003e72b201
Summary: Deprecate CalculateNumEntry and replace with ApproximateNumEntries (better name) using size_t instead of int and uint32_t, to minimize confusing casts and bad overflow behavior (possible though probably not realistic). Bloom sizes are now explicitly capped at max size supported by implementations: just under 4GiB for fv=5 Bloom, and just under 512MiB for fv<5 Legacy Bloom. This hardening could help to set up for fuzzing. Also, since RocksDB only uses this information as an approximation for trying to hit certain sizes for partitioned filters, it's more important that the function be reasonably fast than for it to be completely accurate. It's hard enough to be 100% accurate for Ribbon (currently reversing CalculateSpace) that adding optimize_filters_for_memory into the mix is just not worth trying to be 100% accurate for num entries for bytes. Also: - Cleaned up filter_policy.h to remove MSVC warning handling and potentially unsafe use of exception for "not implemented" - Correct the number of entries limit beyond which current Ribbon implementation falls back on Bloom instead. - Consistently use "num_entries" rather than "num_entry" - Remove LegacyBloomBitsBuilder::CalculateNumEntry as it's essentially obsolete from general implementation BuiltinFilterBitsBuilder::CalculateNumEntries. - Fix filter_bench to skip some tests that don't make sense when only one or a small number of filters has been generated. Pull Request resolved: https://github.com/facebook/rocksdb/pull/7726 Test Plan: expanded existing unit tests for CalculateSpace / ApproximateNumEntries. Also manually used filter_bench to verify Legacy and fv=5 Bloom size caps work (much too expensive for unit test). Note that the actual bits per key is below requested due to space cap. $ ./filter_bench -impl=0 -bits_per_key=20 -average_keys_per_filter=256000000 -vary_key_count_ratio=0 -m_keys_total_max=256 -allow_bad_fp_rate ... Total size (MB): 511.992 Bits/key stored: 16.777 ... $ ./filter_bench -impl=2 -bits_per_key=20 -average_keys_per_filter=2000000000 -vary_key_count_ratio=0 -m_keys_total_max=2000 ... Total size (MB): 4096 Bits/key stored: 17.1799 ... $ Reviewed By: jay-zhuang Differential Revision: D25239800 Pulled By: pdillinger fbshipit-source-id: f94e6d065efd31e05ec630ae1a82e6400d8390c4
1186 lines
39 KiB
C++
1186 lines
39 KiB
C++
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2012 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
|
|
#ifndef GFLAGS
|
|
#include <cstdio>
|
|
int main() {
|
|
fprintf(stderr, "Please install gflags to run this test... Skipping...\n");
|
|
return 0;
|
|
}
|
|
#else
|
|
|
|
#include <array>
|
|
#include <cmath>
|
|
#include <vector>
|
|
|
|
#include "memory/arena.h"
|
|
#include "port/jemalloc_helper.h"
|
|
#include "rocksdb/filter_policy.h"
|
|
#include "table/block_based/filter_policy_internal.h"
|
|
#include "test_util/testharness.h"
|
|
#include "test_util/testutil.h"
|
|
#include "util/gflags_compat.h"
|
|
#include "util/hash.h"
|
|
|
|
using GFLAGS_NAMESPACE::ParseCommandLineFlags;
|
|
|
|
DEFINE_int32(bits_per_key, 10, "");
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
static const int kVerbose = 1;
|
|
|
|
static Slice Key(int i, char* buffer) {
|
|
std::string s;
|
|
PutFixed32(&s, static_cast<uint32_t>(i));
|
|
memcpy(buffer, s.c_str(), sizeof(i));
|
|
return Slice(buffer, sizeof(i));
|
|
}
|
|
|
|
static int NextLength(int length) {
|
|
if (length < 10) {
|
|
length += 1;
|
|
} else if (length < 100) {
|
|
length += 10;
|
|
} else if (length < 1000) {
|
|
length += 100;
|
|
} else {
|
|
length += 1000;
|
|
}
|
|
return length;
|
|
}
|
|
|
|
class BlockBasedBloomTest : public testing::Test {
|
|
private:
|
|
std::unique_ptr<const FilterPolicy> policy_;
|
|
std::string filter_;
|
|
std::vector<std::string> keys_;
|
|
|
|
public:
|
|
BlockBasedBloomTest() { ResetPolicy(); }
|
|
|
|
void Reset() {
|
|
keys_.clear();
|
|
filter_.clear();
|
|
}
|
|
|
|
void ResetPolicy(double bits_per_key) {
|
|
policy_.reset(new BloomFilterPolicy(bits_per_key,
|
|
BloomFilterPolicy::kDeprecatedBlock));
|
|
Reset();
|
|
}
|
|
|
|
void ResetPolicy() { ResetPolicy(FLAGS_bits_per_key); }
|
|
|
|
void Add(const Slice& s) {
|
|
