6e78fe3c8d
Summary: This PR adds four more eviction policies. - OPT [1] - Hyperbolic caching [2] - ARC [3] - GreedyDualSize [4] [1] L. A. Belady. 1966. A Study of Replacement Algorithms for a Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101. DOI=http://dx.doi.org/10.1147/sj.52.0078 [2] Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017. Hyperbolic caching: flexible caching for web applications. In Proceedings of the 2017 USENIX Conference on Usenix Annual Technical Conference (USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511. [3] Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA, USA, 115-130. [4] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica, June 1994, vol. 11,(no.6):525-41. Rewritten version of ''On-line caching as cache size varies'', in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5644 Differential Revision: D16548817 Pulled By: HaoyuHuang fbshipit-source-id: 838f76db9179f07911abaab46c97e1c929cfcd63
2001 lines
68 KiB
Python
2001 lines
68 KiB
Python
#!/usr/bin/env python3
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
|
|
|
|
import gc
|
|
import heapq
|
|
import random
|
|
import sys
|
|
import time
|
|
from collections import OrderedDict
|
|
from os import path
|
|
|
|
import numpy as np
|
|
|
|
|
|
kSampleSize = 64 # The sample size used when performing eviction.
|
|
kMicrosInSecond = 1000000
|
|
kSecondsInMinute = 60
|
|
kSecondsInHour = 3600
|
|
|
|
|
|
class TraceRecord:
|
|
"""
|
|
A trace record represents a block access.
|
|
It holds the same struct as BlockCacheTraceRecord in
|
|
trace_replay/block_cache_tracer.h
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
access_time,
|
|
block_id,
|
|
block_type,
|
|
block_size,
|
|
cf_id,
|
|
cf_name,
|
|
level,
|
|
fd,
|
|
caller,
|
|
no_insert,
|
|
get_id,
|
|
key_id,
|
|
kv_size,
|
|
is_hit,
|
|
referenced_key_exist_in_block,
|
|
num_keys_in_block,
|
|
table_id,
|
|
seq_number,
|
|
block_key_size,
|
|
key_size,
|
|
block_offset_in_file,
|
|
next_access_seq_no,
|
|
):
|
|
self.access_time = access_time
|
|
self.block_id = block_id
|
|
self.block_type = block_type
|
|
self.block_size = block_size + block_key_size
|
|
self.cf_id = cf_id
|
|
self.cf_name = cf_name
|
|
self.level = level
|
|
self.fd = fd
|
|
self.caller = caller
|
|
if no_insert == 1:
|
|
self.no_insert = True
|
|
else:
|
|
self.no_insert = False
|
|
self.get_id = get_id
|
|
self.key_id = key_id
|
|
self.kv_size = kv_size
|
|
if is_hit == 1:
|
|
self.is_hit = True
|
|
else:
|
|
self.is_hit = False
|
|
if referenced_key_exist_in_block == 1:
|
|
self.referenced_key_exist_in_block = True
|
|
else:
|
|
self.referenced_key_exist_in_block = False
|
|
self.num_keys_in_block = num_keys_in_block
|
|
self.table_id = table_id
|
|
self.seq_number = seq_number
|
|
self.block_key_size = block_key_size
|
|
self.key_size = key_size
|
|
self.block_offset_in_file = block_offset_in_file
|
|
self.next_access_seq_no = next_access_seq_no
|
|
|
|
|
|
class CacheEntry:
|
|
"""A cache entry stored in the cache."""
|
|
|
|
def __init__(
|
|
self,
|
|
value_size,
|
|
cf_id,
|
|
level,
|
|
block_type,
|
|
table_id,
|
|
access_number,
|
|
time_s,
|
|
num_hits=0,
|
|
):
|
|
self.value_size = value_size
|
|
self.last_access_number = access_number
|
|
self.num_hits = num_hits
|
|
self.cf_id = 0
|
|
self.level = level
|
|
self.block_type = block_type
|
|
self.last_access_time = time_s
|
|
self.insertion_time = time_s
|
|
self.table_id = table_id
|
|
|
|
def __repr__(self):
|
|
"""Debug string."""
