
Enhancements to RocksDB

Haobo Xu
Database Engineering@Facebook

Supporting a 1PB In-Memory Workload

Agenda
!

•Quick intro to RocksDB

•A case study: What it takes to make RocksDB work for in-

memory workload

•Take away

RocksDB API
▪Keys and values are arbitrary byte

arrays.

▪Data are stored sorted by key. Client
tells us how to sort via comparator.

▪Update Operations: Put/Delete/Merge

▪Queries: Get/Iterator

▪Embedded Library

RocksDB Architecture

Write Request

Read Request

Flush
Compaction

Active
MemTable

ReadOnly
MemTable

log

log

log

LSM

sst sst

sst sst

sst

sst

d

Switch

Memory Persistent Storage

Switch

Filter with
Blooms

RocksDB -- The Trade Off

▪ Three Amplifications

• Write Amplification (WAF)

• Read Amplification (RAF)

• Space Amplification (SAF)

!

▪ Compaction is the tuning knob

• Adds to WAF

• Reduces RAF

• Reduces SAF

!

▪Find the right balance for your workload is the key to success

The New Challenge - In Memory
!

▪ Existing application service

• Lots of servers, 1PB total RAM

• Extreme low latency

▪ Existing in-memory key/value storage solution

• very efficient

• tightly coupled with application

• no transaction log

▪ Can RocksDB help?

The Existing Solution

d

RocksDB In-Memory

Write Request

Read Request

Flush

Compaction

Active
MemTable

ReadOnly
MemTable

log

log

LSM

single big
sst

Switch

Memory Persistent Storage

Switch

Blooms

sst

The Trade Off In-Memory
!

▪ Characteristic of Memory, compared to traditional storage

• Low Latency

• High Throughput

• Limited space

▪ Was it a good trade?

• Minimized Read Amplification

• Minimized Space Amplification

• Allowed Aggressive Compaction and Big Write Amplification

First Try

Proprietary
1x

RocksDB
40x

Know your workload
!

• We are storing user action history

• user id | timestamp => action

• Write: Bob Liked Page ABC at 4:30pm yesterday

• Read: Bob’s activities since yesterday

!

• Query pattern does not impose total ordering across user ids

• Profiling result agrees

Prefix Hashed SkipList Memtable

User ID

User ID | Timestamp

Key Structure

hash to

Fixed bucket array

SkipList

u1|t99
u1|t98

!
u7|t76
u7|t75

Prefix Extractor

SkipList

u10|t60
u10|t59
u10|t58

Byte Addressable Plain SST

•Existing RocksDB SST optimized for block based storage

• Files are partitioned to fix-sized blocks

• Use block cache to reduce slow block transfer from device

• Irrelevant in RAM
!

•Solution: A much simpler format that just stores sorted key/
value pairs sequentially

• no blocks, no caching

• build efficient lookup index on load (prefix hash + binary search)

d

RocksDB Open & Pluggable

Flush
Compaction

Pluggable
MemTable

ReadOnly
MemTable

log

log

LSM

Pluggable
SST

Switch

Memory Persistent Storage

Switch

d

RocksDB In-Memory

Write Request

Read Request

Flush

Compaction

Prefix Hash
MemTable

ReadOnly
MemTable

log

log

LSM

Byte
Addressable

SST

Switch

Memory Persistent Storage

Switch

Blooms

Take Two

RocksDB
1.5x

Proprietary
1x

Further Optimize Not Found

•Only 20% of queries return any data.

•Less than 2% of queries hit anything in the memtable

•Problem: Get needs to go through the memtable lookups
that eventually yield nothing.

!

•Solution: Add a bloom filter to memtable!

d

RocksDB In-Memory

Write Request

Read Request

Flush

Compaction

Prefix Hash
MemTable

ReadOnly
MemTable

log

log

LSM

Byte
Addressable

SST

Switch

Memory Persistent Storage

Switch

Blooms

Blooms

Blooms

Current State

RocksDB
1.1x

Proprietary
1x

Proper
Recovery

Performance

Clean API

d

Take Away

Flush/Compaction

Prefix Hash
MemTable

Single SST

Byte
Addressable

SST

log

Take Away

Prefix Hash
MemTable

• Concurrent Read/Write
• Be fast
• Be space efficient
• Is it possible?

log

d

Take Away

Single SST

Byte
Addressable

SST

• Readonly, concurrency friendly
• key/value sorted and packed
• efficient lookup index on top
• Perfect data structure for

efficient lookup/scan

d

Take Away

Flush/Compaction

Prefix Hash
MemTable

Single SST

Byte
Addressable

SST

• Readonly, concurrency friendly
• key/value sorted and packed
• efficient lookup index on top
• Perfect data structure for

efficient lookup/scan

• One time investment
• Be careful about investment

expiration!

• Concurrent Read/Write
• Be fast
• Be space efficient
• Is it possible?

log