keys_.push_back(s.ToString());
|
|
}
|
|
|
|
void Build() {
|
|
std::vector<Slice> key_slices;
|
|
for (size_t i = 0; i < keys_.size(); i++) {
|
|
key_slices.push_back(Slice(keys_[i]));
|
|
}
|
|
filter_.clear();
|
|
policy_->CreateFilter(&key_slices[0], static_cast<int>(key_slices.size()),
|
|
&filter_);
|
|
keys_.clear();
|
|
if (kVerbose >= 2) DumpFilter();
|
|
}
|
|
|
|
size_t FilterSize() const {
|
|
return filter_.size();
|
|
}
|
|
|
|
Slice FilterData() const { return Slice(filter_); }
|
|
|
|
void DumpFilter() {
|
|
fprintf(stderr, "F(");
|
|
for (size_t i = 0; i+1 < filter_.size(); i++) {
|
|
const unsigned int c = static_cast<unsigned int>(filter_[i]);
|
|
for (int j = 0; j < 8; j++) {
|
|
fprintf(stderr, "%c", (c & (1 <<j)) ? '1' : '.');
|
|
}
|
|
}
|
|
fprintf(stderr, ")\n");
|
|
}
|
|
|
|
bool Matches(const Slice& s) {
|
|
if (!keys_.empty()) {
|
|
Build();
|
|
}
|
|
return policy_->KeyMayMatch(s, filter_);
|
|
}
|
|
|
|
double FalsePositiveRate() {
|
|
char buffer[sizeof(int)];
|
|
int result = 0;
|
|
for (int i = 0; i < 10000; i++) {
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
result++;
|
|
}
|
|
}
|
|
return result / 10000.0;
|
|
}
|
|
};
|
|
|
|
TEST_F(BlockBasedBloomTest, EmptyFilter) {
|
|
ASSERT_TRUE(! Matches("hello"));
|
|
ASSERT_TRUE(! Matches("world"));
|
|
}
|
|
|
|
TEST_F(BlockBasedBloomTest, Small) {
|
|
Add("hello");
|
|
Add("world");
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
ASSERT_TRUE(! Matches("x"));
|
|
ASSERT_TRUE(! Matches("foo"));
|
|
}
|
|
|
|
TEST_F(BlockBasedBloomTest, VaryingLengths) {
|
|
char buffer[sizeof(int)];
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
Reset();
|
|
for (int i = 0; i < length; i++) {
|
|
Add(Key(i, buffer));
|
|
}
|
|
Build();
|
|
|
|
ASSERT_LE(FilterSize(), (size_t)((length * 10 / 8) + 40)) << length;
|
|
|
|
// All added keys must match
|
|
for (int i = 0; i < length; i++) {
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
<< "Length " << length << "; key " << i;
|
|
}
|
|
|
|
// Check false positive rate
|
|
double rate = FalsePositiveRate();
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
}
|
|
ASSERT_LE(rate, 0.02); // Must not be over 2%
|
|
if (rate > 0.0125) mediocre_filters++; // Allowed, but not too often
|
|
else good_filters++;
|
|
}
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
good_filters, mediocre_filters);
|
|
}
|
|
ASSERT_LE(mediocre_filters, good_filters/5);
|
|
}
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
// incompatible way
|
|
TEST_F(BlockBasedBloomTest, Schema) {
|
|
char buffer[sizeof(int)];
|
|
|
|
ResetPolicy(8); // num_probes = 5
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 3589896109U);
|
|
|
|
ResetPolicy(9); // num_probes = 6
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 969445585U);
|
|
|
|
ResetPolicy(11); // num_probes = 7
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 1694458207U);
|
|
|
|
ResetPolicy(10); // num_probes = 6
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 2373646410U);
|
|
|
|
ResetPolicy(10);
|
|
for (int key = /*CHANGED*/ 1; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 1908442116U);
|
|
|
|
ResetPolicy(10);
|
|
for (int key = 1; key < /*CHANGED*/ 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), 3057004015U);
|
|
|
|
// With new fractional bits_per_key, check that we are rounding to
|
|
// whole bits per key for old Bloom filters.
|
|
ResetPolicy(9.5); // Treated as 10
|
|
for (int key = 1; key < 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), /*SAME*/ 3057004015U);
|
|
|
|
ResetPolicy(10.499); // Treated as 10
|
|
for (int key = 1; key < 88; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
ASSERT_EQ(BloomHash(FilterData()), /*SAME*/ 3057004015U);
|
|
|
|
ResetPolicy();
|
|
}
|
|
|
|
// Different bits-per-byte
|
|
|
|
class FullBloomTest : public testing::TestWithParam<BloomFilterPolicy::Mode> {
|
|
protected:
|
|
BlockBasedTableOptions table_options_;
|
|
|
|
private:
|
|
std::shared_ptr<const FilterPolicy>& policy_;
|
|
std::unique_ptr<FilterBitsBuilder> bits_builder_;
|
|
std::unique_ptr<FilterBitsReader> bits_reader_;
|
|
std::unique_ptr<const char[]> buf_;
|
|
size_t filter_size_;
|
|
|
|
public:
|
|