|
|
return "(s={},last={},hits={},cf={},l={},bt={})\n".format(
|
|
self.value_size,
|
|
self.last_access_number,
|
|
self.num_hits,
|
|
self.cf_id,
|
|
self.level,
|
|
self.block_type,
|
|
)
|
|
|
|
def cost_class(self, cost_class_label):
|
|
if cost_class_label == "table_bt":
|
|
return "{}-{}".format(self.table_id, self.block_type)
|
|
elif cost_class_label == "table":
|
|
return "{}".format(self.table_id)
|
|
elif cost_class_label == "bt":
|
|
return "{}".format(self.block_type)
|
|
elif cost_class_label == "cf":
|
|
return "{}".format(self.cf_id)
|
|
elif cost_class_label == "cf_bt":
|
|
return "{}-{}".format(self.cf_id, self.block_type)
|
|
elif cost_class_label == "table_level_bt":
|
|
return "{}-{}-{}".format(self.table_id, self.level, self.block_type)
|
|
assert False, "Unknown cost class label {}".format(cost_class_label)
|
|
return None
|
|
|
|
|
|
class HashEntry:
|
|
"""A hash entry stored in a hash table."""
|
|
|
|
def __init__(self, key, hash, value):
|
|
self.key = key
|
|
self.hash = hash
|
|
self.value = value
|
|
|
|
def __repr__(self):
|
|
return "k={},h={},v=[{}]".format(self.key, self.hash, self.value)
|
|
|
|
|
|
class HashTable:
|
|
"""
|
|
A custom implementation of hash table to support fast random sampling.
|
|
It is closed hashing and uses chaining to resolve hash conflicts.
|
|
It grows/shrinks the hash table upon insertion/deletion to support
|
|
fast lookups and random samplings.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.initial_size = 32
|
|
self.table = [None] * self.initial_size
|
|
self.elements = 0
|
|
|
|
def random_sample(self, sample_size):
|
|
"""Randomly sample 'sample_size' hash entries from the table."""
|
|
samples = []
|
|
index = random.randint(0, len(self.table) - 1)
|
|
pos = index
|
|
# Starting from index, adding hash entries to the sample list until
|
|
# sample_size is met or we ran out of entries.
|
|
while True:
|
|
if self.table[pos] is not None:
|
|
for i in range(len(self.table[pos])):
|
|
if self.table[pos][i] is None:
|
|
continue
|
|
samples.append(self.table[pos][i])
|
|
if len(samples) == sample_size:
|
|
break
|
|
pos += 1
|
|
pos = pos % len(self.table)
|
|
if pos == index or len(samples) == sample_size:
|
|
break
|
|
assert len(samples) <= sample_size
|
|
return samples
|
|
|
|
def __repr__(self):
|
|
all_entries = []
|
|
for i in range(len(self.table)):
|
|
if self.table[i] is None:
|
|
continue
|
|
for j in range(len(self.table[i])):
|
|
if self.table[i][j] is not None:
|
|
all_entries.append(self.table[i][j])
|
|
return "{}".format(all_entries)
|
|
|
|
def values(self):
|
|
all_values = []
|
|
for i in range(len(self.table)):
|
|
if self.table[i] is None:
|
|
continue
|
|
for j in range(len(self.table[i])):
|
|
if self.table[i][j] is not None:
|
|
all_values.append(self.table[i][j].value)
|
|
return all_values
|
|
|
|
def __len__(self):
|
|
return self.elements
|
|
|
|
def insert(self, key, hash, value):
|
|
"""
|
|
Insert a hash entry in the table. Replace the old entry if it already
|
|
exists.
|
|
"""
|
|
self.grow()
|
|
inserted = False
|
|
index = hash % len(self.table)
|
|
if self.table[index] is None:
|
|
self.table[index] = []
|
|
# Search for the entry first.
|
|
for i in range(len(self.table[index])):
|
|
if self.table[index][i] is None:
|
|
continue
|
|
if self.table[index][i].hash == hash and self.table[index][i].key == key:
|
|
# The entry already exists in the table.
|
|
self.table[index][i] = HashEntry(key, hash, value)
|
|
return
|
|
|
|
# Find an empty slot.
|
|
for i in range(len(self.table[index])):
|
|
if self.table[index][i] is None:
|
|
self.table[index][i] = HashEntry(key, hash, value)
|
|
inserted = True
|
|
break
|
|
if not inserted:
|
|
self.table[index].append(HashEntry(key, hash, value))
|
|
self.elements += 1
|
|
|
|
def resize(self, new_size):
|
|
if new_size == len(self.table):
|
|
return
|
|
if new_size < self.initial_size:
|
|
return
|
|
if self.elements < 100:
