been created. The directory may or may not differ // between runs of the same process, but subsequent calls will return the // same directory. virtual Status GetTestDirectory(std::string* path) = 0; // Create and return a log file for storing informational messages. virtual Status NewLogger(const std::string& fname, shared_ptr* result) = 0; // Returns the number of micro-seconds since some fixed point in time. // It is often used as system time such as in GenericRateLimiter // and other places so a port needs to return system time in order to work. virtual uint64_t NowMicros() = 0; // Returns the number of nano-seconds since some fixed point in time. Only // useful for computing deltas of time in one run. // Default implementation simply relies on NowMicros. // In platform-specific implementations, NowNanos() should return time points // that are MONOTONIC. virtual uint64_t NowNanos() { return NowMicros() * 1000; } // Sleep/delay the thread for the perscribed number of micro-seconds. virtual void SleepForMicroseconds(int micros) = 0; // Get the current host name. virtual Status GetHostName(char* name, uint64_t len) = 0; // Get the number of seconds since the Epoch, 1970-01-01 00:00:00 (UTC). // Only overwrites *unix_time on success. virtual Status GetCurrentTime(int64_t* unix_time) = 0; // Get full directory name for this db. virtual Status GetAbsolutePath(const std::string& db_path, std::string* output_path) = 0; // The number of background worker threads of a specific thread pool // for this environment. 'LOW' is the default pool. // default number: 1 virtual void SetBackgroundThreads(int number, Priority pri = LOW) = 0; virtual int GetBackgroundThreads(Priority pri = LOW) = 0; // Enlarge number of background worker threads of a specific thread pool // for this environment if it is smaller than specified. 'LOW' is the default // pool. virtual void IncBackgroundThreadsIfNeeded(int number, Priority pri) = 0; // Lower IO priority for threads from the specified pool. virtual void LowerThreadPoolIOPriority(Priority pool = LOW) {} // Converts seconds-since-Jan-01-1970 to a printable string virtual std::string TimeToString(uint64_t time) = 0; // Generates a unique id that can be used to identify a db virtual std::string GenerateUniqueId(); // OptimizeForLogWrite will create a new EnvOptions object that is a copy of // the EnvOptions in the parameters, but is optimized for reading log files. virtual EnvOptions OptimizeForLogRead(const EnvOptions& env_options) const; // OptimizeForManifestRead will create a new EnvOptions object that is a copy // of the EnvOptions in the parameters, but is optimized for reading manifest // files. virtual EnvOptions OptimizeForManifestRead( const EnvOptions& env_options) const; // OptimizeForLogWrite will create a new EnvOptions object that is a copy of // the EnvOptions in the parameters, but is optimized for writing log files. // Default implementation returns the copy of the same object. virtual EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const; // OptimizeForManifestWrite will create a new EnvOptions object that is a copy // of the EnvOptions in the parameters, but is optimized for writing manifest // files. Default implementation returns the copy of the same object. virtual EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const; // OptimizeForCompactionTableWrite will create a new EnvOptions object that is // a copy of the EnvOptions in the parameters, but is optimized for writing // table files. virtual EnvOptions OptimizeForCompactionTableWrite( const EnvOptions& env_options, const ImmutableDBOptions& immutable_ops) const; // OptimizeForCompactionTableWrite will create a new EnvOptions object that // is a copy of the EnvOptions in the parameters, but is optimized for reading // table files. virtual EnvOptions OptimizeForCompactionTableRead( const EnvOptions& env_options, const ImmutableDBOptions& db_options) const; // Returns the status of all threads that belong to the current Env. virtual Status GetThreadList(std::vector* thread_list) { return Status::NotSupported("Not supported."); } // Returns the pointer to ThreadStatusUpdater. This function will be // used in RocksDB internally to update thread status and supports // GetThreadList(). virtual ThreadStatusUpdater* GetThreadStatusUpdater() const { return thread_status_updater_; } // Returns the ID of the current thread. virtual uint64_t GetThreadID() const; protected: // The pointer to an internal structure that will update the // status of each thread. ThreadStatusUpdater* thread_status_updater_; private: // No copying allowed Env(const Env&); void operator=(const Env&); }; // The factory function to construct a ThreadStatusUpdater. Any Env // that supports GetThreadList() feature should call