rocksdb/db/compaction/compaction_picker.h
Little-Wallace ec3e3c3e02 Fix corruption with intra-L0 on ingested files (#5958)
Summary:
## Problem Description

Our process was abort when it call `CheckConsistency`. And the information in  `stderr` show that "`L0 files seqno 3001491972 3004797440 vs. 3002875611 3004524421` ".  Here are the causes of the accident I investigated.

* RocksDB will call `CheckConsistency` whenever `MANIFEST` file is update. It will check sequence number interval of every file, except files which were ingested.
* When one file is ingested into RocksDB, it will be assigned the value of global sequence number, and the minimum and maximum seqno of this file are equal, which are both equal to global sequence number.
* `CheckConsistency`  determines whether the file is ingested by whether the smallest and largest seqno of an sstable file are equal.
* If IntraL0Compaction picks one sst which was ingested just now and compacted it into another sst,  the `smallest_seqno` of this new file will be smaller than his `largest_seqno`.
    * If more than one ingested file was ingested before memtable schedule flush,  and they all compact into one new sstable file by `IntraL0Compaction`. The sequence interval of this new file will be included in the interval of the memtable.  So `CheckConsistency` will return a `Corruption`.
    * If a sstable was ingested after the memtable was schedule to flush, which would assign a larger seqno to it than memtable. Then the file was compacted with other files (these files were all flushed before the memtable) in L0 into one file. This compaction start before the flush job of memtable start,  but completed after the flush job finish. So this new file produced by the compaction (we call it s1) would have a larger interval of sequence number than the file produced by flush (we call it s2).  **But there was still some data in s1  written into RocksDB before the s2, so it's possible that some data in s2 was cover by old data in s1.** Of course, it would also make a `Corruption` because of overlap of seqno. There is the relationship of the files:
    > s1.smallest_seqno < s2.smallest_seqno < s2.largest_seqno  < s1.largest_seqno

So I skip pick sst file which was ingested in function `FindIntraL0Compaction `

## Reason

Here is my bug report: https://github.com/facebook/rocksdb/issues/5913

There are two situations that can cause the check to fail.

### First situation:
- First we ingest five external sst into Rocksdb, and they happened to be ingested in L0. and there had been some data in memtable, which make the smallest sequence number of memtable is less than which of sst that we ingest.

- If there had been one compaction job which compacted sst from L0 to L1, `LevelCompactionPicker` would trigger a `IntraL0Compaction` which would compact this five sst from L0 to L0. We call this sst A, which was merged from five ingested sst.

- Then some data was put into memtable, and memtable was flushed to L0. We called this sst B.
- RocksDB check consistency , and find the `smallest_seqno` of B is  less than that of A and crash. Because A was merged from five sst, the smallest sequence number of it was less than the biggest sequece number of itself, so RocksDB could not tell if A was produce by ingested.

### Secondary situaion

- First we have flushed many sst in L0,  we call them [s1, s2, s3].

- There is an immutable memtable request to be flushed, but because flush thread is busy, so it has not been picked. we call it m1.  And at the moment, one sst is ingested into L0. We call it s4. Because s4 is ingested after m1 became immutable memtable, so it has a larger log sequence number than m1.

- m1 is flushed in L0. because it is small, this flush job finish quickly. we call it s5.

- [s1, s2, s3, s4] are compacted into one sst to L0, by IntraL0Compaction.  We call it s6.
  - compacted 4@0 files to L0
- When s6 is added into manifest,  the corruption happened. because the largest sequence number of s6 is equal to s4, and they are both larger than that of s5.  But because s1 is older than m1, so the smallest sequence number of s6 is smaller than that of s5.
   - s6.smallest_seqno < s5.smallest_seqno < s5.largest_seqno < s6.largest_seqno
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5958

Differential Revision: D18601316

fbshipit-source-id: 5fe54b3c9af52a2e1400728f565e895cde1c7267
2019-11-19 15:09:11 -08:00