|
|
return
|
|
new_table = [None] * new_size
|
|
# Copy 'self.table' to new_table.
|
|
for i in range(len(self.table)):
|
|
entries = self.table[i]
|
|
if entries is None:
|
|
continue
|
|
for j in range(len(entries)):
|
|
if entries[j] is None:
|
|
continue
|
|
index = entries[j].hash % new_size
|
|
if new_table[index] is None:
|
|
new_table[index] = []
|
|
new_table[index].append(entries[j])
|
|
self.table = new_table
|
|
del new_table
|
|
# Manually call python gc here to free the memory as 'self.table'
|
|
# might be very large.
|
|
gc.collect()
|
|
|
|
def grow(self):
|
|
if self.elements < 4 * len(self.table):
|
|
return
|
|
new_size = int(len(self.table) * 1.5)
|
|
self.resize(new_size)
|
|
|
|
def delete(self, key, hash):
|
|
index = hash % len(self.table)
|
|
deleted = False
|
|
deleted_entry = None
|
|
if self.table[index] is None:
|
|
return
|
|
for i in range(len(self.table[index])):
|
|
if (
|
|
self.table[index][i] is not None
|
|
and self.table[index][i].hash == hash
|
|
and self.table[index][i].key == key
|
|
):
|
|
deleted_entry = self.table[index][i]
|
|
self.table[index][i] = None
|
|
self.elements -= 1
|
|
deleted = True
|
|
break
|
|
if deleted:
|
|
self.shrink()
|
|
return deleted_entry
|
|
|
|
def shrink(self):
|
|
if self.elements * 2 >= len(self.table):
|
|
return
|
|
new_size = int(len(self.table) * 0.7)
|
|
self.resize(new_size)
|
|
|
|
def lookup(self, key, hash):
|
|
index = hash % len(self.table)
|
|
if self.table[index] is None:
|
|
return None
|
|
for i in range(len(self.table[index])):
|
|
if (
|
|
self.table[index][i] is not None
|
|
and self.table[index][i].hash == hash
|
|
and self.table[index][i].key == key
|
|
):
|
|
return self.table[index][i].value
|
|
return None
|
|
|
|
|
|
class MissRatioStats:
|
|
def __init__(self, time_unit):
|
|
self.num_misses = 0
|
|
self.num_accesses = 0
|
|
self.time_unit = time_unit
|
|
self.time_misses = {}
|
|
self.time_miss_bytes = {}
|
|
self.time_accesses = {}
|
|
|
|
def update_metrics(self, access_time, is_hit, miss_bytes):
|
|
access_time /= kMicrosInSecond * self.time_unit
|
|
self.num_accesses += 1
|
|
if access_time not in self.time_accesses:
|
|
self.time_accesses[access_time] = 0
|
|
self.time_accesses[access_time] += 1
|
|
if not is_hit:
|
|
self.num_misses += 1
|
|
if access_time not in self.time_misses:
|
|
self.time_misses[access_time] = 0
|
|
self.time_miss_bytes[access_time] = 0
|
|
self.time_misses[access_time] += 1
|
|
self.time_miss_bytes[access_time] += miss_bytes
|
|
|
|
def reset_counter(self):
|
|
self.num_misses = 0
|
|
self.num_accesses = 0
|
|
self.time_miss_bytes.clear()
|
|
self.time_misses.clear()
|
|
self.time_accesses.clear()
|
|
|
|
def compute_miss_bytes(self):
|
|
miss_bytes = []
|
|
for at in self.time_miss_bytes:
|
|
miss_bytes.append(self.time_miss_bytes[at])
|
|
miss_bytes = sorted(miss_bytes)
|
|
avg_miss_bytes = 0
|
|
p95_miss_bytes = 0
|
|
for i in range(len(miss_bytes)):
|
|
avg_miss_bytes += float(miss_bytes[i]) / float(len(miss_bytes))
|
|
|
|
p95_index = min(int(0.95 * float(len(miss_bytes))), len(miss_bytes) - 1)
|
|
p95_miss_bytes = miss_bytes[p95_index]
|
|
return avg_miss_bytes, p95_miss_bytes
|
|
|
|
def miss_ratio(self):
|
|
return float(self.num_misses) * 100.0 / float(self.num_accesses)
|
|
|
|
def write_miss_timeline(
|
|
self, cache_type, cache_size, target_cf_name, result_dir, start, end
|
|
):
|
|
start /= kMicrosInSecond * self.time_unit
|
|
end /= kMicrosInSecond * self.time_unit
|
|
header_file_path = "{}/header-ml-miss-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
if not path.exists(header_file_path):
|
|
with open(header_file_path, "w+") as header_file:
