rocksdb/utilities/transactions/pessimistic_transaction_db.cc
Yanqin Jin 3b6dc049f7 Support user-defined timestamps in write-committed txns (#9629)
Summary:
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9629

Pessimistic transactions use pessimistic concurrency control, i.e. locking. Keys are
locked upon first operation that writes the key or has the intention of writing. For example,
`PessimisticTransaction::Put()`, `PessimisticTransaction::Delete()`,
`PessimisticTransaction::SingleDelete()` will write to or delete a key, while
`PessimisticTransaction::GetForUpdate()` is used by application to indicate
to RocksDB that the transaction has the intention of performing write operation later
in the same transaction.
Pessimistic transactions support two-phase commit (2PC). A transaction can be
`Prepared()`'ed and then `Commit()`. The prepare phase is similar to a promise: once
`Prepare()` succeeds, the transaction has acquired the necessary resources to commit.
The resources include locks, persistence of WAL, etc.
Write-committed transaction is the default pessimistic transaction implementation. In
RocksDB write-committed transaction, `Prepare()` will write data to the WAL as a prepare
section. `Commit()` will write a commit marker to the WAL and then write data to the
memtables. While writing to the memtables, different keys in the transaction's write batch
will be assigned different sequence numbers in ascending order.
Until commit/rollback, the transaction holds locks on the keys so that no other transaction
can write to the same keys. Furthermore, the keys' sequence numbers represent the order
in which they are committed and should be made visible. This is convenient for us to
implement support for user-defined timestamps.
Since column families with and without timestamps can co-exist in the same database,
a transaction may or may not involve timestamps. Based on this observation, we add two
optional members to each `PessimisticTransaction`, `read_timestamp_` and
`commit_timestamp_`. If no key in the transaction's write batch has timestamp, then
setting these two variables do not have any effect. For the rest of this commit, we discuss
only the cases when these two variables are meaningful.

read_timestamp_ is used mainly for validation, and should be set before first call to
`GetForUpdate()`. Otherwise, the latter will return non-ok status. `GetForUpdate()` calls
`TryLock()` that can verify if another transaction has written the same key since
`read_timestamp_` till this call to `GetForUpdate()`. If another transaction has indeed
written the same key, then validation fails, and RocksDB allows this transaction to
refine `read_timestamp_` by increasing it. Note that a transaction can still use `Get()`
with a different timestamp to read, but the result of the read should not be used to
determine data that will be written later.

commit_timestamp_ must be set after finishing writing and before transaction commit.
This applies to both 2PC and non-2PC cases. In the case of 2PC, it's usually set after
prepare phase succeeds.

We currently require that the commit timestamp be chosen after all keys are locked. This
means we disallow the `TransactionDB`-level APIs if user-defined timestamp is used
by the transaction. Specifically, calling `PessimisticTransactionDB::Put()`,
`PessimisticTransactionDB::Delete()`, `PessimisticTransactionDB::SingleDelete()`,
etc. will return non-ok status because they specify timestamps before locking the keys.
Users are also prompted to use the `Transaction` APIs when they receive the non-ok status.

Reviewed By: ltamasi

Differential Revision: D31822445

fbshipit-source-id: b82abf8e230216dc89cc519564a588224a88fd43
2022-03-08 16:20:59 -08:00

661 lines
22 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#include "utilities/transactions/pessimistic_transaction_db.h"
#include <cinttypes>
#include <sstream>
#include <string>
#include <unordered_set>
#include <vector>
#include "db/db_impl/db_impl.h"
#include "logging/logging.h"
#include "rocksdb/db.h"
#include "rocksdb/options.h"
#include "rocksdb/utilities/transaction_db.h"
#include "test_util/sync_point.h"
#include "util/cast_util.h"
#include "util/mutexlock.h"
#include "utilities/transactions/pessimistic_transaction.h"
#include "utilities/transactions/transaction_db_mutex_impl.h"
#include "utilities/transactions/write_prepared_txn_db.h"
#include "utilities/transactions/write_unprepared_txn_db.h"
namespace ROCKSDB_NAMESPACE {
PessimisticTransactionDB::PessimisticTransactionDB(
DB* db, const TransactionDBOptions& txn_db_options)
: TransactionDB(db),
db_impl_(static_cast_with_check<DBImpl>(db)),
txn_db_options_(txn_db_options),
lock_manager_(NewLockManager(this, txn_db_options)) {
assert(db_impl_ != nullptr);
info_log_ = db_impl_->GetDBOptions().info_log;
}
// Support initiliazing PessimisticTransactionDB from a stackable db
//
// PessimisticTransactionDB
// ^ ^
// | |
// | +
// | StackableDB
// | ^
// | |
// + +
// DBImpl
// ^
// |(inherit)
// +
// DB
//
PessimisticTransactionDB::PessimisticTransactionDB(
StackableDB* db, const TransactionDBOptions& txn_db_options)
: TransactionDB(db),
db_impl_(static_cast_with_check<DBImpl>(db->GetRootDB())),
txn_db_options_(txn_db_options),
lock_manager_(NewLockManager(this, txn_db_options)) {
assert(db_impl_ != nullptr);
}
PessimisticTransactionDB::~PessimisticTransactionDB() {
while (!transactions_.empty()) {
delete transactions_.begin()->second;
// TODO(myabandeh): this seems to be an unsafe approach as it is not quite
// clear whether delete would also remove the entry from transactions_.
