rocksdb/third-party/folly/folly/Optional.h
Aaryaman Sagar 38b03c840e Port folly/synchronization/DistributedMutex to rocksdb (#5642)
Summary:
This ports `folly::DistributedMutex` into RocksDB. The PR includes everything else needed to compile and use DistributedMutex as a component within folly. Most files are unchanged except for some portability stuff and includes.

For now, I've put this under `rocksdb/third-party`, but if there is a better folder to put this under, let me know. I also am not sure how or where to put unit tests for third-party stuff like this. It seems like gtest is included already, but I need to link with it from another third-party folder.

This also includes some other common components from folly

- folly/Optional
- folly/ScopeGuard (In particular `SCOPE_EXIT`)
- folly/synchronization/ParkingLot (A portable futex-like interface)
- folly/synchronization/AtomicNotification (The standard C++ interface for futexes)
- folly/Indestructible (For singletons that don't get destroyed without allocations)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5642

Differential Revision: D16544439

fbshipit-source-id: 179b98b5dcddc3075926d31a30f92fd064245731
2019-08-07 14:34:19 -07:00

571 lines
14 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
/*
* Optional - For conditional initialization of values, like boost::optional,
* but with support for move semantics and emplacement. Reference type support
* has not been included due to limited use cases and potential confusion with
* semantics of assignment: Assigning to an optional reference could quite
* reasonably copy its value or redirect the reference.
*
* Optional can be useful when a variable might or might not be needed:
*
* Optional<Logger> maybeLogger = ...;
* if (maybeLogger) {
* maybeLogger->log("hello");
* }
*
* Optional enables a 'null' value for types which do not otherwise have
* nullability, especially useful for parameter passing:
*
* void testIterator(const unique_ptr<Iterator>& it,
* initializer_list<int> idsExpected,
* Optional<initializer_list<int>> ranksExpected = none) {
* for (int i = 0; it->next(); ++i) {
* EXPECT_EQ(it->doc().id(), idsExpected[i]);
* if (ranksExpected) {
* EXPECT_EQ(it->doc().rank(), (*ranksExpected)[i]);
* }
* }
* }
*
* Optional models OptionalPointee, so calling 'get_pointer(opt)' will return a
* pointer to nullptr if the 'opt' is empty, and a pointer to the value if it is
* not:
*
* Optional<int> maybeInt = ...;
* if (int* v = get_pointer(maybeInt)) {
* cout << *v << endl;
* }
*/
#include <cstddef>
#include <functional>
#include <new>
#include <stdexcept>
#include <type_traits>
#include <utility>
#include <folly/CPortability.h>
#include <folly/Traits.h>
#include <folly/Utility.h>
namespace folly {
template <class Value>
class Optional;
namespace detail {
template <class Value>
struct OptionalPromiseReturn;
} // namespace detail
struct None {
enum class _secret { _token };
/**
* No default constructor to support both `op = {}` and `op = none`
* as syntax for clearing an Optional, just like std::nullopt_t.
*/
constexpr explicit None(_secret) {}
};
constexpr None none{None::_secret::_token};
class FOLLY_EXPORT OptionalEmptyException : public std::runtime_error {
public:
OptionalEmptyException()
: std::runtime_error("Empty Optional cannot be unwrapped") {}
};
template <class Value>
class Optional {
public:
typedef Value value_type;
static_assert(
!std::is_reference<Value>::value,
"Optional may not be used with reference types");
static_assert(
!std::is_abstract<Value>::value,
"Optional may not be used with abstract types");
Optional() noexcept {}
Optional(const Optional& src) noexcept(
std::is_nothrow_copy_constructible<Value>::value) {
if (src.hasValue()) {
construct(src.value());
}
}
Optional(Optional&& src) noexcept(
std::is_nothrow_move_constructible<Value>::value) {
if (src.hasValue()) {
construct(std::move(src.value()));
src.clear();
}
}
/* implicit */ Optional(const None&) noexcept {}
/* implicit */ Optional(Value&& newValue) noexcept(
std::is_nothrow_move_constructible<Value>::value) {
construct(std::move(newValue));
}
/* implicit */ Optional(const Value& newValue) noexcept(
std::is_nothrow_copy_constructible<Value>::value) {
construct(newValue);
}
template <typename... Args>
explicit Optional(in_place_t, Args&&... args) noexcept(
std::is_nothrow_constructible<Value, Args...>::value)
: Optional{PrivateConstructor{}, std::forward<Args>(args)...} {}
template <typename U, typename... Args>
explicit Optional(
in_place_t,
std::initializer_list<U> il,
Args&&... args) noexcept(std::
is_nothrow_constructible<
Value,
