rocksdb/table/format.cc
2014-05-07 17:49:23 -07:00

372 lines
13 KiB
C++

// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/format.h"
#include <string>
#include <inttypes.h>
#include "port/port.h"
#include "rocksdb/env.h"
#include "table/block.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/perf_context_imp.h"
#include "util/xxhash.h"
namespace rocksdb {
extern const uint64_t kLegacyBlockBasedTableMagicNumber;
extern const uint64_t kBlockBasedTableMagicNumber;
#ifndef ROCKSDB_LITE
extern const uint64_t kLegacyPlainTableMagicNumber;
extern const uint64_t kPlainTableMagicNumber;
#else
// ROCKSDB_LITE doesn't have plain table
const uint64_t kLegacyPlainTableMagicNumber = 0;
const uint64_t kPlainTableMagicNumber = 0;
#endif
void BlockHandle::EncodeTo(std::string* dst) const {
// Sanity check that all fields have been set
assert(offset_ != ~static_cast<uint64_t>(0));
assert(size_ != ~static_cast<uint64_t>(0));
PutVarint64(dst, offset_);
PutVarint64(dst, size_);
}
Status BlockHandle::DecodeFrom(Slice* input) {
if (GetVarint64(input, &offset_) &&
GetVarint64(input, &size_)) {
return Status::OK();
} else {
return Status::Corruption("bad block handle");
}
}
const BlockHandle BlockHandle::kNullBlockHandle(0, 0);
// legacy footer format:
// metaindex handle (varint64 offset, varint64 size)
// index handle (varint64 offset, varint64 size)
// <padding> to make the total size 2 * BlockHandle::kMaxEncodedLength
// table_magic_number (8 bytes)
// new footer format:
// checksum (char, 1 byte)
// metaindex handle (varint64 offset, varint64 size)
// index handle (varint64 offset, varint64 size)
// <padding> to make the total size 2 * BlockHandle::kMaxEncodedLength + 1
// footer version (4 bytes)
// table_magic_number (8 bytes)
void Footer::EncodeTo(std::string* dst) const {
if (version() == kLegacyFooter) {
// has to be default checksum with legacy footer
assert(checksum_ == kCRC32c);
const size_t original_size = dst->size();
metaindex_handle_.EncodeTo(dst);
index_handle_.EncodeTo(dst);
dst->resize(original_size + 2 * BlockHandle::kMaxEncodedLength); // Padding
PutFixed32(dst, static_cast<uint32_t>(table_magic_number() & 0xffffffffu));
PutFixed32(dst, static_cast<uint32_t>(table_magic_number() >> 32));
assert(dst->size() == original_size + kVersion0EncodedLength);
} else {
const size_t original_size = dst->size();
dst->push_back(static_cast<char>(checksum_));
metaindex_handle_.EncodeTo(dst);
index_handle_.EncodeTo(dst);
dst->resize(original_size + kVersion1EncodedLength - 12); // Padding
PutFixed32(dst, kFooterVersion);
PutFixed32(dst, static_cast<uint32_t>(table_magic_number() & 0xffffffffu));
PutFixed32(dst, static_cast<uint32_t>(table_magic_number() >> 32));
assert(dst->size() == original_size + kVersion1EncodedLength);
}
}
namespace {
inline bool IsLegacyFooterFormat(uint64_t magic_number) {
return magic_number == kLegacyBlockBasedTableMagicNumber ||
magic_number == kLegacyPlainTableMagicNumber;
}
inline uint64_t UpconvertLegacyFooterFormat(uint64_t magic_number) {
if (magic_number == kLegacyBlockBasedTableMagicNumber) {
return kBlockBasedTableMagicNumber;
}
if (magic_number == kLegacyPlainTableMagicNumber) {
return kPlainTableMagicNumber;
}
assert(false);
return 0;
}
} // namespace
Footer::Footer(uint64_t table_magic_number)