}
}
Status PessimisticTransactionDB::VerifyCFOptions(
const ColumnFamilyOptions& cf_options) {
const Comparator* const ucmp = cf_options.comparator;
assert(ucmp);
size_t ts_sz = ucmp->timestamp_size();
if (0 == ts_sz) {
return Status::OK();
}
if (ts_sz != sizeof(TxnTimestamp)) {
std::ostringstream oss;
oss << "Timestamp of transaction must have " << sizeof(TxnTimestamp)
<< " bytes. CF comparator " << std::string(ucmp->Name())
<< " timestamp size is " << ts_sz << " bytes";
return Status::InvalidArgument(oss.str());
}
if (txn_db_options_.write_policy != WRITE_COMMITTED) {
return Status::NotSupported("Only WriteCommittedTxn supports timestamp");
}
return Status::OK();
}
Status PessimisticTransactionDB::Initialize(
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles) {
for (auto cf_ptr : handles) {
AddColumnFamily(cf_ptr);
}
// Verify cf options
for (auto handle : handles) {
ColumnFamilyDescriptor cfd;
Status s = handle->GetDescriptor(&cfd);
if (!s.ok()) {
return s;
}
s = VerifyCFOptions(cfd.options);
if (!s.ok()) {
return s;
}
}
// Re-enable compaction for the column families that initially had
// compaction enabled.
std::vector<ColumnFamilyHandle*> compaction_enabled_cf_handles;
compaction_enabled_cf_handles.reserve(compaction_enabled_cf_indices.size());
for (auto index : compaction_enabled_cf_indices) {
compaction_enabled_cf_handles.push_back(handles[index]);
}
Status s = EnableAutoCompaction(compaction_enabled_cf_handles);
// create 'real' transactions from recovered shell transactions
auto dbimpl = static_cast_with_check<DBImpl>(GetRootDB());
assert(dbimpl != nullptr);
auto rtrxs = dbimpl->recovered_transactions();
for (auto it = rtrxs.begin(); it != rtrxs.end(); ++it) {
auto recovered_trx = it->second;
assert(recovered_trx);
assert(recovered_trx->batches_.size() == 1);
const auto& seq = recovered_trx->batches_.begin()->first;
const auto& batch_info = recovered_trx->batches_.begin()->second;
assert(batch_info.log_number_);
assert(recovered_trx->name_.length());
WriteOptions w_options;
w_options.sync = true;
TransactionOptions t_options;
// This would help avoiding deadlock for keys that although exist in the WAL
// did not go through concurrency control. This includes the merge that
// MyRocks uses for auto-inc columns. It is safe to do so, since (i) if
// there is a conflict between the keys of two transactions that must be
// avoided, it is already avoided by the application, MyRocks, before the
// restart (ii) application, MyRocks, guarntees to rollback/commit the
// recovered transactions before new transactions start.