FullBloomTest() : policy_(table_options_.filter_policy), filter_size_(0) {
|
|
ResetPolicy();
|
|
}
|
|
|
|
BuiltinFilterBitsBuilder* GetBuiltinFilterBitsBuilder() {
|
|
// Throws on bad cast
|
|
return &dynamic_cast<BuiltinFilterBitsBuilder&>(*bits_builder_);
|
|
}
|
|
|
|
const BloomFilterPolicy* GetBloomFilterPolicy() {
|
|
// Throws on bad cast
|
|
return &dynamic_cast<const BloomFilterPolicy&>(*policy_);
|
|
}
|
|
|
|
void Reset() {
|
|
bits_builder_.reset(BloomFilterPolicy::GetBuilderFromContext(
|
|
FilterBuildingContext(table_options_)));
|
|
bits_reader_.reset(nullptr);
|
|
buf_.reset(nullptr);
|
|
filter_size_ = 0;
|
|
}
|
|
|
|
void ResetPolicy(double bits_per_key) {
|
|
policy_.reset(new BloomFilterPolicy(bits_per_key, GetParam()));
|
|
Reset();
|
|
}
|
|
|
|
void ResetPolicy() { ResetPolicy(FLAGS_bits_per_key); }
|
|
|
|
void Add(const Slice& s) {
|
|
bits_builder_->AddKey(s);
|
|
}
|
|
|
|
void OpenRaw(const Slice& s) {
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(s));
|
|
}
|
|
|
|
void Build() {
|
|
Slice filter = bits_builder_->Finish(&buf_);
|
|
bits_reader_.reset(policy_->GetFilterBitsReader(filter));
|
|
filter_size_ = filter.size();
|
|
}
|
|
|
|
size_t FilterSize() const {
|
|
return filter_size_;
|
|
}
|
|
|
|
Slice FilterData() { return Slice(buf_.get(), filter_size_); }
|
|
|
|
int GetNumProbesFromFilterData() {
|
|
assert(filter_size_ >= 5);
|
|
int8_t raw_num_probes = static_cast<int8_t>(buf_.get()[filter_size_ - 5]);
|
|
if (raw_num_probes == -1) { // New bloom filter marker
|
|
return static_cast<uint8_t>(buf_.get()[filter_size_ - 3]);
|
|
} else {
|
|
return raw_num_probes;
|
|
}
|
|
}
|
|
|
|
int GetRibbonSeedFromFilterData() {
|
|
assert(filter_size_ >= 5);
|
|
// Check for ribbon marker
|
|
assert(-2 == static_cast<int8_t>(buf_.get()[filter_size_ - 5]));
|
|
return static_cast<uint8_t>(buf_.get()[filter_size_ - 4]);
|
|
}
|
|
|
|
bool Matches(const Slice& s) {
|
|
if (bits_reader_ == nullptr) {
|
|
Build();
|
|
}
|
|
return bits_reader_->MayMatch(s);
|
|
}
|
|
|
|
// Provides a kind of fingerprint on the Bloom filter's
|
|
// behavior, for reasonbly high FP rates.
|
|
uint64_t PackedMatches() {
|
|
char buffer[sizeof(int)];
|
|
uint64_t result = 0;
|
|
for (int i = 0; i < 64; i++) {
|
|
if (Matches(Key(i + 12345, buffer))) {
|
|
result |= uint64_t{1} << i;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Provides a kind of fingerprint on the Bloom filter's
|
|
// behavior, for lower FP rates.
|
|
std::string FirstFPs(int count) {
|
|
char buffer[sizeof(int)];
|
|
std::string rv;
|
|
int fp_count = 0;
|
|
for (int i = 0; i < 1000000; i++) {
|
|
// Pack four match booleans into each hexadecimal digit
|
|
if (Matches(Key(i + 1000000, buffer))) {
|
|
++fp_count;
|
|
rv += std::to_string(i);
|
|
if (fp_count == count) {
|
|
break;
|
|
}
|
|
rv += ',';
|
|
}
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
double FalsePositiveRate() {
|
|
char buffer[sizeof(int)];
|
|
int result = 0;
|
|
for (int i = 0; i < 10000; i++) {
|
|
if (Matches(Key(i + 1000000000, buffer))) {
|
|
result++;
|
|
}
|
|
}
|
|
return result / 10000.0;
|
|
}
|
|
};
|
|
|
|
TEST_P(FullBloomTest, FilterSize) {
|
|
// In addition to checking the consistency of space computation, we are
|
|
// checking that denoted and computed doubles are interpreted as expected
|
|
// as bits_per_key values.
|
|
bool some_computed_less_than_denoted = false;
|
|
// Note: enforced minimum is 1 bit per key (1000 millibits), and enforced
|
|
// maximum is 100 bits per key (100000 millibits).
|
|
for (auto bpk :
|
|
std::vector<std::pair<double, int> >{{-HUGE_VAL, 1000},
|
|
{-INFINITY, 1000},
|
|
{0.0, 1000},
|
|
{1.234, 1234},
|
|
{3.456, 3456},
|
|
{9.5, 9500},
|
|
{10.0, 10000},
|
|
{10.499, 10499},
|
|
{21.345, 21345},
|
|
{99.999, 99999},
|
|
{1234.0, 100000},
|
|
{HUGE_VAL, 100000},
|
|
{INFINITY, 100000},
|
|
{NAN, 100000}}) {
|
|
ResetPolicy(bpk.first);
|
|
auto bfp = GetBloomFilterPolicy();
|
|
EXPECT_EQ(bpk.second, bfp->GetMillibitsPerKey());
|
|
EXPECT_EQ((bpk.second + 500) / 1000, bfp->GetWholeBitsPerKey());
|
|
|
|
double computed = bpk.first;
|
|
// This transforms e.g. 9.5 -> 9.499999999999998, which we still
|
|
// round to 10 for whole bits per key.
