rocksdb/util/dynamic_bloom.h
Peter Dillinger ea89c77f27 Fix major bug with MultiGet, DeleteRange, and memtable Bloom (#9453)
Summary:
MemTable::MultiGet was not considering range tombstones before
querying Bloom filter. This means range tombstones would be skipped for
keys (or prefixes) with no other entries in the memtable. This could cause
old values for a key (in SST files) to still show up until the range tombstone
covering it has been flushed.

This is fixed by essentially disabling the memtable Bloom filter when there
are any range tombstones. (This could be better optimized in the future, but
good enough for now.)

Did some other cleanup/optimization in the same code to (more than) offset
the cost of checking on range tombstones in more cases. There is now
notable improvement when memtable_whole_key_filtering and prefix_extractor
are used together (unusual), and this makes MultiGet closer to the Get
implementation.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/9453

Test Plan:
new unit test added. Added memtable Bloom to crash test.

Performance testing
--------------------

Build WAL-only DB (recovers to memtable):
```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -benchmarks=fillrandom -num=1000000 -write_buffer_size=250000000
```

Query test command, to maximize sensitivity to the changed code:
```
TEST_TMPDIR=/dev/shm/rocksdb ./db_bench -use_existing_db -readonly -benchmarks=multireadrandom -num=10000000 -write_buffer_size=250000000 -memtable_bloom_size_ratio=0.015 -multiread_batched -batch_size=24 -threads=8 -memtable_whole_key_filtering=$MWKF -prefix_size=$PXS
```
(Note -num here is 10x larger for mostly memtable misses)

Before & after run simultaneously, average over 10 iterations per data point, ops/sec.

MWKF=0 PXS=0 (Bloom disabled)
Before: 5724844
After: 6722066

MWKF=0 PXS=7 (prefixes hardly unique; Bloom not useful)
Before: 9981319
After: 10237990

MWKF=0 PXS=8 (prefixes unique; Bloom useful)
Before:  12081715
After: 12117603

MWKF=1 PXS=0 (whole key Bloom useful)
Before: 11944354
After: 12096085

MWKF=1 PXS=7 (whole key Bloom useful in new version; prefixes not useful in old version)
Before: 9444299
After: 11826029

MWKF=1 PXS=7 (whole key Bloom useful in new version; prefixes useful in old version)
Before: 11784465
After: 11778591

Only in this last case is the 'before' *slightly* faster, perhaps because hashing prefixes is slightly faster than hashing whole keys. Otherwise, 'after' is faster.

Reviewed By: ajkr

Differential Revision: D33805025

Pulled By: pdillinger

fbshipit-source-id: 597523cae4f4eafdf6ae6bb2bc6cb46f83b017bf
2022-01-27 14:55:04 -08:00