t_options.skip_concurrency_control = true;
Transaction* real_trx = BeginTransaction(w_options, t_options, nullptr);
assert(real_trx);
real_trx->SetLogNumber(batch_info.log_number_);
assert(seq != kMaxSequenceNumber);
if (GetTxnDBOptions().write_policy != WRITE_COMMITTED) {
real_trx->SetId(seq);
}
s = real_trx->SetName(recovered_trx->name_);
if (!s.ok()) {
break;
}
s = real_trx->RebuildFromWriteBatch(batch_info.batch_);
// WriteCommitted set this to to disable this check that is specific to
// WritePrepared txns
assert(batch_info.batch_cnt_ == 0 ||
real_trx->GetWriteBatch()->SubBatchCnt() == batch_info.batch_cnt_);
real_trx->SetState(Transaction::PREPARED);
if (!s.ok()) {
break;
}
}
if (s.ok()) {
dbimpl->DeleteAllRecoveredTransactions();
}
return s;
}
Transaction* WriteCommittedTxnDB::BeginTransaction(
const WriteOptions& write_options, const TransactionOptions& txn_options,
Transaction* old_txn) {
if (old_txn != nullptr) {
ReinitializeTransaction(old_txn, write_options, txn_options);
return old_txn;
} else {
return new WriteCommittedTxn(this, write_options, txn_options);
}
}
TransactionDBOptions PessimisticTransactionDB::ValidateTxnDBOptions(
const TransactionDBOptions& txn_db_options) {
TransactionDBOptions validated = txn_db_options;
if (txn_db_options.num_stripes == 0) {
validated.num_stripes = 1;
}
return validated;
}
Status TransactionDB::Open(const Options& options,
const TransactionDBOptions& txn_db_options,
const std::string& dbname, TransactionDB** dbptr) {
DBOptions db_options(options);
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
std::vector<ColumnFamilyHandle*> handles;
Status s = TransactionDB::Open(db_options, txn_db_options, dbname,
column_families, &handles, dbptr);
if (s.ok()) {
assert(handles.size() == 1);
// i can delete the handle since DBImpl is always holding a reference to
// default column family
delete handles[0];
}
return s;
}
Status TransactionDB::Open(
const DBOptions& db_options, const TransactionDBOptions& txn_db_options,
const std::string& dbname,
const std::vector<ColumnFamilyDescriptor>& column_families,
std::vector<ColumnFamilyHandle*>* handles, TransactionDB** dbptr) {
Status s;
DB* db = nullptr;
if (txn_db_options.write_policy == WRITE_COMMITTED &&
db_options.unordered_write) {
return Status::NotSupported(
"WRITE_COMMITTED is incompatible with unordered_writes");
}
if (txn_db_options.write_policy == WRITE_UNPREPARED &&
db_options.unordered_write) {
// TODO(lth): support it
return Status::NotSupported(
"WRITE_UNPREPARED is currently incompatible with unordered_writes");
}
if (txn_db_options.write_policy == WRITE_PREPARED &&
db_options.unordered_write && !db_options.two_write_queues) {
return Status::NotSupported(
"WRITE_PREPARED is incompatible with unordered_writes if "
"two_write_queues is not enabled.");
}
std::vector<ColumnFamilyDescriptor> column_families_copy = column_families;
std::vector<size_t> compaction_enabled_cf_indices;
DBOptions db_options_2pc = db_options;
PrepareWrap(&db_options_2pc, &column_families_copy,
&compaction_enabled_cf_indices);
const bool use_seq_per_batch =
txn_db_options.write_policy == WRITE_PREPARED ||
txn_db_options.write_policy == WRITE_UNPREPARED;
const bool use_batch_per_txn =
txn_db_options.write_policy == WRITE_COMMITTED ||
txn_db_options.write_policy == WRITE_PREPARED;
s = DBImpl::Open(db_options_2pc, dbname, column_families_copy, handles, &db,
use_seq_per_batch, use_batch_per_txn);
if (s.ok()) {
ROCKS_LOG_WARN(db->GetDBOptions().info_log,
"Transaction write_policy is %" PRId32,
static_cast<int>(txn_db_options.write_policy));
// if WrapDB return non-ok, db will be deleted in WrapDB() via
// ~StackableDB().