: version_(IsLegacyFooterFormat(table_magic_number) ? kLegacyFooter
: kFooterVersion),
checksum_(kCRC32c),
table_magic_number_(table_magic_number) {}
Status Footer::DecodeFrom(Slice* input) {
assert(input != nullptr);
assert(input->size() >= kMinEncodedLength);
const char *magic_ptr =
input->data() + input->size() - kMagicNumberLengthByte;
const uint32_t magic_lo = DecodeFixed32(magic_ptr);
const uint32_t magic_hi = DecodeFixed32(magic_ptr + 4);
uint64_t magic = ((static_cast<uint64_t>(magic_hi) << 32) |
(static_cast<uint64_t>(magic_lo)));
// We check for legacy formats here and silently upconvert them
bool legacy = IsLegacyFooterFormat(magic);
if (legacy) {
magic = UpconvertLegacyFooterFormat(magic);
}
if (HasInitializedTableMagicNumber()) {
if (magic != table_magic_number()) {
char buffer[80];
snprintf(buffer, sizeof(buffer) - 1,
"not an sstable (bad magic number --- %lx)",
(long)magic);
return Status::InvalidArgument(buffer);
}
} else {
set_table_magic_number(magic);
}
if (legacy) {
// The size is already asserted to be at least kMinEncodedLength
// at the beginning of the function
input->remove_prefix(input->size() - kVersion0EncodedLength);
version_ = kLegacyFooter;
checksum_ = kCRC32c;
} else {
version_ = DecodeFixed32(magic_ptr - 4);
if (version_ != kFooterVersion) {
return Status::Corruption("bad footer version");
}
// Footer version 1 will always occupy exactly this many bytes.
// It consists of the checksum type, two block handles, padding,
// a version number, and a magic number
if (input->size() < kVersion1EncodedLength) {
return Status::InvalidArgument("input is too short to be an sstable");
} else {
input->remove_prefix(input->size() - kVersion1EncodedLength);
}
uint32_t checksum;
if (!GetVarint32(input, &checksum)) {
return Status::Corruption("bad checksum type");
}
checksum_ = static_cast<ChecksumType>(checksum);
}
Status result = metaindex_handle_.DecodeFrom(input);
if (result.ok()) {
result = index_handle_.DecodeFrom(input);
}
if (result.ok()) {
// We skip over any leftover data (just padding for now) in "input"
const char* end = magic_ptr + kMagicNumberLengthByte;
*input = Slice(end, input->data() + input->size() - end);
}
return result;
}
Status ReadFooterFromFile(RandomAccessFile* file,
uint64_t file_size,
Footer* footer) {
if (file_size < Footer::kMinEncodedLength) {
return Status::InvalidArgument("file is too short to be an sstable");
}
char footer_space[Footer::kMaxEncodedLength];
Slice footer_input;
size_t read_offset = (file_size > Footer::kMaxEncodedLength)
? (file_size - Footer::kMaxEncodedLength)
: 0;
Status s = file->Read(read_offset, Footer::kMaxEncodedLength, &footer_input,
footer_space);
if (!s.ok()) return s;
// Check that we actually read the whole footer from the file. It may be
// that size isn't correct.
if (footer_input.size() < Footer::kMinEncodedLength) {
return Status::InvalidArgument("file is too short to be an sstable");
}
return footer->DecodeFrom(&footer_input);
}
Status ReadBlockContents(RandomAccessFile* file,
const Footer& footer,
const ReadOptions& options,
const BlockHandle& handle,
BlockContents* result,
Env* env,
bool do_uncompress) {
result->data = Slice();
result->cachable = false;
result->heap_allocated = false;
// Read the block contents as well as the type/crc footer.
// See table_builder.cc for the code that built this structure.
