
Improving	RocksDB’s Write	
Scalability

Nathan	Bronson	– Facebook
15	June	2016



RocksDB Architecture

Active	
Memtable

ReadOnly	
Memtable

log

loglog

LSM

SST SST SST

SST SST SST

Switch Switch

Flush

Write

Read

Immutable	J

Immutable	J

Append-onlyLock-free	read	JLock-free	read	J
Single	writer



Write	Logic
Housekeeping,
Gather	Pending

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

Housekeeping,
Gather	Pending

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

Threads

Housekeeping,
Gather	Pending

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

W

W
W W



Lock-free	Write	Group	Construction

Write	payload

Mutex +	condvar

Older

Newer

Write	payload

Mutex +	condvar

Older

Newer

Write	payload

Mutex +	condvar

Older

Newer

Newest• Join	by	CAS-ing head
• Reverse	links	set	later

• Follower	never	takes	
global	mutexJ
• Leader	takes	it	once
• Group	chosen	after	
housekeeping	work	J

LeaderFollowerFollower



Concurrent	Memtable Insertion?

• Guy	et	al.,	at	Yahoo	showed	excellent	scalability	and	perf,	but	…
• New	memtable type,	slower	for	sequential	use	cases
• New	write	path	code,	different	throttling	and	compaction	logic
• Serializable	but	not	linearizable,	no	read-your-writes	guarantee
• Long	path	to	maturity

How	much	of	the	benefit	can	we	capture	without	a	new	write	path	and	
without	sacrificing	linearizability?



My	RocksDB Hack-a-month

• What	I	expected	to	be	hard
• Concurrent	lock-free	skip	list

• What	actually	took	the	time
• Lock-free	write	grouping
• Moving	to	a	thread-local	random	number	generator	(RNG)
• Concurrent	allocation	of	memtable memory
• Lots	of	thread	safety	gaps	in	statistics	and	control	logic
• Sequential	optimizations	discovered	along	the	way
• Optimizing	fine-grained	inter-thread	coordination



How	to	Search	a	Skip	List

A D F K P T W Z

Le
ve
l	→

✗
✗
✗

✓
✓

• Level	0	linked	list	has	every	element	– encodes	presence	in	list
• Level	i+1 has	about	¼	of	level	i – allows	O(log4 n) search
• No	rebalancing	– node	height	chosen	randomly	during	insertion

✓

FindGE(“Y”)



Concurrent	Insertion

A D F K P T W Z

Le
ve
l	→

• Skip	list	is	valid	at	each	step
• Restart	at	same	level	after	failed	CAS
• Deletion	is	harder,	but	not	needed

C



Concurrent	Memtable Write

Housekeeping

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

Gather	Pending

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

Threads

W
W

W W

Gather	Pending

Memtable
Insert

Memtable
Insert

Memtable
Insert

Housekeeping

Begin	Parallel

Gather	Parallel

Begin	Parallel

Gather	Parallel



Concurrent	Write:	Early	Exit

W
W

W W

Memtable
Insert

Memtable
Insert

Memtable
Insert

Gather	Pending

Write	Ahead	Log

Memtable Insert

Housekeeping

Begin	Parallel

Housekeeping

Write	Ahead	Log

Memtable Insert

Advance	
LastSequence

Gather	Pending

Begin	Parallel Advance	
LastSequence

Gather	Pending

Write	Ahead	Log

Memtable Insert

Housekeeping

Begin	Parallel

Threads



AwaitState’s spin/block	tradeoff

Spin? Short	wait Long	wait
Didn’t	try	(much) Bad Good
Successful Good Selfish
Unsuccessful - Selfish

while(!awoken) {
if (???)
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}

while(!awoken) {
if (good_chance_of_spin_success() &&

???)
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}

while(!awoken) {
if (good_chance_of_spin_success() &&

os_runlist_has_little_work())
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}



“Soft	yield”	- Dirty	hack Elegant	heuristic

How	do	we	query	the	OS	runqueue in	a	portable	fashion?

FAST?

SLOW?

Spin	more	
aggressively

Block	right	
away



http://smalldatum.blogspot.com/2016/02/concurrent-inserts-and-rocksdb-memtable.html



http://smalldatum.blogspot.com/2016/02/concurrent-inserts-and-rocksdb-memtable.html



How	to	use	it

Version	>=	4.4

options.allow_concurrent_memtable_write = true;
options.enable_write_thread_adaptive_yield = true;