s = WrapDB(db, txn_db_options, compaction_enabled_cf_indices, *handles,
dbptr);
}
return s;
}
void TransactionDB::PrepareWrap(
DBOptions* db_options, std::vector<ColumnFamilyDescriptor>* column_families,
std::vector<size_t>* compaction_enabled_cf_indices) {
compaction_enabled_cf_indices->clear();
// Enable MemTable History if not already enabled
for (size_t i = 0; i < column_families->size(); i++) {
ColumnFamilyOptions* cf_options = &(*column_families)[i].options;
if (cf_options->max_write_buffer_size_to_maintain == 0 &&
cf_options->max_write_buffer_number_to_maintain == 0) {
// Setting to -1 will set the History size to
// max_write_buffer_number * write_buffer_size.
cf_options->max_write_buffer_size_to_maintain = -1;
}
if (!cf_options->disable_auto_compactions) {
// Disable compactions momentarily to prevent race with DB::Open
cf_options->disable_auto_compactions = true;
compaction_enabled_cf_indices->push_back(i);
}
}
db_options->allow_2pc = true;
}
namespace {
template <typename DBType>
Status WrapAnotherDBInternal(
DBType* db, const TransactionDBOptions& txn_db_options,
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles, TransactionDB** dbptr) {
assert(db != nullptr);
assert(dbptr != nullptr);
*dbptr = nullptr;
std::unique_ptr<PessimisticTransactionDB> txn_db;
// txn_db owns object pointed to by the raw db pointer.
switch (txn_db_options.write_policy) {
case WRITE_UNPREPARED:
txn_db.reset(new WriteUnpreparedTxnDB(
db, PessimisticTransactionDB::ValidateTxnDBOptions(txn_db_options)));
break;
case WRITE_PREPARED:
txn_db.reset(new WritePreparedTxnDB(
db, PessimisticTransactionDB::ValidateTxnDBOptions(txn_db_options)));
break;
case WRITE_COMMITTED:
default:
txn_db.reset(new WriteCommittedTxnDB(
db, PessimisticTransactionDB::ValidateTxnDBOptions(txn_db_options)));
}
txn_db->UpdateCFComparatorMap(handles);
Status s = txn_db->Initialize(compaction_enabled_cf_indices, handles);
// In case of a failure at this point, db is deleted via the txn_db destructor
// and set to nullptr.
if (s.ok()) {
*dbptr = txn_db.release();
} else {
for (auto* h : handles) {
delete h;
}
// txn_db still owns db, and ~StackableDB() will be called when txn_db goes
// out of scope, deleting the input db pointer.
ROCKS_LOG_FATAL(db->GetDBOptions().info_log,
"Failed to initialize txn_db: %s", s.ToString().c_str());
}
return s;
}
} // namespace
Status TransactionDB::WrapDB(
// make sure this db is already opened with memtable history enabled,
// auto compaction distabled and 2 phase commit enabled
DB* db, const TransactionDBOptions& txn_db_options,
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles, TransactionDB** dbptr) {
return WrapAnotherDBInternal(db, txn_db_options,
compaction_enabled_cf_indices, handles, dbptr);
}
Status TransactionDB::WrapStackableDB(
// make sure this stackable_db is already opened with memtable history
// enabled, auto compaction distabled and 2 phase commit enabled
StackableDB* db, const TransactionDBOptions& txn_db_options,
const std::vector<size_t>& compaction_enabled_cf_indices,
const std::vector<ColumnFamilyHandle*>& handles, TransactionDB** dbptr) {
return WrapAnotherDBInternal(db, txn_db_options,
compaction_enabled_cf_indices, handles, dbptr);
}
// Let LockManager know that this column family exists so it can
// allocate a LockMap for it.
void PessimisticTransactionDB::AddColumnFamily(
const ColumnFamilyHandle* handle) {
lock_manager_->AddColumnFamily(handle);
}
Status PessimisticTransactionDB::CreateColumnFamily(
const ColumnFamilyOptions& options, const std::string& column_family_name,
ColumnFamilyHandle** handle) {
InstrumentedMutexLock l(&column_family_mutex_);
Status s = VerifyCFOptions(options);
if (!s.ok()) {
return s;
}
s = db_->CreateColumnFamily(options, column_family_name, handle);
if (s.ok()) {
lock_manager_->AddColumnFamily(*handle);
UpdateCFComparatorMap(*handle);
}
return s;
}
// Let LockManager know that it can deallocate the LockMap for this
// column family.