215 lines
7.5 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <array>
#include <string>
#include "port/port.h"
#include "rocksdb/slice.h"
#include "table/multiget_context.h"
#include "util/hash.h"
#include <atomic>
#include <memory>
namespace ROCKSDB_NAMESPACE {
class Slice;
class Allocator;
class Logger;
// A Bloom filter intended only to be used in memory, never serialized in a way
// that could lead to schema incompatibility. Supports opt-in lock-free
// concurrent access.
//
// This implementation is also intended for applications generally preferring
// speed vs. maximum accuracy: roughly 0.9x BF op latency for 1.1x FP rate.
// For 1% FP rate, that means that the latency of a look-up triggered by an FP
// should be less than roughly 100x the cost of a Bloom filter op.
//
// For simplicity and performance, the current implementation requires
// num_probes to be a multiple of two and <= 10.
//
class DynamicBloom {
public:
// allocator: pass allocator to bloom filter, hence trace the usage of memory
// total_bits: fixed total bits for the bloom
// num_probes: number of hash probes for a single key
// hash_func: customized hash function
// huge_page_tlb_size: if >0, try to allocate bloom bytes from huge page TLB
// within this page size. Need to reserve huge pages for
// it to be allocated, like:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt
explicit DynamicBloom(Allocator* allocator, uint32_t total_bits,
uint32_t num_probes = 6, size_t huge_page_tlb_size = 0,
Logger* logger = nullptr);
~DynamicBloom() {}
// Assuming single threaded access to this function.
void Add(const Slice& key);
// Like Add, but may be called concurrent with other functions.
void AddConcurrently(const Slice& key);
// Assuming single threaded access to this function.
void AddHash(uint32_t hash);
// Like AddHash, but may be called concurrent with other functions.
void AddHashConcurrently(uint32_t hash);
// Multithreaded access to this function is OK
bool MayContain(const Slice& key) const;
void MayContain(int num_keys, Slice* keys, bool* may_match) const;
// Multithreaded access to this function is OK
bool MayContainHash(uint32_t hash) const;
void Prefetch(uint32_t h);
private:
// Length of the structure, in 64-bit words. For this structure, "word"
// will always refer to 64-bit words.
uint32_t kLen;
// We make the k probes in pairs, two for each 64-bit read/write. Thus,
// this stores k/2, the number of words to double-probe.
const uint32_t kNumDoubleProbes;
std::atomic<uint64_t>* data_;
// or_func(ptr, mask) should effect *ptr |= mask with the appropriate
// concurrency safety, working with bytes.
template <typename OrFunc>
void AddHash(uint32_t hash, const OrFunc& or_func);
bool DoubleProbe(uint32_t h32, size_t a) const;
};
inline void DynamicBloom::Add(const Slice& key) { AddHash(BloomHash(key)); }
inline void DynamicBloom::AddConcurrently(const Slice& key) {
AddHashConcurrently(BloomHash(key));
}
inline void DynamicBloom::AddHash(uint32_t hash) {
AddHash(hash, [](std::atomic<uint64_t>* ptr, uint64_t mask) {
ptr->store(ptr->load(std::memory_order_relaxed) | mask,
std::memory_order_relaxed);
});
}
inline void DynamicBloom::AddHashConcurrently(uint32_t hash) {
AddHash(hash, [](std::atomic<uint64_t>* ptr, uint64_t mask) {
// Happens-before between AddHash and MaybeContains is handled by
// access to versions_->LastSequence(), so all we have to do here is
// avoid races (so we don't give the compiler a license to mess up
// our code) and not lose bits. std::memory_order_relaxed is enough
// for that.
if ((mask & ptr->load(std::memory_order_relaxed)) != mask) {
ptr->fetch_or(mask, std::memory_order_relaxed);
}
});
}
inline bool DynamicBloom::MayContain(const Slice& key) const {
return (MayContainHash(BloomHash(key)));
}
inline void DynamicBloom::MayContain(int num_keys, Slice* keys,
bool* may_match) const {
std::array<uint32_t, MultiGetContext::MAX_BATCH_SIZE> hashes;
std::array<size_t, MultiGetContext::MAX_BATCH_SIZE> byte_offsets;
for (int i = 0; i < num_keys; ++i) {
hashes[i] = BloomHash(keys[i]);
size_t a = FastRange32(kLen, hashes[i]);
PREFETCH(data_ + a, 0, 3);
byte_offsets[i] = a;
}
for (int i = 0; i < num_keys; i++) {
may_match[i] = DoubleProbe(hashes[i], byte_offsets[i]);
}
}
#if defined(_MSC_VER)
#pragma warning(push)
// local variable is initialized but not referenced
#pragma warning(disable : 4189)
#endif
inline void DynamicBloom::Prefetch(uint32_t h32) {
size_t a = FastRange32(kLen, h32);
PREFETCH(data_ + a, 0, 3);
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
// Speed hacks in this implementation:
// * Uses fastrange instead of %
// * Minimum logic to determine first (and all) probed memory addresses.
// (Uses constant bit-xor offsets from the starting probe address.)
// * (Major) Two probes per 64-bit memory fetch/write.
// Code simplification / optimization: only allow even number of probes.
// * Very fast and effective (murmur-like) hash expansion/re-mixing. (At
// least on recent CPUs, integer multiplication is very cheap. Each 64-bit
// remix provides five pairs of bit addresses within a uint64_t.)
// Code simplification / optimization: only allow up to 10 probes, from a
// single 64-bit remix.
//
// The FP rate penalty for this implementation, vs. standard Bloom filter, is
// roughly 1.12x on top of the 1.15x penalty for a 512-bit cache-local Bloom.
// This implementation does not explicitly use the cache line size, but is
// effectively cache-local (up to 16 probes) because of the bit-xor offsetting.
//
// NB: could easily be upgraded to support a 64-bit hash and
// total_bits > 2^32 (512MB). (The latter is a bad idea without the former,
// because of false positives.)
inline bool DynamicBloom::MayContainHash(uint32_t h32) const {
size_t a = FastRange32(kLen, h32);
PREFETCH(data_ + a, 0, 3);
return DoubleProbe(h32, a);
}
inline bool DynamicBloom::DoubleProbe(uint32_t h32, size_t byte_offset) const {
// Expand/remix with 64-bit golden ratio
uint64_t h = 0x9e3779b97f4a7c13ULL * h32;
for (unsigned i = 0;; ++i) {
// Two bit probes per uint64_t probe
uint64_t mask =
((uint64_t)1 << (h & 63)) | ((uint64_t)1 << ((h >> 6) & 63));
uint64_t val = data_[byte_offset ^ i].load(std::memory_order_relaxed);
if (i + 1 >= kNumDoubleProbes) {
return (val & mask) == mask;
} else if ((val & mask) != mask) {
return false;
}
h = (h >> 12) | (h << 52);
}
}
template <typename OrFunc>
inline void DynamicBloom::AddHash(uint32_t h32, const OrFunc& or_func) {
size_t a = FastRange32(kLen, h32);
PREFETCH(data_ + a, 0, 3);
// Expand/remix with 64-bit golden ratio
uint64_t h = 0x9e3779b97f4a7c13ULL * h32;
for (unsigned i = 0;; ++i) {
// Two bit probes per uint64_t probe
uint64_t mask =
((uint64_t)1 << (h & 63)) | ((uint64_t)1 << ((h >> 6) & 63));
or_func(&data_[a ^ i], mask);
if (i + 1 >= kNumDoubleProbes) {
return;
}
h = (h >> 12) | (h << 52);
}
}
} // namespace ROCKSDB_NAMESPACE