|
|
header = "time"
|
|
for trace_time in range(start, end):
|
|
header += ",{}".format(trace_time)
|
|
header_file.write(header + "\n")
|
|
file_path = "{}/data-ml-miss-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
with open(file_path, "w+") as file:
|
|
row = "{}".format(cache_type)
|
|
for trace_time in range(start, end):
|
|
row += ",{}".format(self.time_misses.get(trace_time, 0))
|
|
file.write(row + "\n")
|
|
|
|
def write_miss_ratio_timeline(
|
|
self, cache_type, cache_size, target_cf_name, result_dir, start, end
|
|
):
|
|
start /= kMicrosInSecond * self.time_unit
|
|
end /= kMicrosInSecond * self.time_unit
|
|
header_file_path = "{}/header-ml-miss-ratio-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
if not path.exists(header_file_path):
|
|
with open(header_file_path, "w+") as header_file:
|
|
header = "time"
|
|
for trace_time in range(start, end):
|
|
header += ",{}".format(trace_time)
|
|
header_file.write(header + "\n")
|
|
file_path = "{}/data-ml-miss-ratio-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
with open(file_path, "w+") as file:
|
|
row = "{}".format(cache_type)
|
|
for trace_time in range(start, end):
|
|
naccesses = self.time_accesses.get(trace_time, 0)
|
|
miss_ratio = 0
|
|
if naccesses > 0:
|
|
miss_ratio = float(
|
|
self.time_misses.get(trace_time, 0) * 100.0
|
|
) / float(naccesses)
|
|
row += ",{0:.2f}".format(miss_ratio)
|
|
file.write(row + "\n")
|
|
|
|
|
|
class PolicyStats:
|
|
def __init__(self, time_unit, policies):
|
|
self.time_selected_polices = {}
|
|
self.time_accesses = {}
|
|
self.policy_names = {}
|
|
self.time_unit = time_unit
|
|
for i in range(len(policies)):
|
|
self.policy_names[i] = policies[i].policy_name()
|
|
|
|
def update_metrics(self, access_time, selected_policy):
|
|
access_time /= kMicrosInSecond * self.time_unit
|
|
if access_time not in self.time_accesses:
|
|
self.time_accesses[access_time] = 0
|
|
self.time_accesses[access_time] += 1
|
|
if access_time not in self.time_selected_polices:
|
|
self.time_selected_polices[access_time] = {}
|
|
policy_name = self.policy_names[selected_policy]
|
|
if policy_name not in self.time_selected_polices[access_time]:
|
|
self.time_selected_polices[access_time][policy_name] = 0
|
|
self.time_selected_polices[access_time][policy_name] += 1
|
|
|
|
def write_policy_timeline(
|
|
self, cache_type, cache_size, target_cf_name, result_dir, start, end
|
|
):
|
|
start /= kMicrosInSecond * self.time_unit
|
|
end /= kMicrosInSecond * self.time_unit
|
|
header_file_path = "{}/header-ml-policy-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
if not path.exists(header_file_path):
|
|
with open(header_file_path, "w+") as header_file:
|
|
header = "time"
|
|
for trace_time in range(start, end):
|
|
header += ",{}".format(trace_time)
|
|
header_file.write(header + "\n")
|
|
file_path = "{}/data-ml-policy-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
with open(file_path, "w+") as file:
|
|
for policy in self.policy_names:
|
|
policy_name = self.policy_names[policy]
|
|
row = "{}-{}".format(cache_type, policy_name)
|
|
for trace_time in range(start, end):
|
|
row += ",{}".format(
|
|
self.time_selected_polices.get(trace_time, {}).get(
|
|
policy_name, 0
|
|
)
|
|
)
|
|
file.write(row + "\n")
|
|
|
|
def write_policy_ratio_timeline(
|
|
self, cache_type, cache_size, target_cf_name, file_path, start, end
|
|
):
|
|
start /= kMicrosInSecond * self.time_unit
|
|
end /= kMicrosInSecond * self.time_unit
|
|
header_file_path = "{}/header-ml-policy-ratio-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
if not path.exists(header_file_path):
|
|
with open(header_file_path, "w+") as header_file:
|
|
header = "time"
|
|
for trace_time in range(start, end):
|
|
header += ",{}".format(trace_time)
|
|
header_file.write(header + "\n")
|
|
file_path = "{}/data-ml-policy-ratio-timeline-{}-{}-{}-{}".format(
|
|
result_dir, self.time_unit, cache_type, cache_size, target_cf_name
|
|
)
|
|
with open(file_path, "w+") as file:
|
|
for policy in self.policy_names:
|
|
policy_name = self.policy_names[policy]
|
|
row = "{}-{}".format(cache_type, policy_name)
|
|
for trace_time in range(start, end):
|
|
naccesses = self.time_accesses.get(trace_time, 0)
|
|
ratio = 0
|
|
if naccesses > 0:
|
|
ratio = float(
|
|
self.time_selected_polices.get(trace_time, {}).get(
|
|
policy_name, 0
|
|
)
|
|
* 100.0
|
|
) / float(naccesses)
|
|
row += ",{0:.2f}".format(ratio)
|
|
file.write(row + "\n")
|
|
|
|
|
|
class Policy(object):
|
|
"""
|
|
A policy maintains a set of evicted keys. It returns a reward of one to
|
|
itself if it has not evicted a missing key. Otherwise, it gives itself 0
|
|
reward.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.evicted_keys = {}
|
|
|
|
def evict(self, key, max_size):
|
|
self.evicted_keys[key] = 0
|
|
|
|
def delete(self, key):
|
|
self.evicted_keys.pop(key, None)
|
|
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
raise NotImplementedError
|
|
|
|
def policy_name(self):
|
|
raise NotImplementedError
|
|
|
|
def generate_reward(self, key):
|
|
if key in self.evicted_keys:
|
|
return 0
|
|
return 1
|
|
|
|
|
|
class LRUPolicy(Policy):
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
return sorted(
|
|
samples,
|
|
cmp=lambda e1, e2: e1.value.last_access_number
|
|
- e2.value.last_access_number,
|
|
)
|
|
|
|
def policy_name(self):
|
|
return "lru"
|
|
|
|
|
|
class MRUPolicy(Policy):
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
return sorted(
|
|
samples,
|
|
cmp=lambda e1, e2: e2.value.last_access_number
|
|
- e1.value.last_access_number,
|
|
)
|
|
|
|
def policy_name(self):
|
|
return "mru"
|
|
|
|
|
|
class LFUPolicy(Policy):
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
return sorted(samples, cmp=lambda e1, e2: e1.value.num_hits - e2.value.num_hits)
|
|
|
|
def policy_name(self):
|
|
return "lfu"
|
|
|
|
|
|
class HyperbolicPolicy(Policy):
|
|
"""
|
|
An implementation of Hyperbolic caching.
|
|
|
|
Aaron Blankstein, Siddhartha Sen, and Michael J. Freedman. 2017.
|
|
Hyperbolic caching: flexible caching for web applications. In Proceedings
|
|
of the 2017 USENIX Conference on Usenix Annual Technical Conference
|
|
(USENIX ATC '17). USENIX Association, Berkeley, CA, USA, 499-511.
|
|
"""
|
|
|
|
def compare(self, e1, e2, now):
|
|
e1_duration = max(0, (now - e1.value.insertion_time) / kMicrosInSecond) * float(
|
|
e1.value.value_size
|
|
)
|
|
e2_duration = max(0, (now - e2.value.insertion_time) / kMicrosInSecond) * float(
|
|
e2.value.value_size
|
|
)
|
|
if e1_duration == e2_duration:
|
|
return e1.value.num_hits - e2.value.num_hits
|
|
if e1_duration == 0:
|
|
return 1
|
|
if e2_duration == 0:
|
|
return 1
|
|
diff = (float(e1.value.num_hits) / (float(e1_duration))) - (
|
|
float(e2.value.num_hits) / float(e2_duration)
|
|
)
|
|
if diff == 0:
|
|
return 0
|
|
elif diff > 0:
|
|
return 1
|
|
else:
|
|
return -1
|
|
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
assert len(auxilliary_info) == 3
|
|
now = auxilliary_info[0]
|
|
return sorted(samples, cmp=lambda e1, e2: self.compare(e1, e2, now))
|
|
|
|
def policy_name(self):
|
|
return "hb"
|
|
|
|
|
|
class CostClassPolicy(Policy):
|
|
"""
|
|
We calculate the hit density of a cost class as
|
|
number of hits / total size in cache * average duration in the cache.