|
|
computed += 0.5;
|
|
computed /= 1234567.0;
|
|
computed *= 1234567.0;
|
|
computed -= 0.5;
|
|
some_computed_less_than_denoted |= (computed < bpk.first);
|
|
ResetPolicy(computed);
|
|
bfp = GetBloomFilterPolicy();
|
|
EXPECT_EQ(bpk.second, bfp->GetMillibitsPerKey());
|
|
EXPECT_EQ((bpk.second + 500) / 1000, bfp->GetWholeBitsPerKey());
|
|
|
|
auto bits_builder = GetBuiltinFilterBitsBuilder();
|
|
|
|
size_t n = 1;
|
|
size_t space = 0;
|
|
for (; n < 100; n++) {
|
|
// Ensure consistency between CalculateSpace and ApproximateNumEntries
|
|
space = bits_builder->CalculateSpace(n);
|
|
size_t n2 = bits_builder->ApproximateNumEntries(space);
|
|
EXPECT_GE(n2, n);
|
|
size_t space2 = bits_builder->CalculateSpace(n2);
|
|
EXPECT_EQ(space, space2);
|
|
}
|
|
// Until size_t overflow
|
|
for (; n < (n + n / 3); n += n / 3) {
|
|
// Ensure space computation is not overflowing; capped is OK
|
|
size_t space2 = bits_builder->CalculateSpace(n);
|
|
EXPECT_GE(space2, space);
|
|
space = space2;
|
|
}
|
|
}
|
|
// Check that the compiler hasn't optimized our computation into nothing
|
|
EXPECT_TRUE(some_computed_less_than_denoted);
|
|
ResetPolicy();
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullEmptyFilter) {
|
|
// Empty filter is not match, at this level
|
|
ASSERT_TRUE(!Matches("hello"));
|
|
ASSERT_TRUE(!Matches("world"));
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullSmall) {
|
|
Add("hello");
|
|
Add("world");
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
ASSERT_TRUE(!Matches("x"));
|
|
ASSERT_TRUE(!Matches("foo"));
|
|
}
|
|
|
|
TEST_P(FullBloomTest, FullVaryingLengths) {
|
|
char buffer[sizeof(int)];
|
|
|
|
// Count number of filters that significantly exceed the false positive rate
|
|
int mediocre_filters = 0;
|
|
int good_filters = 0;
|
|
|
|
for (int length = 1; length <= 10000; length = NextLength(length)) {
|
|
Reset();
|
|
for (int i = 0; i < length; i++) {
|
|
Add(Key(i, buffer));
|
|
}
|
|
Build();
|
|
|
|
EXPECT_LE(FilterSize(),
|
|
(size_t)((length * 10 / 8) + CACHE_LINE_SIZE * 2 + 5));
|
|
|
|
// All added keys must match
|
|
for (int i = 0; i < length; i++) {
|
|
ASSERT_TRUE(Matches(Key(i, buffer)))
|
|
<< "Length " << length << "; key " << i;
|
|
}
|
|
|
|
// Check false positive rate
|
|
double rate = FalsePositiveRate();
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "False positives: %5.2f%% @ length = %6d ; bytes = %6d\n",
|
|
rate*100.0, length, static_cast<int>(FilterSize()));
|
|
}
|
|
EXPECT_LE(rate, 0.02); // Must not be over 2%
|
|
if (rate > 0.0125)
|
|
mediocre_filters++; // Allowed, but not too often
|
|
else
|
|
good_filters++;
|
|
}
|
|
if (kVerbose >= 1) {
|
|
fprintf(stderr, "Filters: %d good, %d mediocre\n",
|
|
good_filters, mediocre_filters);
|
|
}
|
|
EXPECT_LE(mediocre_filters, good_filters / 5);
|
|
}
|
|
|
|
TEST_P(FullBloomTest, OptimizeForMemory) {
|
|
if (GetParam() == BloomFilterPolicy::kStandard128Ribbon) {
|
|
// TODO Not yet implemented
|
|
return;
|
|
}
|
|
char buffer[sizeof(int)];
|
|
for (bool offm : {true, false}) {
|
|
table_options_.optimize_filters_for_memory = offm;
|
|
ResetPolicy();
|
|
Random32 rnd(12345);
|
|
uint64_t total_size = 0;
|
|
uint64_t total_mem = 0;
|
|
int64_t total_keys = 0;
|
|
double total_fp_rate = 0;
|
|
constexpr int nfilters = 100;
|
|
for (int i = 0; i < nfilters; ++i) {
|
|
int nkeys = static_cast<int>(rnd.Uniformish(10000)) + 100;
|
|
Reset();
|
|
for (int j = 0; j < nkeys; ++j) {
|
|
Add(Key(j, buffer));
|
|
}
|
|
Build();
|
|
size_t size = FilterData().size();
|
|
total_size += size;
|
|
// optimize_filters_for_memory currently depends on malloc_usable_size
|
|
// but we run the rest of the test to ensure no bad behavior without it.
