rocksdb/utilities/write_batch_with_index/write_batch_with_index_internal.cc
mrambacher 01e460d538 Make types of Immutable/Mutable Options fields match that of the underlying Option (#8176)
Summary:
This PR is a first step at attempting to clean up some of the Mutable/Immutable Options code.  With this change, a DBOption and a ColumnFamilyOption can be reconstructed from their Mutable and Immutable equivalents, respectively.

readrandom tests do not show any performance degradation versus master (though both are slightly slower than the current 6.19 release).

There are still fields in the ImmutableCFOptions that are not CF options but DB options.  Eventually, I would like to move those into an ImmutableOptions (= ImmutableDBOptions+ImmutableCFOptions).  But that will be part of a future PR to minimize changes and disruptions.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/8176

Reviewed By: pdillinger

Differential Revision: D27954339

Pulled By: mrambacher

fbshipit-source-id: ec6b805ba9afe6e094bffdbd76246c2d99aa9fad
2021-04-22 20:43:54 -07:00

346 lines
12 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#ifndef ROCKSDB_LITE
#include "utilities/write_batch_with_index/write_batch_with_index_internal.h"
#include "db/column_family.h"
#include "db/db_impl/db_impl.h"
#include "db/merge_context.h"
#include "db/merge_helper.h"
#include "rocksdb/comparator.h"
#include "rocksdb/db.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "util/cast_util.h"
#include "util/coding.h"
#include "util/string_util.h"
namespace ROCKSDB_NAMESPACE {
class Env;
class Logger;
class Statistics;
Status ReadableWriteBatch::GetEntryFromDataOffset(size_t data_offset,
WriteType* type, Slice* Key,
Slice* value, Slice* blob,
Slice* xid) const {
if (type == nullptr || Key == nullptr || value == nullptr ||
blob == nullptr || xid == nullptr) {
return Status::InvalidArgument("Output parameters cannot be null");
}
if (data_offset == GetDataSize()) {
// reached end of batch.
return Status::NotFound();
}
if (data_offset > GetDataSize()) {
return Status::InvalidArgument("data offset exceed write batch size");
}
Slice input = Slice(rep_.data() + data_offset, rep_.size() - data_offset);
char tag;
uint32_t column_family;
Status s = ReadRecordFromWriteBatch(&input, &tag, &column_family, Key, value,
blob, xid);
if (!s.ok()) {
return s;
}
switch (tag) {
case kTypeColumnFamilyValue:
case kTypeValue:
*type = kPutRecord;
break;
case kTypeColumnFamilyDeletion:
case kTypeDeletion:
*type = kDeleteRecord;
break;
case kTypeColumnFamilySingleDeletion:
case kTypeSingleDeletion:
*type = kSingleDeleteRecord;
break;
case kTypeColumnFamilyRangeDeletion:
case kTypeRangeDeletion:
*type = kDeleteRangeRecord;
break;
case kTypeColumnFamilyMerge:
case kTypeMerge:
*type = kMergeRecord;
break;
case kTypeLogData:
*type = kLogDataRecord;
break;
case kTypeNoop:
case kTypeBeginPrepareXID:
case kTypeBeginPersistedPrepareXID:
case kTypeBeginUnprepareXID:
case kTypeEndPrepareXID:
case kTypeCommitXID:
case kTypeRollbackXID:
*type = kXIDRecord;
break;
default:
return Status::Corruption("unknown WriteBatch tag ",
ToString(static_cast<unsigned int>(tag)));
}
return Status::OK();
}
// If both of `entry1` and `entry2` point to real entry in write batch, we
// compare the entries as following:
// 1. first compare the column family, the one with larger CF will be larger;
// 2. Inside the same CF, we first decode the entry to find the key of the entry
// and the entry with larger key will be larger;
// 3. If two entries are of the same CF and offset, the one with larger offset
// will be larger.
// Some times either `entry1` or `entry2` is dummy entry, which is actually
// a search key. In this case, in step 2, we don't go ahead and decode the