this function in its // constructor to initialize thread_status_updater_. ThreadStatusUpdater* CreateThreadStatusUpdater(); // A file abstraction for reading sequentially through a file class SequentialFile { public: SequentialFile() { } virtual ~SequentialFile(); // Read up to "n" bytes from the file. "scratch[0..n-1]" may be // written by this routine. Sets "*result" to the data that was // read (including if fewer than "n" bytes were successfully read). // May set "*result" to point at data in "scratch[0..n-1]", so // "scratch[0..n-1]" must be live when "*result" is used. // If an error was encountered, returns a non-OK status. // // REQUIRES: External synchronization virtual Status Read(size_t n, Slice* result, char* scratch) = 0; // Skip "n" bytes from the file. This is guaranteed to be no // slower that reading the same data, but may be faster. // // If end of file is reached, skipping will stop at the end of the // file, and Skip will return OK. // // REQUIRES: External synchronization virtual Status Skip(uint64_t n) = 0; // Indicates the upper layers if the current SequentialFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. virtual Status InvalidateCache(size_t offset, size_t length) { return Status::NotSupported("InvalidateCache not supported."); } // Positioned Read for direct I/O // If Direct I/O enabled, offset, n, and scratch should be properly aligned virtual Status PositionedRead(uint64_t offset, size_t n, Slice* result, char* scratch) { return Status::NotSupported(); } }; // A file abstraction for randomly reading the contents of a file. class RandomAccessFile { public: RandomAccessFile() { } virtual ~RandomAccessFile(); // Read up to "n" bytes from the file starting at "offset". // "scratch[0..n-1]" may be written by this routine. Sets "*result" // to the data that was read (including if fewer than "n" bytes were // successfully read). May set "*result" to point at data in // "scratch[0..n-1]", so "scratch[0..n-1]" must be live when // "*result" is used. If an error was encountered, returns a non-OK // status. // // Safe for concurrent use by multiple threads. // If Direct I/O enabled, offset, n, and scratch should be aligned properly. virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; // Readahead the file starting from offset by n bytes for caching. virtual Status Prefetch(uint64_t offset, size_t n) { return Status::OK(); } // Tries to get an unique ID for this file that will be the same each time // the file is opened (and will stay the same while the file is open). // Furthermore, it tries to make this ID at most "max_size" bytes. If such an // ID can be created this function returns the length of the ID and places it // in "id"; otherwise, this function returns 0, in which case "id" // may not have been modified. // // This function guarantees, for IDs from a given environment, two unique ids // cannot be made equal to each other by adding arbitrary bytes to one of // them. That is, no unique ID is the prefix of another. // // This function guarantees that the returned ID will not be interpretable as // a single varint. // // Note: these IDs are only valid for the duration of the process. virtual size_t GetUniqueId(char* id, size_t max_size) const { return 0; // Default implementation to prevent issues with backwards // compatibility. }; enum AccessPattern { NORMAL, RANDOM, SEQUENTIAL, WILLNEED, DONTNEED }; virtual void Hint(AccessPattern pattern) {} // Indicates the upper layers if the current RandomAccessFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. virtual Status InvalidateCache(size_t offset, size_t length) { return Status::NotSupported("InvalidateCache not supported."); } }; // A file abstraction for sequential writing. The implementation // must provide buffering since callers may append small fragments // at a time to the file. class WritableFile { public: WritableFile() : last_preallocated_block_(0), preallocation_block_size_(0), io_priority_(Env::IO_TOTAL) { } virtual ~WritableFile(); // Append data to the end of the file // Note: A WriteabelFile object must support either Append or // PositionedAppend, so the users cannot mix the two. virtual Status Append(const Slice& data) = 0; // PositionedAppend data to the specified offset. The new EOF after append // must be larger than the previous EOF. This is to be used when writes are // not backed by OS buffers and hence has to always start from the start of // the sector. The implementation thus needs to also rewrite the last // partial sector. // Note: PositionAppend does not guarantee moving the file offset after the // write. A WritableFile object must support either Append or // PositionedAppend, so the users cannot mix the two. // // PositionedAppend() can only happen on the page/sector