size_t n = static_cast<size_t>(handle.size());
char* buf = new char[n + kBlockTrailerSize];
Slice contents;
PERF_TIMER_AUTO(block_read_time);
Status s = file->Read(handle.offset(), n + kBlockTrailerSize, &contents, buf);
PERF_TIMER_MEASURE(block_read_time);
PERF_COUNTER_ADD(block_read_count, 1);
PERF_COUNTER_ADD(block_read_byte, n + kBlockTrailerSize);
if (!s.ok()) {
delete[] buf;
return s;
}
if (contents.size() != n + kBlockTrailerSize) {
delete[] buf;
return Status::Corruption("truncated block read");
}
// Check the crc of the type and the block contents
const char* data = contents.data(); // Pointer to where Read put the data
if (options.verify_checksums) {
uint32_t value = DecodeFixed32(data + n + 1);
uint32_t actual = 0;
switch (footer.checksum()) {
case kCRC32c:
value = crc32c::Unmask(value);
actual = crc32c::Value(data, n + 1);
break;
case kxxHash:
actual = XXH32(data, n + 1, 0);
break;
default:
s = Status::Corruption("unknown checksum type");
}
if (s.ok() && actual != value) {
s = Status::Corruption("block checksum mismatch");
}
if (!s.ok()) {
delete[] buf;
return s;
}
PERF_TIMER_MEASURE(block_checksum_time);
}
rocksdb::CompressionType compression_type =
static_cast<rocksdb::CompressionType>(data[n]);
// If the caller has requested that the block not be uncompressed
if (!do_uncompress || compression_type == kNoCompression) {
if (data != buf) {
// File implementation gave us pointer to some other data.
// Use it directly under the assumption that it will be live
// while the file is open.
delete[] buf;
result->data = Slice(data, n);
result->heap_allocated = false;
result->cachable = false; // Do not double-cache
} else {
result->data = Slice(buf, n);
result->heap_allocated = true;
result->cachable = true;
}
result->compression_type = compression_type;
s = Status::OK();
} else {
s = UncompressBlockContents(data, n, result);
delete[] buf;
}
PERF_TIMER_STOP(block_decompress_time);
return s;
}
//
// The 'data' points to the raw block contents that was read in from file.
// This method allocates a new heap buffer and the raw block
// contents are uncompresed into this buffer. This
// buffer is returned via 'result' and it is upto the caller to
// free this buffer.
Status UncompressBlockContents(const char* data, size_t n,
BlockContents* result) {
char* ubuf = nullptr;
int decompress_size = 0;
assert(data[n] != kNoCompression);
switch (data[n]) {
case kSnappyCompression: {
size_t ulength = 0;
static char snappy_corrupt_msg[] =
"Snappy not supported or corrupted Snappy compressed block contents";
if (!port::Snappy_GetUncompressedLength(data, n, &ulength)) {
return Status::Corruption(snappy_corrupt_msg);
}
ubuf = new char[ulength];
if (!port::Snappy_Uncompress(data, n, ubuf)) {
delete[] ubuf;
return Status::Corruption(snappy_corrupt_msg);
}
result->data = Slice(ubuf, ulength);
result->heap_allocated = true;
result->cachable = true;
break;
}
case kZlibCompression:
ubuf = port::Zlib_Uncompress(data, n, &decompress_size);
static char zlib_corrupt_msg[] =
"Zlib not supported or corrupted Zlib compressed block contents";
if (!ubuf) {
return Status::Corruption(zlib_corrupt_msg);
}
result->data = Slice(ubuf, decompress_size);
result->heap_allocated = true;
result->cachable = true;
break;
case kBZip2Compression:
ubuf = port::BZip2_Uncompress(data, n, &decompress_size);
static char bzip2_corrupt_msg[] =
"Bzip2 not supported or corrupted Bzip2 compressed block contents";
if (!ubuf) {
return Status::Corruption(bzip2_corrupt_msg);
}
result->data = Slice(ubuf, decompress_size);
result->heap_allocated = true;
result->cachable = true;
break;
case kLZ4Compression:
ubuf = port::LZ4_Uncompress(data, n, &decompress_size);
static char lz4_corrupt_msg[] =
"LZ4 not supported or corrupted LZ4 compressed block contents";
if (!ubuf) {
return Status::Corruption(lz4_corrupt_msg);
}
result->data = Slice(ubuf, decompress_size);
result->heap_allocated = true;
result->cachable = true;
break;
case kLZ4HCCompression:
ubuf = port::LZ4_Uncompress(data, n, &decompress_size);
static char lz4hc_corrupt_msg[] =
"LZ4HC not supported or corrupted LZ4HC compressed block contents";
if (!ubuf) {
return Status::Corruption(lz4hc_corrupt_msg);
}
result->data = Slice(ubuf, decompress_size);
result->heap_allocated = true;
result->cachable = true;
break;
default:
return Status::Corruption("bad block type");
}
result->compression_type = kNoCompression; // not compressed any more
return Status::OK();
}
} // namespace rocksdb