// entry but use the value in WriteBatchIndexEntry::search_key.
// One special case is WriteBatchIndexEntry::key_size is kFlagMinInCf.
// This indicate that we are going to seek to the first of the column family.
// Once we see this, this entry will be smaller than all the real entries of
// the column family.
int WriteBatchEntryComparator::operator()(
const WriteBatchIndexEntry* entry1,
const WriteBatchIndexEntry* entry2) const {
if (entry1->column_family > entry2->column_family) {
return 1;
} else if (entry1->column_family < entry2->column_family) {
return -1;
}
// Deal with special case of seeking to the beginning of a column family
if (entry1->is_min_in_cf()) {
return -1;
} else if (entry2->is_min_in_cf()) {
return 1;
}
Slice key1, key2;
if (entry1->search_key == nullptr) {
key1 = Slice(write_batch_->Data().data() + entry1->key_offset,
entry1->key_size);
} else {
key1 = *(entry1->search_key);
}
if (entry2->search_key == nullptr) {
key2 = Slice(write_batch_->Data().data() + entry2->key_offset,
entry2->key_size);
} else {
key2 = *(entry2->search_key);
}
int cmp = CompareKey(entry1->column_family, key1, key2);
if (cmp != 0) {
return cmp;
} else if (entry1->offset > entry2->offset) {
return 1;
} else if (entry1->offset < entry2->offset) {
return -1;
}
return 0;
}
int WriteBatchEntryComparator::CompareKey(uint32_t column_family,
const Slice& key1,
const Slice& key2) const {
if (column_family < cf_comparators_.size() &&
cf_comparators_[column_family] != nullptr) {
return cf_comparators_[column_family]->Compare(key1, key2);
} else {
return default_comparator_->Compare(key1, key2);
}
}
WriteEntry WBWIIteratorImpl::Entry() const {
WriteEntry ret;
Slice blob, xid;
const WriteBatchIndexEntry* iter_entry = skip_list_iter_.key();
// this is guaranteed with Valid()
assert(iter_entry != nullptr &&
iter_entry->column_family == column_family_id_);
auto s = write_batch_->GetEntryFromDataOffset(
iter_entry->offset, &ret.type, &ret.key, &ret.value, &blob, &xid);
assert(s.ok());
assert(ret.type == kPutRecord || ret.type == kDeleteRecord ||
ret.type == kSingleDeleteRecord || ret.type == kDeleteRangeRecord ||
ret.type == kMergeRecord);
return ret;
}
bool WBWIIteratorImpl::MatchesKey(uint32_t cf_id, const Slice& key) {
if (Valid()) {
return comparator_->CompareKey(cf_id, key, Entry().key) == 0;
} else {
return false;
}
}
WriteBatchWithIndexInternal::WriteBatchWithIndexInternal(
DB* db, ColumnFamilyHandle* column_family)
: db_(db), db_options_(nullptr), column_family_(column_family) {
if (db_ != nullptr && column_family_ == nullptr) {
column_family_ = db_->DefaultColumnFamily();
}
}
WriteBatchWithIndexInternal::WriteBatchWithIndexInternal(
const DBOptions* db_options, ColumnFamilyHandle* column_family)
: db_(nullptr), db_options_(db_options), column_family_(column_family) {}
Status WriteBatchWithIndexInternal::MergeKey(const Slice& key,
const Slice* value,
MergeContext& merge_context,
std::string* result,
Slice* result_operand) {
if (column_family_ != nullptr) {
auto cfh = static_cast_with_check<ColumnFamilyHandleImpl>(column_family_);
const auto merge_operator = cfh->cfd()->ioptions()->merge_operator.get();
if (merge_operator == nullptr) {
return Status::InvalidArgument(
"Merge_operator must be set for column_family");
} else if (db_ != nullptr) {
const ImmutableDBOptions& immutable_db_options =
static_cast_with_check<DBImpl>(db_->GetRootDB())
->immutable_db_options();
Statistics* statistics = immutable_db_options.statistics.get();
Logger* logger = immutable_db_options.info_log.get();
SystemClock* clock = immutable_db_options.clock;
return MergeHelper::TimedFullMerge(
merge_operator, key, value, merge_context.GetOperands(), result,