boundaries. For that // reason, if the last write was an incomplete sector we still need to rewind // back to the nearest sector/page and rewrite the portion of it with whatever // we need to add. We need to keep where we stop writing. // // PositionedAppend() can only write whole sectors. For that reason we have to // pad with zeros for the last write and trim the file when closing according // to the position we keep in the previous step. // // PositionedAppend() requires aligned buffer to be passed in. The alignment // required is queried via GetRequiredBufferAlignment() virtual Status PositionedAppend(const Slice& /* data */, uint64_t /* offset */) { return Status::NotSupported(); } // Truncate is necessary to trim the file to the correct size // before closing. It is not always possible to keep track of the file // size due to whole pages writes. The behavior is undefined if called // with other writes to follow. virtual Status Truncate(uint64_t size) { return Status::OK(); } virtual Status Close() = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; // sync data /* * Sync data and/or metadata as well. * By default, sync only data. * Override this method for environments where we need to sync * metadata as well. */ virtual Status Fsync() { return Sync(); } // true if Sync() and Fsync() are safe to call concurrently with Append() // and Flush(). virtual bool IsSyncThreadSafe() const { return false; } // Indicates the upper layers if the current WritableFile implementation // uses direct IO. virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } /* * Change the priority in rate limiter if rate limiting is enabled. * If rate limiting is not enabled, this call has no effect. */ virtual void SetIOPriority(Env::IOPriority pri) { io_priority_ = pri; } virtual Env::IOPriority GetIOPriority() { return io_priority_; } /* * Get the size of valid data in the file. */ virtual uint64_t GetFileSize() { return 0; } /* * Get and set the default pre-allocation block size for writes to * this file. If non-zero, then Allocate will be used to extend the * underlying storage of a file (generally via fallocate) if the Env * instance supports it. */ virtual void SetPreallocationBlockSize(size_t size) { preallocation_block_size_ = size; } virtual void GetPreallocationStatus(size_t* block_size, size_t* last_allocated_block) { *last_allocated_block = last_preallocated_block_; *block_size = preallocation_block_size_; } // For documentation, refer to RandomAccessFile::GetUniqueId() virtual size_t GetUniqueId(char* id, size_t max_size) const { return 0; // Default implementation to prevent issues with backwards } // Remove any kind of caching of data from the offset to offset+length // of this file. If the length is 0, then it refers to the end of file. // If the system is not caching the file contents, then this is a noop. // This call has no effect on dirty pages in the cache. virtual Status InvalidateCache(size_t offset, size_t length) { return Status::NotSupported("InvalidateCache not supported."); } // Sync a file range with disk. // offset is the starting byte of the file range to be synchronized. // nbytes specifies the length of the range to be synchronized. // This asks the OS to initiate flushing the cached data to disk, // without waiting for completion. // Default implementation does nothing. virtual Status RangeSync(uint64_t offset, uint64_t nbytes) { return Status::OK(); } // PrepareWrite performs any necessary preparation for a write // before the write actually occurs. This allows for pre-allocation // of space on devices where it can result in less file // fragmentation and/or less waste from over-zealous filesystem // pre-allocation. virtual void PrepareWrite(size_t offset, size_t len) { if (preallocation_block_size_ == 0) { return; } // If this write would cross one or more preallocation blocks, // determine what the last preallocation block necessary to // cover this write would be and Allocate to that point. const auto block_size = preallocation_block_size_; size_t new_last_preallocated_block = (offset + len + block_size - 1) / block_size; if (new_last_preallocated_block > last_preallocated_block_) { size_t num_spanned_blocks = new_last_preallocated_block - last_preallocated_block_; Allocate(block_size * last_preallocated_block_, block_size * num_spanned_blocks); last_preallocated_block_ = new_last_preallocated_block; } } // Pre-allocates space for a file. virtual Status Allocate(uint64_t offset, uint64_t len) { return Status::OK(); } protected: size_t preallocation_block_size() { return preallocation_block_size_; } private: size_t last_preallocated_block_; size_t preallocation_block_size_; // No copying allowed WritableFile(const WritableFile&); void operator=(const WritableFile&); protected: friend class WritableFileWrapper; friend class WritableFileMirror; Env::IOPriority io_priority_; }; // A file abstraction for random reading and writing. class RandomRWFile { public: RandomRWFile() {} virtual ~RandomRWFile() {} // Indicates if the class makes use of direct I/O // If false you must pass aligned buffer to Write() virtual bool use_direct_io() const { return false; } // Use the returned alignment value to allocate // aligned buffer for Direct I/O virtual size_t GetRequiredBufferAlignment() const { return kDefaultPageSize; } // Write bytes in `data` at offset `offset`, Returns Status::OK() on success. // Pass aligned buffer when use_direct_io() returns true. virtual Status Write(uint64_t offset, const Slice& data) = 0; // Read up to `n` bytes starting from offset `offset` and store them in // result, provided `scratch` size should be at least `n`. // Returns Status::OK() on success. virtual Status Read(uint64_t offset, size_t n, Slice* result, char* scratch) const = 0; virtual Status Flush() = 0; virtual Status Sync() = 0; virtual Status Fsync() { return Sync(); } virtual Status Close() = 0; // No copying allowed RandomRWFile(const RandomRWFile&) = delete; RandomRWFile& operator=(const RandomRWFile&) = delete; }; // Directory object represents collection of files and implements // filesystem operations that can be executed on directories. class Directory { public: virtual ~Directory() {} // Fsync directory. Can be called concurrently from multiple threads. virtual Status Fsync() = 0; }; enum InfoLogLevel : unsigned char { DEBUG_LEVEL = 0, INFO_LEVEL, WARN_LEVEL, ERROR_LEVEL, FATAL_LEVEL, HEADER_LEVEL, NUM_INFO_LOG_LEVELS, }; // An interface for writing log messages. class Logger { public: size_t kDoNotSupportGetLogFileSize = (std::numeric_limits::max)(); explicit Logger(const InfoLogLevel log_level = InfoLogLevel::INFO_LEVEL) : log_level_(log_level) {} virtual ~Logger(); // Write a header to the log file with the specified format // It is recommended that you log all header information at the start of the // application. But it is not enforced. virtual void LogHeader(const char* format, va_list ap) { // Default implementation does a simple INFO level log write. // Please override as per the logger class requirement. Logv(format, ap); } // Write an entry to the log file with the specified format. virtual void Logv(const char* format, va_list ap) = 0; // Write an entry to the log file with the specified log level // and format. Any log with level under the internal log level // of *this (see @SetInfoLogLevel and @GetInfoLogLevel) will not be // printed. virtual void Logv(const InfoLogLevel log_level, const char* format, va_list ap); virtual size_t GetLogFileSize() const { return kDoNotSupportGetLogFileSize; } // Flush to the OS buffers virtual void Flush() {} virtual InfoLogLevel GetInfoLogLevel() const { return log_level_; } virtual void SetInfoLogLevel(const InfoLogLevel log_level) { log_level_ = log_level; } private: // No copying allowed Logger(const Logger&); void operator=(const Logger&); InfoLogLevel log_level_; }; // Identifies a locked file. class FileLock { public: FileLock() { } virtual ~FileLock(); private: // No copying allowed FileLock(const FileLock&); void operator=(const FileLock&); }; extern void LogFlush(const shared_ptr& info_log); extern void Log(const InfoLogLevel log_level, const shared_ptr& info_log, const char* format, ...); // a set of log functions with different log levels. extern void Header(const shared_ptr& info_log, const char* format, ...); extern void Debug(const shared_ptr& info_log, const char* format, ...); extern void Info(const shared_ptr& info_log, const char* format, ...); extern void Warn(const shared_ptr& info_log, const char* format, ...); extern void Error(const shared_ptr& info_log, const char* format, ...); extern void Fatal(const shared_ptr& info_log, const char* format, ...); // Log the specified data to *info_log if info_log is non-nullptr. // The default info log level is InfoLogLevel::INFO_LEVEL. extern void Log(const shared_ptr& info_log, const char* format, ...) # if defined(__GNUC__) || defined(__clang__) __attribute__((__format__ (__printf__, 2, 3))) # endif ; extern void LogFlush(Logger *info_log); extern void Log(const InfoLogLevel log_level, Logger* info_log, const char* format, ...); // The default info log level is InfoLogLevel::INFO_LEVEL. extern void Log(Logger* info_log, const char* format, ...) # if defined(__GNUC__) || defined(__clang__) __attribute__((__format__ (__printf__, 2, 3))) # endif ; // a set of log functions with different log levels. extern void Header(Logger* info_log, const char* format, ...); extern void Debug(Logger* info_log, const char* format, ...); extern void Info(Logger* info_log, const