314 lines
14 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#include <memory>
#include <set>
#include <string>
#include <unordered_set>
#include <vector>
#include "db/compaction/compaction.h"
#include "db/version_set.h"
#include "options/cf_options.h"
#include "rocksdb/env.h"
#include "rocksdb/options.h"
#include "rocksdb/status.h"
namespace rocksdb {
// The file contains an abstract class CompactionPicker, and its two
// sub-classes LevelCompactionPicker and NullCompactionPicker, as
// well as some helper functions used by them.
class LogBuffer;
class Compaction;
class VersionStorageInfo;
struct CompactionInputFiles;
// An abstract class to pick compactions from an existing LSM-tree.
//
// Each compaction style inherits the class and implement the
// interface to form automatic compactions. If NeedCompaction() is true,
// then call PickCompaction() to find what files need to be compacted
// and where to put the output files.
//
// Non-virtual functions CompactRange() and CompactFiles() are used to
// pick files to compact based on users' DB::CompactRange() and
// DB::CompactFiles() requests, respectively. There is little
// compaction style specific logic for them.
class CompactionPicker {
public:
CompactionPicker(const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icmp);
virtual ~CompactionPicker();
// Pick level and inputs for a new compaction.
// Returns nullptr if there is no compaction to be done.
// Otherwise returns a pointer to a heap-allocated object that
// describes the compaction. Caller should delete the result.
virtual Compaction* PickCompaction(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, LogBuffer* log_buffer,
SequenceNumber earliest_memtable_seqno = kMaxSequenceNumber) = 0;
// Return a compaction object for compacting the range [begin,end] in
// the specified level. Returns nullptr if there is nothing in that
// level that overlaps the specified range. Caller should delete
// the result.
//
// The returned Compaction might not include the whole requested range.
// In that case, compaction_end will be set to the next key that needs
// compacting. In case the compaction will compact the whole range,
// compaction_end will be set to nullptr.
// Client is responsible for compaction_end storage -- when called,
// *compaction_end should point to valid InternalKey!
virtual Compaction* CompactRange(
const std::string& cf_name, const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage, int input_level, int output_level,
const CompactRangeOptions& compact_range_options,
const InternalKey* begin, const InternalKey* end,
InternalKey** compaction_end, bool* manual_conflict,
uint64_t max_file_num_to_ignore);
// The maximum allowed output level. Default value is NumberLevels() - 1.
virtual int MaxOutputLevel() const { return NumberLevels() - 1; }
virtual bool NeedsCompaction(const VersionStorageInfo* vstorage) const = 0;
// Sanitize the input set of compaction input files.
// When the input parameters do not describe a valid compaction, the
// function will try to fix the input_files by adding necessary
// files. If it's not possible to conver an invalid input_files
// into a valid one by adding more files, the function will return a
// non-ok status with specific reason.
#ifndef ROCKSDB_LITE
Status SanitizeCompactionInputFiles(std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta,
const int output_level) const;
#endif // ROCKSDB_LITE
// Free up the files that participated in a compaction
//
// Requirement: DB mutex held
void ReleaseCompactionFiles(Compaction* c, Status status);
// Returns true if any one of the specified files are being compacted
bool AreFilesInCompaction(const std::vector<FileMetaData*>& files);
// Takes a list of CompactionInputFiles and returns a (manual) Compaction
// object.
//
// Caller must provide a set of input files that has been passed through
// `SanitizeCompactionInputFiles` earlier. The lock should not be released
// between that call and this one.
Compaction* CompactFiles(const CompactionOptions& compact_options,
const std::vector<CompactionInputFiles>& input_files,
int output_level, VersionStorageInfo* vstorage,
const MutableCFOptions& mutable_cf_options,
uint32_t output_path_id);
// Converts a set of compaction input file numbers into
// a list of CompactionInputFiles.
Status GetCompactionInputsFromFileNumbers(
std::vector<CompactionInputFiles>* input_files,
std::unordered_set<uint64_t>* input_set,
const VersionStorageInfo* vstorage,
const CompactionOptions& compact_options) const;
// Is there currently a compaction involving level 0 taking place
bool IsLevel0CompactionInProgress() const {
return !level0_compactions_in_progress_.empty();
}
// Return true if the passed key range overlap with a compaction output
// that is currently running.
bool RangeOverlapWithCompaction(const Slice& smallest_user_key,
const Slice& largest_user_key,
int level) const;
// Stores the minimal range that covers all entries in inputs in
// *smallest, *largest.
// REQUIRES: inputs is not empty
void GetRange(const CompactionInputFiles& inputs, InternalKey* smallest,
InternalKey* largest) const;
// Stores the minimal range that covers all entries in inputs1 and inputs2
// in *smallest, *largest.
// REQUIRES: inputs is not empty
void GetRange(const CompactionInputFiles& inputs1,
const CompactionInputFiles& inputs2, InternalKey* smallest,
InternalKey* largest) const;
// Stores the minimal range that covers all entries in inputs
// in *smallest, *largest.
// REQUIRES: inputs is not empty (at least on entry have one file)
void GetRange(const std::vector<CompactionInputFiles>& inputs,