logger, statistics, clock, result_operand);
} else if (db_options_ != nullptr) {
Statistics* statistics = db_options_->statistics.get();
Env* env = db_options_->env;
Logger* logger = db_options_->info_log.get();
SystemClock* clock = env->GetSystemClock().get();
return MergeHelper::TimedFullMerge(
merge_operator, key, value, merge_context.GetOperands(), result,
logger, statistics, clock, result_operand);
} else {
return MergeHelper::TimedFullMerge(
merge_operator, key, value, merge_context.GetOperands(), result,
nullptr, nullptr, SystemClock::Default().get(), result_operand);
}
} else {
return Status::InvalidArgument("Must provide a column_family");
}
}
WriteBatchWithIndexInternal::Result WriteBatchWithIndexInternal::GetFromBatch(
WriteBatchWithIndex* batch, const Slice& key, MergeContext* merge_context,
std::string* value, bool overwrite_key, Status* s) {
uint32_t cf_id = GetColumnFamilyID(column_family_);
*s = Status::OK();
Result result = kNotFound;
std::unique_ptr<WBWIIteratorImpl> iter(
static_cast_with_check<WBWIIteratorImpl>(
batch->NewIterator(column_family_)));
// We want to iterate in the reverse order that the writes were added to the
// batch. Since we don't have a reverse iterator, we must seek past the end.
// TODO(agiardullo): consider adding support for reverse iteration
iter->Seek(key);
while (iter->Valid() && iter->MatchesKey(cf_id, key)) {
iter->Next();
}
if (!(*s).ok()) {
return WriteBatchWithIndexInternal::kError;
}
if (!iter->Valid()) {
// Read past end of results. Reposition on last result.
iter->SeekToLast();
} else {
iter->Prev();
}
Slice entry_value;
while (iter->Valid()) {
if (!iter->MatchesKey(cf_id, key)) {
// Unexpected error or we've reached a different next key
break;
}
const WriteEntry entry = iter->Entry();
switch (entry.type) {
case kPutRecord: {
result = WriteBatchWithIndexInternal::Result::kFound;
entry_value = entry.value;
break;
}
case kMergeRecord: {
result = WriteBatchWithIndexInternal::Result::kMergeInProgress;
merge_context->PushOperand(entry.value);
break;
}
case kDeleteRecord:
case kSingleDeleteRecord: {
result = WriteBatchWithIndexInternal::Result::kDeleted;
break;
}
case kLogDataRecord:
case kXIDRecord: {
// ignore
break;
}
default: {
result = WriteBatchWithIndexInternal::Result::kError;
(*s) = Status::Corruption("Unexpected entry in WriteBatchWithIndex:",
ToString(entry.type));
break;
}
}
if (result == WriteBatchWithIndexInternal::Result::kFound ||
result == WriteBatchWithIndexInternal::Result::kDeleted ||
result == WriteBatchWithIndexInternal::Result::kError) {
// We can stop iterating once we find a PUT or DELETE
break;
}
if (result == WriteBatchWithIndexInternal::Result::kMergeInProgress &&
overwrite_key == true) {
// Since we've overwritten keys, we do not know what other operations are
// in this batch for this key, so we cannot do a Merge to compute the
// result. Instead, we will simply return MergeInProgress.
break;
}
iter->Prev();
}
if ((*s).ok()) {
if (result == WriteBatchWithIndexInternal::Result::kFound ||
result == WriteBatchWithIndexInternal::Result::kDeleted) {
// Found a Put or Delete. Merge if necessary.
if (merge_context->GetNumOperands() > 0) {
if (result == WriteBatchWithIndexInternal::Result::kFound) {
*s = MergeKey(key, &entry_value, *merge_context, value);
} else {
*s = MergeKey(key, nullptr, *merge_context, value);
}
if ((*s).ok()) {
result = WriteBatchWithIndexInternal::Result::kFound;
} else {
result = WriteBatchWithIndexInternal::Result::kError;
}
} else { // nothing to merge
if (result == WriteBatchWithIndexInternal::Result::kFound) { // PUT
value->assign(entry_value.data(), entry_value.size());
}
}
}
}
return result;
}
} // namespace ROCKSDB_NAMESPACE
#endif // !ROCKSDB_LITE