std::initializer_list<U>,
Args...>::value)
: Optional{PrivateConstructor{}, il, std::forward<Args>(args)...} {}
// Used only when an Optional is used with coroutines on MSVC
/* implicit */ Optional(const detail::OptionalPromiseReturn<Value>& p)
: Optional{} {
p.promise_->value_ = this;
}
void assign(const None&) {
clear();
}
void assign(Optional&& src) {
if (this != &src) {
if (src.hasValue()) {
assign(std::move(src.value()));
src.clear();
} else {
clear();
}
}
}
void assign(const Optional& src) {
if (src.hasValue()) {
assign(src.value());
} else {
clear();
}
}
void assign(Value&& newValue) {
if (hasValue()) {
storage_.value = std::move(newValue);
} else {
construct(std::move(newValue));
}
}
void assign(const Value& newValue) {
if (hasValue()) {
storage_.value = newValue;
} else {
construct(newValue);
}
}
Optional& operator=(None) noexcept {
reset();
return *this;
}
template <class Arg>
Optional& operator=(Arg&& arg) {
assign(std::forward<Arg>(arg));
return *this;
}
Optional& operator=(Optional&& other) noexcept(
std::is_nothrow_move_assignable<Value>::value) {
assign(std::move(other));
return *this;
}
Optional& operator=(const Optional& other) noexcept(
std::is_nothrow_copy_assignable<Value>::value) {
assign(other);
return *this;
}
template <class... Args>
Value& emplace(Args&&... args) {
clear();
construct(std::forward<Args>(args)...);
return value();
}
template <class U, class... Args>
typename std::enable_if<
std::is_constructible<Value, std::initializer_list<U>&, Args&&...>::value,
Value&>::type
emplace(std::initializer_list<U> ilist, Args&&... args) {
clear();
construct(ilist, std::forward<Args>(args)...);
return value();
}
void reset() noexcept {
storage_.clear();
}
void clear() noexcept {
reset();
}
void swap(Optional& that) noexcept(IsNothrowSwappable<Value>::value) {
if (hasValue() && that.hasValue()) {
using std::swap;
swap(value(), that.value());
} else if (hasValue()) {
that.emplace(std::move(value()));
reset();
} else if (that.hasValue()) {
emplace(std::move(that.value()));
that.reset();
}
}
const Value& value() const& {
require_value();
return storage_.value;
}
Value& value() & {
require_value();
return storage_.value;
}
Value&& value() && {
require_value();
return std::move(storage_.value);
}
const Value&& value() const&& {
require_value();
return std::move(storage_.value);
}
const Value* get_pointer() const& {
return storage_.hasValue ? &storage_.value : nullptr;
}
Value* get_pointer() & {
return storage_.hasValue ? &storage_.value : nullptr;
}
Value* get_pointer() && = delete;
bool has_value() const noexcept {
return storage_.hasValue;
}
bool hasValue() const noexcept {
return has_value();
}
explicit operator bool() const noexcept {
return has_value();
}
const Value& operator*() const& {
return value();
}
Value& operator*() & {
return value();
}
const Value&& operator*() const&& {
return std::move(value());
}
Value&& operator*() && {
return std::move(value());
}
const Value* operator->() const {
return &value();
}
Value* operator->() {
return &value();
}
// Return a copy of the value if set, or a given default if not.
template <class U>
Value value_or(U&& dflt) const& {
if (storage_.hasValue) {
return storage_.value;
}
return std::forward<U>(dflt);
}
template <class U>
Value value_or(U&& dflt) && {
if (storage_.hasValue) {
return std::move(storage_.value);
}
return std::forward<U>(dflt);
}
private:
template <class T>
friend Optional<_t<std::decay<T>>> make_optional(T&&);
template <class T, class... Args>
friend Optional<T> make_optional(Args&&... args);
template <class T, class U, class... As>
friend Optional<T> make_optional(std::initializer_list<U>, As&&...);
/**
* Construct the optional in place, this is duplicated as a non-explicit
* constructor to allow returning values that are non-movable from
* make_optional using list initialization.
*
* Until C++17, at which point this will become unnecessary because of
* specified prvalue elision.
*/
struct PrivateConstructor {
explicit PrivateConstructor() = default;
};
template <typename... Args>
Optional(PrivateConstructor, Args&&... args) noexcept(
std::is_constructible<Value, Args&&...>::value) {
construct(std::forward<Args>(args)...);
}
void require_value() const {
if (!storage_.hasValue) {
throw OptionalEmptyException{};
}
}
template <class... Args>
void construct(Args&&... args) {
const void* ptr = &storage_.value;
// For supporting const types.
new (const_cast<void*>(ptr)) Value(std::forward<Args>(args)...);
storage_.hasValue = true;
}
struct StorageTriviallyDestructible {
union {
char emptyState;
Value value;
};
bool hasValue;
StorageTriviallyDestructible()