char* format, ...); extern void Warn(Logger* info_log, const char* format, ...); extern void Error(Logger* info_log, const char* format, ...); extern void Fatal(Logger* info_log, const char* format, ...); // A utility routine: write "data" to the named file. extern Status WriteStringToFile(Env* env, const Slice& data, const std::string& fname, bool should_sync = false); // A utility routine: read contents of named file into *data extern Status ReadFileToString(Env* env, const std::string& fname, std::string* data); // An implementation of Env that forwards all calls to another Env. // May be useful to clients who wish to override just part of the // functionality of another Env. class EnvWrapper : public Env { public: // Initialize an EnvWrapper that delegates all calls to *t explicit EnvWrapper(Env* t) : target_(t) { } ~EnvWrapper() override; // Return the target to which this Env forwards all calls Env* target() const { return target_; } // The following text is boilerplate that forwards all methods to target() Status NewSequentialFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { return target_->NewSequentialFile(f, r, options); } Status NewRandomAccessFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { return target_->NewRandomAccessFile(f, r, options); } Status NewWritableFile(const std::string& f, unique_ptr* r, const EnvOptions& options) override { return target_->NewWritableFile(f, r, options); } Status ReopenWritableFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { return target_->ReopenWritableFile(fname, result, options); } Status ReuseWritableFile(const std::string& fname, const std::string& old_fname, unique_ptr* r, const EnvOptions& options) override { return target_->ReuseWritableFile(fname, old_fname, r, options); } Status NewRandomRWFile(const std::string& fname, unique_ptr* result, const EnvOptions& options) override { return target_->NewRandomRWFile(fname, result, options); } Status NewDirectory(const std::string& name, unique_ptr* result) override { return target_->NewDirectory(name, result); } Status FileExists(const std::string& f) override { return target_->FileExists(f); } Status GetChildren(const std::string& dir, std::vector* r) override { return target_->GetChildren(dir, r); } Status GetChildrenFileAttributes( const std::string& dir, std::vector* result) override { return target_->GetChildrenFileAttributes(dir, result); } Status DeleteFile(const std::string& f) override { return target_->DeleteFile(f); } Status CreateDir(const std::string& d) override { return target_->CreateDir(d); } Status CreateDirIfMissing(const std::string& d) override { return target_->CreateDirIfMissing(d); } Status DeleteDir(const std::string& d) override { return target_->DeleteDir(d); } Status GetFileSize(const std::string& f, uint64_t* s) override { return target_->GetFileSize(f, s); } Status GetFileModificationTime(const std::string& fname, uint64_t* file_mtime) override { return target_->GetFileModificationTime(fname, file_mtime); } Status RenameFile(const std::string& s, const std::string& t) override { return target_->RenameFile(s, t); } Status LinkFile(const std::string& s, const std::string& t) override { return target_->LinkFile(s, t); } Status AreFilesSame(const std::string& first, const std::string& second, bool* res) override { return target_->AreFilesSame(first, second, res); } Status LockFile(const std::string& f, FileLock** l) override { return target_->LockFile(f, l); } Status UnlockFile(FileLock* l) override { return target_->UnlockFile(l); } void Schedule(void (*f)(void* arg), void* a, Priority pri, void* tag = nullptr, void (*u)(void* arg) = 0) override { return target_->Schedule(f, a, pri, tag, u); } int UnSchedule(void* tag, Priority pri) override { return target_->UnSchedule(tag, pri); } void StartThread(void (*f)(void*), void* a) override { return target_->StartThread(f, a); } void WaitForJoin() override { return target_->WaitForJoin(); } unsigned int GetThreadPoolQueueLen(Priority pri = LOW) const override { return target_->GetThreadPoolQueueLen(pri); } Status GetTestDirectory(std::string* path) override { return target_->GetTestDirectory(path); } Status NewLogger(const std::string& fname, shared_ptr* result) override { return target_->NewLogger(fname, result); } uint64_t NowMicros() override { return target_->NowMicros(); } uint64_t NowNanos() override { return target_->NowNanos(); } void SleepForMicroseconds(int micros) override { target_->SleepForMicroseconds(micros); } Status GetHostName(char* name, uint64_t len) override { return target_->GetHostName(name, len); } Status GetCurrentTime(int64_t* unix_time) override { return target_->GetCurrentTime(unix_time); } Status GetAbsolutePath(const std::string& db_path, std::string* output_path) override { return target_->GetAbsolutePath(db_path, output_path); } void SetBackgroundThreads(int num, Priority pri) override { return target_->SetBackgroundThreads(num, pri); } int GetBackgroundThreads(Priority pri) override { return target_->GetBackgroundThreads(pri); } void IncBackgroundThreadsIfNeeded(int num, Priority pri) override { return target_->IncBackgroundThreadsIfNeeded(num, pri); } void LowerThreadPoolIOPriority(Priority pool = LOW) override { target_->LowerThreadPoolIOPriority(pool); } std::string TimeToString(uint64_t time) override { return target_->TimeToString(time); } Status GetThreadList(std::vector* thread_list) override { return target_->GetThreadList(thread_list); } ThreadStatusUpdater* GetThreadStatusUpdater() const override { return target_->GetThreadStatusUpdater(); } uint64_t GetThreadID() const override { return target_->GetThreadID(); } std::string GenerateUniqueId() override { return target_->GenerateUniqueId(); } EnvOptions OptimizeForLogRead(const EnvOptions& env_options) const override { return target_->OptimizeForLogRead(env_options); } EnvOptions OptimizeForManifestRead( const EnvOptions& env_options) const override { return target_->OptimizeForManifestRead(env_options); } EnvOptions OptimizeForLogWrite(const EnvOptions& env_options, const DBOptions& db_options) const override { return target_->OptimizeForLogWrite(env_options, db_options); } EnvOptions OptimizeForManifestWrite( const EnvOptions& env_options) const override { return target_->OptimizeForManifestWrite(env_options); } EnvOptions OptimizeForCompactionTableWrite( const EnvOptions& env_options, const ImmutableDBOptions& immutable_ops) const override { return target_->OptimizeForCompactionTableWrite(env_options, immutable_ops); } EnvOptions OptimizeForCompactionTableRead( const EnvOptions& env_options, const ImmutableDBOptions& db_options) const override { return target_->OptimizeForCompactionTableRead(env_options, db_options); } private: Env* target_; }; // An implementation of WritableFile that forwards all calls to another // WritableFile. May be useful to clients who wish to override just part of the // functionality of another WritableFile. // It's declared as friend of WritableFile to allow forwarding calls to // protected virtual methods. class WritableFileWrapper : public WritableFile { public: explicit WritableFileWrapper(WritableFile* t) : target_(t) { } Status Append(const Slice& data) override { return target_->Append(data); } Status PositionedAppend(const Slice& data, uint64_t offset) override { return target_->PositionedAppend(data, offset); } Status Truncate(uint64_t size) override { return target_->Truncate(size); } Status Close() override { return target_->Close(); } Status Flush() override { return target_->Flush(); } Status Sync() override { return target_->Sync(); } Status Fsync() override { return target_->Fsync(); } bool IsSyncThreadSafe() const override { return target_->IsSyncThreadSafe(); } void SetIOPriority(Env::IOPriority pri) override { target_->SetIOPriority(pri); } Env::IOPriority GetIOPriority() override { return target_->GetIOPriority(); } uint64_t GetFileSize() override { return target_->GetFileSize(); } void GetPreallocationStatus(size_t* block_size, size_t* last_allocated_block) override { target_->GetPreallocationStatus(block_size, last_allocated_block); } size_t GetUniqueId(char* id, size_t max_size) const override { return target_->GetUniqueId(id, max_size); } Status InvalidateCache(size_t offset, size_t length) override { return target_->InvalidateCache(offset, length); } void SetPreallocationBlockSize(size_t size) override { target_->SetPreallocationBlockSize(size); } void PrepareWrite(size_t offset, size_t len) override { target_->PrepareWrite(offset, len); } protected: Status Allocate(uint64_t offset, uint64_t len) override { return target_->Allocate(offset, len); } Status RangeSync(uint64_t offset, uint64_t nbytes) override { return target_->RangeSync(offset, nbytes); } private: WritableFile* target_; }; // Returns a new environment that stores its data in memory and delegates // all non-file-storage tasks to base_env. The caller must delete the result // when it is no longer needed. // *base_env must remain live while the result is in use. Env* NewMemEnv(Env* base_env); // Returns a new environment that is used for HDFS environment. // This is a factory method for HdfsEnv declared in hdfs/env_hdfs.h Status NewHdfsEnv(Env** hdfs_env, const std::string& fsname); // Returns a new environment that measures function call times for filesystem // operations, reporting results to variables in PerfContext. // This is a factory method for TimedEnv defined in utilities/env_timed.cc. Env* NewTimedEnv(Env* base_env); } // namespace rocksdb #endif // STORAGE_ROCKSDB_INCLUDE_ENV_H_