|
|
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
|
|
size = malloc_usable_size(const_cast<char*>(FilterData().data()));
|
|
#endif // ROCKSDB_MALLOC_USABLE_SIZE
|
|
total_mem += size;
|
|
total_keys += nkeys;
|
|
total_fp_rate += FalsePositiveRate();
|
|
}
|
|
EXPECT_LE(total_fp_rate / double{nfilters}, 0.011);
|
|
EXPECT_GE(total_fp_rate / double{nfilters}, 0.008);
|
|
|
|
int64_t ex_min_total_size = int64_t{FLAGS_bits_per_key} * total_keys / 8;
|
|
EXPECT_GE(static_cast<int64_t>(total_size), ex_min_total_size);
|
|
|
|
int64_t blocked_bloom_overhead = nfilters * (CACHE_LINE_SIZE + 5);
|
|
if (GetParam() == BloomFilterPolicy::kLegacyBloom) {
|
|
// this config can add extra cache line to make odd number
|
|
blocked_bloom_overhead += nfilters * CACHE_LINE_SIZE;
|
|
}
|
|
|
|
EXPECT_GE(total_mem, total_size);
|
|
|
|
// optimize_filters_for_memory not implemented with legacy Bloom
|
|
if (offm && GetParam() != BloomFilterPolicy::kLegacyBloom) {
|
|
// This value can include a small extra penalty for kExtraPadding
|
|
fprintf(stderr, "Internal fragmentation (optimized): %g%%\n",
|
|
(total_mem - total_size) * 100.0 / total_size);
|
|
// Less than 1% internal fragmentation
|
|
EXPECT_LE(total_mem, total_size * 101 / 100);
|
|
// Up to 2% storage penalty
|
|
EXPECT_LE(static_cast<int64_t>(total_size),
|
|
ex_min_total_size * 102 / 100 + blocked_bloom_overhead);
|
|
} else {
|
|
fprintf(stderr, "Internal fragmentation (not optimized): %g%%\n",
|
|
(total_mem - total_size) * 100.0 / total_size);
|
|
// TODO: add control checks for more allocators?
|
|
#ifdef ROCKSDB_JEMALLOC
|
|
fprintf(stderr, "Jemalloc detected? %d\n", HasJemalloc());
|
|
if (HasJemalloc()) {
|
|
// More than 5% internal fragmentation
|
|
EXPECT_GE(total_mem, total_size * 105 / 100);
|
|
}
|
|
#endif // ROCKSDB_JEMALLOC
|
|
// No storage penalty, just usual overhead
|
|
EXPECT_LE(static_cast<int64_t>(total_size),
|
|
ex_min_total_size + blocked_bloom_overhead);
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
inline uint32_t SelectByCacheLineSize(uint32_t for64, uint32_t for128,
|
|
uint32_t for256) {
|
|
(void)for64;
|
|
(void)for128;
|
|
(void)for256;
|
|
#if CACHE_LINE_SIZE == 64
|
|
return for64;
|
|
#elif CACHE_LINE_SIZE == 128
|
|
return for128;
|
|
#elif CACHE_LINE_SIZE == 256
|
|
return for256;
|
|
#else
|
|
#error "CACHE_LINE_SIZE unknown or unrecognized"
|
|
#endif
|
|
}
|
|
} // namespace
|
|
|
|
// Ensure the implementation doesn't accidentally change in an
|
|
// incompatible way. This test doesn't check the reading side
|
|
// (FirstFPs/PackedMatches) for LegacyBloom because it requires the
|
|
// ability to read filters generated using other cache line sizes.
|
|
// See RawSchema.
|
|
TEST_P(FullBloomTest, Schema) {
|
|
#define EXPECT_EQ_Bloom(a, b) \
|
|
{ \
|
|
if (GetParam() != BloomFilterPolicy::kStandard128Ribbon) { \
|
|
EXPECT_EQ(a, b); \
|
|
} \
|
|
}
|
|
#define EXPECT_EQ_Ribbon(a, b) \
|
|
{ \
|
|
if (GetParam() == BloomFilterPolicy::kStandard128Ribbon) { \
|
|
EXPECT_EQ(a, b); \
|
|
} \
|
|
}
|
|
#define EXPECT_EQ_FastBloom(a, b) \
|
|
{ \
|
|
if (GetParam() == BloomFilterPolicy::kFastLocalBloom) { \
|
|
EXPECT_EQ(a, b); \
|
|
} \
|
|
}
|
|
#define EXPECT_EQ_LegacyBloom(a, b) \
|
|
{ \
|
|
if (GetParam() == BloomFilterPolicy::kLegacyBloom) { \
|
|
EXPECT_EQ(a, b); \
|
|
} \
|
|
}
|
|
#define EXPECT_EQ_NotLegacy(a, b) \
|
|
{ \
|
|
if (GetParam() != BloomFilterPolicy::kLegacyBloom) { \
|
|
EXPECT_EQ(a, b); \
|
|
} \
|
|
}
|
|
|
|
char buffer[sizeof(int)];
|
|
|
|
// First do a small number of keys, where Ribbon config will fall back on
|
|
// fast Bloom filter and generate the same data
|
|
ResetPolicy(5); // num_probes = 3
|
|
for (int key = 0; key < 87; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ(GetNumProbesFromFilterData(), 3);
|
|
|
|
EXPECT_EQ_NotLegacy(BloomHash(FilterData()), 4130687756U);
|
|
|
|
EXPECT_EQ_NotLegacy("31,38,40,43,61,83,86,112,125,131", FirstFPs(10));
|
|
|
|
// Now use enough keys so that changing bits / key by 1 is guaranteed to
|
|
// change number of allocated cache lines. So keys > max cache line bits.