: emptyState('\0'), hasValue{false} {}
void clear() {
hasValue = false;
}
};
struct StorageNonTriviallyDestructible {
union {
char emptyState;
Value value;
};
bool hasValue;
StorageNonTriviallyDestructible() : hasValue{false} {}
~StorageNonTriviallyDestructible() {
clear();
}
void clear() {
if (hasValue) {
hasValue = false;
value.~Value();
}
}
};
using Storage = typename std::conditional<
std::is_trivially_destructible<Value>::value,
StorageTriviallyDestructible,
StorageNonTriviallyDestructible>::type;
Storage storage_;
};
template <class T>
const T* get_pointer(const Optional<T>& opt) {
return opt.get_pointer();
}
template <class T>
T* get_pointer(Optional<T>& opt) {
return opt.get_pointer();
}
template <class T>
void swap(Optional<T>& a, Optional<T>& b) noexcept(noexcept(a.swap(b))) {
a.swap(b);
}
template <class T>
Optional<_t<std::decay<T>>> make_optional(T&& v) {
using PrivateConstructor =
typename folly::Optional<_t<std::decay<T>>>::PrivateConstructor;
return {PrivateConstructor{}, std::forward<T>(v)};
}
template <class T, class... Args>
folly::Optional<T> make_optional(Args&&... args) {
using PrivateConstructor = typename folly::Optional<T>::PrivateConstructor;
return {PrivateConstructor{}, std::forward<Args>(args)...};
}
template <class T, class U, class... Args>
folly::Optional<T> make_optional(
std::initializer_list<U> il,
Args&&... args) {
using PrivateConstructor = typename folly::Optional<T>::PrivateConstructor;
return {PrivateConstructor{}, il, std::forward<Args>(args)...};
}
///////////////////////////////////////////////////////////////////////////////
// Comparisons.
template <class U, class V>
bool operator==(const Optional<U>& a, const V& b) {
return a.hasValue() && a.value() == b;
}
template <class U, class V>
bool operator!=(const Optional<U>& a, const V& b) {
return !(a == b);
}
template <class U, class V>
bool operator==(const U& a, const Optional<V>& b) {
return b.hasValue() && b.value() == a;
}
template <class U, class V>
bool operator!=(const U& a, const Optional<V>& b) {
return !(a == b);
}
template <class U, class V>
bool operator==(const Optional<U>& a, const Optional<V>& b) {
if (a.hasValue() != b.hasValue()) {
return false;
}
if (a.hasValue()) {
return a.value() == b.value();
}
return true;
}
template <class U, class V>
bool operator!=(const Optional<U>& a, const Optional<V>& b) {
return !(a == b);
}
template <class U, class V>
bool operator<(const Optional<U>& a, const Optional<V>& b) {
if (a.hasValue() != b.hasValue()) {
return a.hasValue() < b.hasValue();
}
if (a.hasValue()) {
return a.value() < b.value();
}
return false;
}
template <class U, class V>
bool operator>(const Optional<U>& a, const Optional<V>& b) {
return b < a;
}
template <class U, class V>
bool operator<=(const Optional<U>& a, const Optional<V>& b) {
return !(b < a);
}
template <class U, class V>
bool operator>=(const Optional<U>& a, const Optional<V>& b) {
return !(a < b);
}
// Suppress comparability of Optional<T> with T, despite implicit conversion.
template <class V>
bool operator<(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator<=(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator>=(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator>(const Optional<V>&, const V& other) = delete;
template <class V>
bool operator<(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator<=(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator>=(const V& other, const Optional<V>&) = delete;
template <class V>
bool operator>(const V& other, const Optional<V>&) = delete;
// Comparisons with none
template <class V>
bool operator==(const Optional<V>& a, None) noexcept {
return !a.hasValue();
}
template <class V>
bool operator==(None, const Optional<V>& a) noexcept {
return !a.hasValue();
}
template <class V>
bool operator<(const Optional<V>&, None) noexcept {
return false;
}
template <class V>
bool operator<(None, const Optional<V>& a) noexcept {
return a.hasValue();
}
template <class V>
bool operator>(const Optional<V>& a, None) noexcept {
return a.hasValue();
}
template <class V>
bool operator>(None, const Optional<V>&) noexcept {
return false;
}
template <class V>
bool operator<=(None, const Optional<V>&) noexcept {
return true;
}
template <class V>
bool operator<=(const Optional<V>& a, None) noexcept {
return !a.hasValue();
}
template <class V>
bool operator>=(const Optional<V>&, None) noexcept {
return true;
}
template <class V>
bool operator>=(None, const Optional<V>& a) noexcept {
return !a.hasValue();
}
///////////////////////////////////////////////////////////////////////////////
} // namespace folly