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Agenda
!

•Quick intro to RocksDB 

•A case study: What it takes to make RocksDB work for in-

memory workload 

•Take away



RocksDB API
▪Keys and values are arbitrary byte 

arrays. 

▪Data are stored sorted by key. Client 
tells us how to sort via comparator. 

▪Update Operations: Put/Delete/Merge 

▪Queries: Get/Iterator 

▪Embedded Library
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RocksDB -- The Trade Off

▪ Three Amplifications 

• Write Amplification (WAF) 

• Read Amplification (RAF) 

• Space Amplification (SAF) 

!

▪ Compaction is the tuning knob 

• Adds to WAF 

• Reduces RAF 

• Reduces SAF 

!

▪Find the right balance for your workload is the key to success



The New Challenge - In Memory
!

▪ Existing application service 

• Lots of servers, 1PB total RAM 

• Extreme low latency

▪ Existing in-memory key/value storage solution 

• very efficient 

• tightly coupled with application 

• no transaction log

▪ Can RocksDB help?



The Existing Solution



d

RocksDB In-Memory
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The Trade Off In-Memory
!

▪ Characteristic of Memory, compared to traditional storage 

• Low Latency 

• High Throughput 

• Limited space

▪ Was it a good trade? 

• Minimized Read Amplification 

• Minimized Space Amplification 

• Allowed Aggressive Compaction and Big Write Amplification
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Know your workload
!

• We are storing user action history 

• user id | timestamp => action 

• Write:   Bob Liked Page ABC at 4:30pm yesterday  

• Read:     Bob’s activities since yesterday  

!

• Query pattern does not impose total ordering across user ids 

• Profiling result agrees
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Byte Addressable Plain SST

•Existing RocksDB SST optimized for block based storage 

• Files are partitioned to fix-sized blocks 

• Use block cache to reduce slow block transfer from device 

• Irrelevant in RAM 
!

•Solution:  A much simpler format that just stores sorted key/
value pairs sequentially 

• no blocks, no caching  

• build efficient lookup index on load (prefix hash + binary search)



d

RocksDB Open & Pluggable
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RocksDB In-Memory
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Take Two
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Further Optimize Not Found

•Only 20% of queries return any data.  

•Less than 2% of queries hit anything in the memtable 

•Problem: Get needs to go through the memtable lookups 
that eventually yield nothing.   

!

•Solution:  Add a bloom filter to memtable!
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Current State
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Take Away
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Take Away
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• Concurrent Read/Write 
• Be fast 
• Be space efficient 
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Take Away
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• key/value sorted and packed 
• efficient lookup index on top 
• Perfect data structure for 

efficient lookup/scan
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Take Away
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• One time investment  
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expiration!
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