|
|
|
|
// Note that the first attempted Ribbon seed is determined by the hash
|
|
// of the first key added (for pseudorandomness in practice, determinism in
|
|
// testing)
|
|
|
|
ResetPolicy(2); // num_probes = 1
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 1);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(1567096579, 1964771444, 2659542661U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 3817481309U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1705851228);
|
|
|
|
EXPECT_EQ_FastBloom("11,13,17,25,29,30,35,37,45,53", FirstFPs(10));
|
|
EXPECT_EQ_Ribbon("3,8,10,17,19,20,23,28,31,32", FirstFPs(10));
|
|
|
|
ResetPolicy(3); // num_probes = 2
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 2);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(2707206547U, 2571983456U, 218344685));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 2807269961U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1095342358);
|
|
|
|
EXPECT_EQ_FastBloom("4,15,17,24,27,28,29,53,63,70", FirstFPs(10));
|
|
EXPECT_EQ_Ribbon("3,17,20,28,32,33,36,43,49,54", FirstFPs(10));
|
|
|
|
ResetPolicy(5); // num_probes = 3
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 3);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(515748486, 94611728, 2436112214U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 204628445);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 3971337699U);
|
|
|
|
EXPECT_EQ_FastBloom("15,24,29,39,53,87,89,100,103,104", FirstFPs(10));
|
|
EXPECT_EQ_Ribbon("3,33,36,43,67,70,76,78,84,102", FirstFPs(10));
|
|
|
|
ResetPolicy(8); // num_probes = 5
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 5);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(1302145999, 2811644657U, 756553699));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 355564975);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 3651449053U);
|
|
|
|
EXPECT_EQ_FastBloom("16,60,66,126,220,238,244,256,265,287", FirstFPs(10));
|
|
EXPECT_EQ_Ribbon("33,187,203,296,300,322,411,419,547,582", FirstFPs(10));
|
|
|
|
ResetPolicy(9); // num_probes = 6
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(2092755149, 661139132, 1182970461));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 2137566013U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1005676675);
|
|
|
|
EXPECT_EQ_FastBloom("156,367,791,872,945,1015,1139,1159,1265", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("33,187,203,296,411,419,604,612,615,619", FirstFPs(10));
|
|
|
|
ResetPolicy(11); // num_probes = 7
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 7);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(3755609649U, 1812694762, 1449142939));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 2561502687U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 3129900846U);
|
|
|
|
EXPECT_EQ_FastBloom("34,74,130,236,643,882,962,1015,1035,1110", FirstFPs(10));
|
|
EXPECT_EQ_Ribbon("411,419,623,665,727,794,955,1052,1323,1330", FirstFPs(10));
|
|
|
|
// This used to be 9 probes, but 8 is a better choice for speed,
|
|
// especially with SIMD groups of 8 probes, with essentially no
|
|
// change in FP rate.
|
|
// FP rate @ 9 probes, old Bloom: 0.4321%
|
|
// FP rate @ 9 probes, new Bloom: 0.1846%
|
|
// FP rate @ 8 probes, new Bloom: 0.1843%
|
|
ResetPolicy(14); // num_probes = 8 (new), 9 (old)
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_LegacyBloom(GetNumProbesFromFilterData(), 9);
|
|
EXPECT_EQ_FastBloom(GetNumProbesFromFilterData(), 8);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(178861123, 379087593, 2574136516U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 3709876890U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1855638875);
|
|
|
|
EXPECT_EQ_FastBloom("130,240,522,565,989,2002,2526,3147,3543", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("665,727,1323,1755,3866,4232,4442,4492,4736", FirstFPs(9));
|
|
|
|
// This used to be 11 probes, but 9 is a better choice for speed
|
|
// AND accuracy.
|
|
// FP rate @ 11 probes, old Bloom: 0.3571%
|
|
// FP rate @ 11 probes, new Bloom: 0.0884%
|
|
// FP rate @ 9 probes, new Bloom: 0.0843%
|
|
ResetPolicy(16); // num_probes = 9 (new), 11 (old)
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_LegacyBloom(GetNumProbesFromFilterData(), 11);
|
|
EXPECT_EQ_FastBloom(GetNumProbesFromFilterData(), 9);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(1129406313, 3049154394U, 1727750964));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 1087138490);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 459379967);
|
|
|
|
EXPECT_EQ_FastBloom("3299,3611,3916,6620,7822,8079,8482,8942", FirstFPs(8));
|
|
EXPECT_EQ_Ribbon("727,1323,1755,4442,4736,5386,6974,7154,8222", FirstFPs(9));
|
|
|
|
ResetPolicy(10); // num_probes = 6, but different memory ratio vs. 9
|
|
for (int key = 0; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 61);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(1478976371, 2910591341U, 1182970461));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 2498541272U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1273231667);
|
|
|
|
EXPECT_EQ_FastBloom("16,126,133,422,466,472,813,1002,1035", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("296,411,419,612,619,623,630,665,686,727", FirstFPs(10));
|
|
|
|
ResetPolicy(10);
|
|
for (int key = /*CHANGED*/ 1; key < 2087; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), /*CHANGED*/ 184);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(4205696321U, 1132081253U, 2385981855U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 2058382345U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 3007790572U);
|
|
|
|
EXPECT_EQ_FastBloom("16,126,133,422,466,472,813,1002,1035", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("33,152,383,497,589,633,737,781,911,990", FirstFPs(10));
|
|
|
|
ResetPolicy(10);
|
|
for (int key = 1; key < /*CHANGED*/ 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 184);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
SelectByCacheLineSize(2885052954U, 769447944, 4175124908U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 23699164);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1942323379);
|
|
|
|
EXPECT_EQ_FastBloom("16,126,133,422,466,472,813,1002,1035", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("33,95,360,589,737,911,990,1048,1081,1414", FirstFPs(10));
|
|
|
|
// With new fractional bits_per_key, check that we are rounding to
|
|
// whole bits per key for old Bloom filters but fractional for
|
|
// new Bloom filter.