InternalKey* smallest, InternalKey* largest) const;
int NumberLevels() const { return ioptions_.num_levels; }
// Add more files to the inputs on "level" to make sure that
// no newer version of a key is compacted to "level+1" while leaving an older
// version in a "level". Otherwise, any Get() will search "level" first,
// and will likely return an old/stale value for the key, since it always
// searches in increasing order of level to find the value. This could
// also scramble the order of merge operands. This function should be
// called any time a new Compaction is created, and its inputs_[0] are
// populated.
//
// Will return false if it is impossible to apply this compaction.
bool ExpandInputsToCleanCut(const std::string& cf_name,
VersionStorageInfo* vstorage,
CompactionInputFiles* inputs,
InternalKey** next_smallest = nullptr);
// Returns true if any one of the parent files are being compacted
bool IsRangeInCompaction(VersionStorageInfo* vstorage,
const InternalKey* smallest,
const InternalKey* largest, int level, int* index);
// Returns true if the key range that `inputs` files cover overlap with the
// key range of a currently running compaction.
bool FilesRangeOverlapWithCompaction(
const std::vector<CompactionInputFiles>& inputs, int level) const;
bool SetupOtherInputs(const std::string& cf_name,
const MutableCFOptions& mutable_cf_options,
VersionStorageInfo* vstorage,
CompactionInputFiles* inputs,
CompactionInputFiles* output_level_inputs,
int* parent_index, int base_index);
void GetGrandparents(VersionStorageInfo* vstorage,
const CompactionInputFiles& inputs,
const CompactionInputFiles& output_level_inputs,
std::vector<FileMetaData*>* grandparents);
void PickFilesMarkedForCompaction(const std::string& cf_name,
VersionStorageInfo* vstorage,
int* start_level, int* output_level,
CompactionInputFiles* start_level_inputs);
bool GetOverlappingL0Files(VersionStorageInfo* vstorage,
CompactionInputFiles* start_level_inputs,
int output_level, int* parent_index);
// Register this compaction in the set of running compactions
void RegisterCompaction(Compaction* c);
// Remove this compaction from the set of running compactions
void UnregisterCompaction(Compaction* c);
std::set<Compaction*>* level0_compactions_in_progress() {
return &level0_compactions_in_progress_;
}
std::unordered_set<Compaction*>* compactions_in_progress() {
return &compactions_in_progress_;
}
protected:
const ImmutableCFOptions& ioptions_;
// A helper function to SanitizeCompactionInputFiles() that
// sanitizes "input_files" by adding necessary files.
#ifndef ROCKSDB_LITE
virtual Status SanitizeCompactionInputFilesForAllLevels(
std::unordered_set<uint64_t>* input_files,
const ColumnFamilyMetaData& cf_meta, const int output_level) const;
#endif // ROCKSDB_LITE
// Keeps track of all compactions that are running on Level0.
// Protected by DB mutex
std::set<Compaction*> level0_compactions_in_progress_;
// Keeps track of all compactions that are running.
// Protected by DB mutex
std::unordered_set<Compaction*> compactions_in_progress_;
const InternalKeyComparator* const icmp_;
};
#ifndef ROCKSDB_LITE
// A dummy compaction that never triggers any automatic
// compaction.
class NullCompactionPicker : public CompactionPicker {
public:
NullCompactionPicker(const ImmutableCFOptions& ioptions,
const InternalKeyComparator* icmp)
: CompactionPicker(ioptions, icmp) {}
virtual ~NullCompactionPicker() {}
// Always return "nullptr"
Compaction* PickCompaction(
const std::string& /*cf_name*/,
const MutableCFOptions& /*mutable_cf_options*/,
VersionStorageInfo* /*vstorage*/, LogBuffer* /* log_buffer */,
SequenceNumber /* earliest_memtable_seqno */) override {
return nullptr;
}
// Always return "nullptr"
Compaction* CompactRange(const std::string& /*cf_name*/,
const MutableCFOptions& /*mutable_cf_options*/,
VersionStorageInfo* /*vstorage*/,
int /*input_level*/, int /*output_level*/,
const CompactRangeOptions& /*compact_range_options*/,
const InternalKey* /*begin*/,
const InternalKey* /*end*/,
InternalKey** /*compaction_end*/,
bool* /*manual_conflict*/,
uint64_t /*max_file_num_to_ignore*/) override {
return nullptr;
}
// Always returns false.
virtual bool NeedsCompaction(
const VersionStorageInfo* /*vstorage*/) const override {
return false;
}
};
#endif // !ROCKSDB_LITE
// Attempts to find an intra L0 compaction conforming to the given parameters.
//
// @param level_files Metadata for L0 files.
// @param min_files_to_compact Minimum number of files required to
// do the compaction.
// @param max_compact_bytes_per_del_file Maximum average size in bytes per
// file that is going to get deleted by
// the compaction.
// @param max_compaction_bytes Maximum total size in bytes (in terms
// of compensated file size) for files
// to be compacted.
// @param [out] comp_inputs If a compaction was found, will be
// initialized with corresponding input
// files. Cannot be nullptr.
//
// @return true iff compaction was found.
bool FindIntraL0Compaction(
const std::vector<FileMetaData*>& level_files, size_t min_files_to_compact,
uint64_t max_compact_bytes_per_del_file, uint64_t max_compaction_bytes,
CompactionInputFiles* comp_inputs,
SequenceNumber earliest_mem_seqno = kMaxSequenceNumber);
CompressionType GetCompressionType(const ImmutableCFOptions& ioptions,
const VersionStorageInfo* vstorage,
const MutableCFOptions& mutable_cf_options,
int level, int base_level,
const bool enable_compression = true);
CompressionOptions GetCompressionOptions(const ImmutableCFOptions& ioptions,
const VersionStorageInfo* vstorage,
int level,
const bool enable_compression = true);
} // namespace rocksdb