Status PessimisticTransactionDB::DropColumnFamily(
ColumnFamilyHandle* column_family) {
InstrumentedMutexLock l(&column_family_mutex_);
Status s = db_->DropColumnFamily(column_family);
if (s.ok()) {
lock_manager_->RemoveColumnFamily(column_family);
}
return s;
}
Status PessimisticTransactionDB::TryLock(PessimisticTransaction* txn,
uint32_t cfh_id,
const std::string& key,
bool exclusive) {
return lock_manager_->TryLock(txn, cfh_id, key, GetEnv(), exclusive);
}
Status PessimisticTransactionDB::TryRangeLock(PessimisticTransaction* txn,
uint32_t cfh_id,
const Endpoint& start_endp,
const Endpoint& end_endp) {
return lock_manager_->TryLock(txn, cfh_id, start_endp, end_endp, GetEnv(),
/*exclusive=*/true);
}
void PessimisticTransactionDB::UnLock(PessimisticTransaction* txn,
const LockTracker& keys) {
lock_manager_->UnLock(txn, keys, GetEnv());
}
void PessimisticTransactionDB::UnLock(PessimisticTransaction* txn,
uint32_t cfh_id, const std::string& key) {
lock_manager_->UnLock(txn, cfh_id, key, GetEnv());
}
// Used when wrapping DB write operations in a transaction
Transaction* PessimisticTransactionDB::BeginInternalTransaction(
const WriteOptions& options) {
TransactionOptions txn_options;
Transaction* txn = BeginTransaction(options, txn_options, nullptr);
// Use default timeout for non-transactional writes
txn->SetLockTimeout(txn_db_options_.default_lock_timeout);
return txn;
}
// All user Put, Merge, Delete, and Write requests must be intercepted to make
// sure that they lock all keys that they are writing to avoid causing conflicts
// with any concurrent transactions. The easiest way to do this is to wrap all
// write operations in a transaction.
//
// Put(), Merge(), and Delete() only lock a single key per call. Write() will
// sort its keys before locking them. This guarantees that TransactionDB write
// methods cannot deadlock with each other (but still could deadlock with a
// Transaction).
Status PessimisticTransactionDB::Put(const WriteOptions& options,
ColumnFamilyHandle* column_family,
const Slice& key, const Slice& val) {
Status s = FailIfCfEnablesTs(this, column_family);
if (!s.ok()) {
return s;
}
Transaction* txn = BeginInternalTransaction(options);
txn->DisableIndexing();
// Since the client didn't create a transaction, they don't care about
// conflict checking for this write. So we just need to do PutUntracked().
s = txn->PutUntracked(column_family, key, val);
if (s.ok()) {
s = txn->Commit();
}
delete txn;
return s;
}
Status PessimisticTransactionDB::Delete(const WriteOptions& wopts,
ColumnFamilyHandle* column_family,
const Slice& key) {
Status s = FailIfCfEnablesTs(this, column_family);
if (!s.ok()) {
return s;
}
Transaction* txn = BeginInternalTransaction(wopts);
txn->DisableIndexing();
// Since the client didn't create a transaction, they don't care about
// conflict checking for this write. So we just need to do
// DeleteUntracked().
s = txn->DeleteUntracked(column_family, key);
if (s.ok()) {
s = txn->Commit();
}
delete txn;
return s;
}
Status PessimisticTransactionDB::SingleDelete(const WriteOptions& wopts,
ColumnFamilyHandle* column_family,
const Slice& key) {
Status s = FailIfCfEnablesTs(this, column_family);
if (!s.ok()) {
return s;
}
Transaction* txn = BeginInternalTransaction(wopts);
txn->DisableIndexing();
// Since the client didn't create a transaction, they don't care about
// conflict checking for this write. So we just need to do
// SingleDeleteUntracked().
s = txn->SingleDeleteUntracked(column_family, key);
if (s.ok()) {
s = txn->Commit();
}
delete txn;
return s;
}
Status PessimisticTransactionDB::Merge(const WriteOptions& options,
ColumnFamilyHandle* column_family,
const Slice& key, const Slice& value) {
Status s = FailIfCfEnablesTs(this, column_family);
if (!s.ok()) {
return s;
}
Transaction* txn = BeginInternalTransaction(options);
txn->DisableIndexing();
// Since the client didn't create a transaction, they don't care about
// conflict checking for this write. So we just need to do
// MergeUntracked().
