
Improving	RocksDB’s Write	
Scalability

Nathan	Bronson	– Facebook
15	June	2016



RocksDB Architecture
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Lock-free	Write	Group	Construction
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Concurrent	Memtable Insertion?

• Guy	et	al.,	at	Yahoo	showed	excellent	scalability	and	perf,	but	…
• New	memtable type,	slower	for	sequential	use	cases
• New	write	path	code,	different	throttling	and	compaction	logic
• Serializable	but	not	linearizable,	no	read-your-writes	guarantee
• Long	path	to	maturity

How	much	of	the	benefit	can	we	capture	without	a	new	write	path	and	
without	sacrificing	linearizability?



My	RocksDB Hack-a-month

• What	I	expected	to	be	hard
• Concurrent	lock-free	skip	list

• What	actually	took	the	time
• Lock-free	write	grouping
• Moving	to	a	thread-local	random	number	generator	(RNG)
• Concurrent	allocation	of	memtable memory
• Lots	of	thread	safety	gaps	in	statistics	and	control	logic
• Sequential	optimizations	discovered	along	the	way
• Optimizing	fine-grained	inter-thread	coordination



How	to	Search	a	Skip	List
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• Level	0	linked	list	has	every	element	– encodes	presence	in	list
• Level	i+1 has	about	¼	of	level	i – allows	O(log4 n) search
• No	rebalancing	– node	height	chosen	randomly	during	insertion
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Concurrent	Insertion
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• Skip	list	is	valid	at	each	step
• Restart	at	same	level	after	failed	CAS
• Deletion	is	harder,	but	not	needed
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Concurrent	Memtable Write
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Concurrent	Write:	Early	Exit
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AwaitState’s spin/block	tradeoff

Spin? Short	wait Long	wait
Didn’t	try	(much) Bad Good
Successful Good Selfish
Unsuccessful - Selfish

while(!awoken) {
if (???)
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}

while(!awoken) {
if (good_chance_of_spin_success() &&

???)
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}

while(!awoken) {
if (good_chance_of_spin_success() &&

os_runlist_has_little_work())
selfishly_spin();

else
syscall(altruistically_suspend_thread);

}



“Soft	yield”	- Dirty	hack Elegant	heuristic

How	do	we	query	the	OS	runqueue in	a	portable	fashion?

FAST?

SLOW?

Spin	more	
aggressively

Block	right	
away



http://smalldatum.blogspot.com/2016/02/concurrent-inserts-and-rocksdb-memtable.html



http://smalldatum.blogspot.com/2016/02/concurrent-inserts-and-rocksdb-memtable.html



How	to	use	it

Version	>=	4.4

options.allow_concurrent_memtable_write = true;
options.enable_write_thread_adaptive_yield = true;