|
|
ResetPolicy(9.5);
|
|
for (int key = 1; key < 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_Bloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 184);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
/*SAME*/ SelectByCacheLineSize(2885052954U, 769447944, 4175124908U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 3166884174U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 1148258663);
|
|
|
|
EXPECT_EQ_FastBloom("126,156,367,444,458,791,813,976,1015", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("33,54,95,360,589,693,737,911,990,1048", FirstFPs(10));
|
|
|
|
ResetPolicy(10.499);
|
|
for (int key = 1; key < 2088; key++) {
|
|
Add(Key(key, buffer));
|
|
}
|
|
Build();
|
|
EXPECT_EQ_LegacyBloom(GetNumProbesFromFilterData(), 6);
|
|
EXPECT_EQ_FastBloom(GetNumProbesFromFilterData(), 7);
|
|
EXPECT_EQ_Ribbon(GetRibbonSeedFromFilterData(), 184);
|
|
|
|
EXPECT_EQ_LegacyBloom(
|
|
BloomHash(FilterData()),
|
|
/*SAME*/ SelectByCacheLineSize(2885052954U, 769447944, 4175124908U));
|
|
EXPECT_EQ_FastBloom(BloomHash(FilterData()), 4098502778U);
|
|
EXPECT_EQ_Ribbon(BloomHash(FilterData()), 792138188);
|
|
|
|
EXPECT_EQ_FastBloom("16,236,240,472,1015,1045,1111,1409,1465", FirstFPs(9));
|
|
EXPECT_EQ_Ribbon("33,95,360,589,737,990,1048,1081,1414,1643", FirstFPs(10));
|
|
|
|
ResetPolicy();
|
|
}
|
|
|
|
// A helper class for testing custom or corrupt filter bits as read by
|
|
// built-in FilterBitsReaders.
|
|
struct RawFilterTester {
|
|
// Buffer, from which we always return a tail Slice, so the
|
|
// last five bytes are always the metadata bytes.
|
|
std::array<char, 3000> data_;
|
|
// Points five bytes from the end
|
|
char* metadata_ptr_;
|
|
|
|
RawFilterTester() : metadata_ptr_(&*(data_.end() - 5)) {}
|
|
|
|
Slice ResetNoFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes) {
|
|
metadata_ptr_[0] = static_cast<char>(num_probes);
|
|
EncodeFixed32(metadata_ptr_ + 1, num_lines);
|
|
uint32_t len = len_without_metadata + /*metadata*/ 5;
|
|
assert(len <= data_.size());
|
|
return Slice(metadata_ptr_ - len_without_metadata, len);
|
|
}
|
|
|
|
Slice Reset(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes, bool fill_ones) {
|
|
data_.fill(fill_ones ? 0xff : 0);
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
}
|
|
|
|
Slice ResetWeirdFill(uint32_t len_without_metadata, uint32_t num_lines,
|
|
uint32_t num_probes) {
|
|
for (uint32_t i = 0; i < data_.size(); ++i) {
|
|
data_[i] = static_cast<char>(0x7b7b >> (i % 7));
|
|
}
|
|
return ResetNoFill(len_without_metadata, num_lines, num_probes);
|
|
}
|
|
};
|
|
|
|
TEST_P(FullBloomTest, RawSchema) {
|
|
RawFilterTester cft;
|
|
// Legacy Bloom configurations
|
|
// Two probes, about 3/4 bits set: ~50% "FP" rate
|
|
// One 256-byte cache line.
|
|
OpenRaw(cft.ResetWeirdFill(256, 1, 2));
|
|
EXPECT_EQ(uint64_t{11384799501900898790U}, PackedMatches());
|
|
|
|
// Two 128-byte cache lines.
|
|
OpenRaw(cft.ResetWeirdFill(256, 2, 2));
|
|
EXPECT_EQ(uint64_t{10157853359773492589U}, PackedMatches());
|
|
|
|
// Four 64-byte cache lines.
|
|
OpenRaw(cft.ResetWeirdFill(256, 4, 2));
|
|
EXPECT_EQ(uint64_t{7123594913907464682U}, PackedMatches());
|
|
|
|
// Fast local Bloom configurations (marker 255 -> -1)
|
|
// Two probes, about 3/4 bits set: ~50% "FP" rate
|
|
// Four 64-byte cache lines.
|
|
OpenRaw(cft.ResetWeirdFill(256, 2U << 8, 255));
|
|
EXPECT_EQ(uint64_t{9957045189927952471U}, PackedMatches());
|
|
|
|
// Ribbon configurations (marker 254 -> -2)
|
|
|
|
// Even though the builder never builds configurations this
|
|
// small (preferring Bloom), we can test that the configuration
|
|
// can be read, for possible future-proofing.