s = txn->MergeUntracked(column_family, key, value);
if (s.ok()) {
s = txn->Commit();
}
delete txn;
return s;
}
Status PessimisticTransactionDB::Write(const WriteOptions& opts,
WriteBatch* updates) {
return WriteWithConcurrencyControl(opts, updates);
}
Status WriteCommittedTxnDB::Write(const WriteOptions& opts,
WriteBatch* updates) {
Status s = FailIfBatchHasTs(updates);
if (!s.ok()) {
return s;
}
if (txn_db_options_.skip_concurrency_control) {
return db_impl_->Write(opts, updates);
} else {
return WriteWithConcurrencyControl(opts, updates);
}
}
Status WriteCommittedTxnDB::Write(
const WriteOptions& opts,
const TransactionDBWriteOptimizations& optimizations, WriteBatch* updates) {
Status s = FailIfBatchHasTs(updates);
if (!s.ok()) {
return s;
}
if (optimizations.skip_concurrency_control) {
return db_impl_->Write(opts, updates);
} else {
return WriteWithConcurrencyControl(opts, updates);
}
}
void PessimisticTransactionDB::InsertExpirableTransaction(
TransactionID tx_id, PessimisticTransaction* tx) {
assert(tx->GetExpirationTime() > 0);
std::lock_guard<std::mutex> lock(map_mutex_);
expirable_transactions_map_.insert({tx_id, tx});
}
void PessimisticTransactionDB::RemoveExpirableTransaction(TransactionID tx_id) {
std::lock_guard<std::mutex> lock(map_mutex_);
expirable_transactions_map_.erase(tx_id);
}
bool PessimisticTransactionDB::TryStealingExpiredTransactionLocks(
TransactionID tx_id) {
std::lock_guard<std::mutex> lock(map_mutex_);
auto tx_it = expirable_transactions_map_.find(tx_id);
if (tx_it == expirable_transactions_map_.end()) {
return true;
}
PessimisticTransaction& tx = *(tx_it->second);
return tx.TryStealingLocks();
}
void PessimisticTransactionDB::ReinitializeTransaction(
Transaction* txn, const WriteOptions& write_options,
const TransactionOptions& txn_options) {
auto txn_impl = static_cast_with_check<PessimisticTransaction>(txn);
txn_impl->Reinitialize(this, write_options, txn_options);
}
Transaction* PessimisticTransactionDB::GetTransactionByName(
const TransactionName& name) {
std::lock_guard<std::mutex> lock(name_map_mutex_);
auto it = transactions_.find(name);
if (it == transactions_.end()) {
return nullptr;
} else {
return it->second;
}
}
void PessimisticTransactionDB::GetAllPreparedTransactions(
std::vector<Transaction*>* transv) {
assert(transv);
transv->clear();
std::lock_guard<std::mutex> lock(name_map_mutex_);
for (auto it = transactions_.begin(); it != transactions_.end(); ++it) {
if (it->second->GetState() == Transaction::PREPARED) {
transv->push_back(it->second);
}
}
}
LockManager::PointLockStatus PessimisticTransactionDB::GetLockStatusData() {
return lock_manager_->GetPointLockStatus();
}
std::vector<DeadlockPath> PessimisticTransactionDB::GetDeadlockInfoBuffer() {
return lock_manager_->GetDeadlockInfoBuffer();
}
void PessimisticTransactionDB::SetDeadlockInfoBufferSize(uint32_t target_size) {
lock_manager_->Resize(target_size);
}
void PessimisticTransactionDB::RegisterTransaction(Transaction* txn) {
assert(txn);
assert(txn->GetName().length() > 0);
assert(GetTransactionByName(txn->GetName()) == nullptr);
assert(txn->GetState() == Transaction::STARTED);
std::lock_guard<std::mutex> lock(name_map_mutex_);
transactions_[txn->GetName()] = txn;
}
void PessimisticTransactionDB::UnregisterTransaction(Transaction* txn) {
assert(txn);
std::lock_guard<std::mutex> lock(name_map_mutex_);
auto it = transactions_.find(txn->GetName());
assert(it != transactions_.end());
transactions_.erase(it);
}
} // namespace ROCKSDB_NAMESPACE
#endif // ROCKSDB_LITE