|
|
|
|
// 256 slots, one result column = 32 bytes (2 blocks, seed 0)
|
|
// ~50% FP rate:
|
|
// 0b0101010111110101010000110000011011011111100100001110010011101010
|
|
OpenRaw(cft.ResetWeirdFill(32, 2U << 8, 254));
|
|
EXPECT_EQ(uint64_t{6193930559317665002U}, PackedMatches());
|
|
|
|
// 256 slots, three-to-four result columns = 112 bytes
|
|
// ~ 1 in 10 FP rate:
|
|
// 0b0000000000100000000000000000000001000001000000010000101000000000
|
|
OpenRaw(cft.ResetWeirdFill(112, 2U << 8, 254));
|
|
EXPECT_EQ(uint64_t{9007200345328128U}, PackedMatches());
|
|
}
|
|
|
|
TEST_P(FullBloomTest, CorruptFilters) {
|
|
RawFilterTester cft;
|
|
|
|
for (bool fill : {false, true}) {
|
|
// Legacy Bloom configurations
|
|
// Good filter bits - returns same as fill
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE * 3, 3, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 256 is unusual but legal cache line size
|
|
OpenRaw(cft.Reset(256 * 3, 3, 6, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 30 should be max num_probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 30, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Good filter bits - returns same as fill
|
|
// 1 should be min num_probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 1, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Type 1 trivial filter bits - returns true as if FP by zero probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 0, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
OpenRaw(cft.Reset(0, 0, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as if built from zero keys
|
|
OpenRaw(cft.Reset(0, 37, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Type 2 trivial filter bits - returns false as 0 size trumps 0 probes
|
|
OpenRaw(cft.Reset(0, 0, 0, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// No solution to 0 * x == CACHE_LINE_SIZE
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 0, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// Can't have 3 * x == 4 for integer x
|
|
OpenRaw(cft.Reset(4, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// 97 bytes is not a power of two, so not a legal cache line size
|
|
OpenRaw(cft.Reset(97 * 3, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns true for safety
|
|
// 65 bytes is not a power of two, so not a legal cache line size
|
|
OpenRaw(cft.Reset(65 * 3, 3, 6, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad filter bits - returns false as if built from zero keys
|
|
// < 5 bytes overall means missing even metadata
|
|
OpenRaw(cft.Reset(static_cast<uint32_t>(-1), 3, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(static_cast<uint32_t>(-5), 3, 6, fill));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
// 31 is not a useful num_probes, nor generated by RocksDB unless directly
|
|
// using filter bits API without BloomFilterPolicy.
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 31, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Dubious filter bits - returns same as fill (for now)
|
|
// Similar, with 127, largest positive char
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 127, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
// num_probes set to 128 / -128, lowest negative char
|
|
// NB: Bug in implementation interprets this as negative and has same
|
|
// effect as zero probes, but effectively reserves negative char values
|
|
// for future use.
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 128, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Dubious filter bits - returns true (for now)
|
|
// Similar, with 253 / -3
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 1, 253, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// #########################################################
|
|
// Fast local Bloom configurations (marker 255 -> -1)
|
|
// Good config with six probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 6U << 8, 255, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Becomes bad/reserved config (always true) if any other byte set
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, (6U << 8) | 1U, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, (6U << 8) | (1U << 16), 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, (6U << 8) | (1U << 24), 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Good config, max 30 probes
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 30U << 8, 255, fill));
|
|
ASSERT_EQ(fill, Matches("hello"));
|
|
ASSERT_EQ(fill, Matches("world"));
|
|
|
|
// Bad/reserved config (always true) if more than 30
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 31U << 8, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 33U << 8, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 66U << 8, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
OpenRaw(cft.Reset(CACHE_LINE_SIZE, 130U << 8, 255, fill));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
}
|
|
|
|
// #########################################################
|
|
// Ribbon configurations (marker 254 -> -2)
|
|
// ("fill" doesn't work to detect good configurations, we just
|
|
// have to rely on TN probability)
|
|
|
|
// Good: 2 blocks * 16 bytes / segment * 4 columns = 128 bytes
|
|
// seed = 123
|
|
OpenRaw(cft.Reset(128, (2U << 8) + 123U, 254, false));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Good: 2 blocks * 16 bytes / segment * 8 columns = 256 bytes
|
|
OpenRaw(cft.Reset(256, (2U << 8) + 123U, 254, false));
|
|
ASSERT_FALSE(Matches("hello"));
|
|
ASSERT_FALSE(Matches("world"));
|
|
|
|
// Surprisingly OK: 5000 blocks (640,000 slots) in only 1024 bits
|
|
// -> average close to 0 columns
|
|
OpenRaw(cft.Reset(128, (5000U << 8) + 123U, 254, false));
|
|
// *Almost* all FPs
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
// Need many queries to find a "true negative"
|
|
for (int i = 0; Matches(ToString(i)); ++i) {
|
|
ASSERT_LT(i, 1000);
|
|
}
|
|
|
|
// Bad: 1 block not allowed (for implementation detail reasons)
|
|
OpenRaw(cft.Reset(128, (1U << 8) + 123U, 254, false));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
|
|
// Bad: 0 blocks not allowed
|
|
OpenRaw(cft.Reset(128, (0U << 8) + 123U, 254, false));
|
|
ASSERT_TRUE(Matches("hello"));
|
|
ASSERT_TRUE(Matches("world"));
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Full, FullBloomTest,
|
|
testing::Values(BloomFilterPolicy::kLegacyBloom,
|
|
BloomFilterPolicy::kFastLocalBloom,
|
|
BloomFilterPolicy::kStandard128Ribbon));
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|
|
int main(int argc, char** argv) {
|
|
::testing::InitGoogleTest(&argc, argv);
|
|
ParseCommandLineFlags(&argc, &argv, true);
|
|
|
|
return RUN_ALL_TESTS();
|
|
}
|
|
|
|
#endif // GFLAGS
|