|
|
|
|
An entry has a higher priority if its class's hit density is higher.
|
|
"""
|
|
|
|
def compare(self, e1, e2, now, cost_classes, cost_class_label):
|
|
e1_class = e1.value.cost_class(cost_class_label)
|
|
e2_class = e2.value.cost_class(cost_class_label)
|
|
|
|
assert e1_class in cost_classes
|
|
assert e2_class in cost_classes
|
|
|
|
e1_entry = cost_classes[e1_class]
|
|
e2_entry = cost_classes[e2_class]
|
|
e1_density = e1_entry.density(now)
|
|
e2_density = e2_entry.density(now)
|
|
e1_hits = cost_classes[e1_class].hits
|
|
e2_hits = cost_classes[e2_class].hits
|
|
|
|
if e1_density == e2_density:
|
|
return e1_hits - e2_hits
|
|
|
|
if e1_entry.num_entries_in_cache == 0:
|
|
return -1
|
|
if e2_entry.num_entries_in_cache == 0:
|
|
return 1
|
|
|
|
if e1_density == 0:
|
|
return 1
|
|
if e2_density == 0:
|
|
return -1
|
|
diff = (float(e1_hits) / float(e1_density)) - (
|
|
float(e2_hits) / float(e2_density)
|
|
)
|
|
if diff == 0:
|
|
return 0
|
|
elif diff > 0:
|
|
return 1
|
|
else:
|
|
return -1
|
|
|
|
def prioritize_samples(self, samples, auxilliary_info):
|
|
assert len(auxilliary_info) == 3
|
|
now = auxilliary_info[0]
|
|
cost_classes = auxilliary_info[1]
|
|
cost_class_label = auxilliary_info[2]
|
|
return sorted(
|
|
samples,
|
|
cmp=lambda e1, e2: self.compare(
|
|
e1, e2, now, cost_classes, cost_class_label
|
|
),
|
|
)
|
|
|
|
def policy_name(self):
|
|
return "cc"
|
|
|
|
|
|
class Cache(object):
|
|
"""
|
|
This is the base class for the implementations of alternative cache
|
|
replacement policies.
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key):
|
|
self.cache_size = cache_size
|
|
self.used_size = 0
|
|
self.per_second_miss_ratio_stats = MissRatioStats(1)
|
|
self.miss_ratio_stats = MissRatioStats(kSecondsInMinute)
|
|
self.per_hour_miss_ratio_stats = MissRatioStats(kSecondsInHour)
|
|
# 0: disabled. 1: enabled. Insert both row and the refereneced data block.
|
|
# 2: enabled. Insert only the row but NOT the referenced data block.
|
|
self.enable_cache_row_key = enable_cache_row_key
|
|
self.get_id_row_key_map = {}
|
|
self.max_seen_get_id = 0
|
|
self.retain_get_id_range = 100000
|
|
|
|
def block_key(self, trace_record):
|
|
return "b{}".format(trace_record.block_id)
|
|
|
|
def row_key(self, trace_record):
|
|
return "g{}-{}".format(trace_record.fd, trace_record.key_id)
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
"""
|
|
Look up the key in the cache.
|
|
Returns true upon a cache hit, false otherwise.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
"""
|
|
Evict entries in the cache until there is enough room to insert the new
|
|
entry with 'value_size'.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
"""
|
|
Insert the new entry into the cache.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
"""
|
|
A custom admission policy to decide whether we should admit the new
|
|
entry upon a cache miss.
|
|
Returns true if the new entry should be admitted, false otherwise.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def cache_name(self):
|
|
"""
|
|
The name of the replacement policy.
|
|
"""
|
|
raise NotImplementedError
|
|
|
|
def is_ml_cache(self):
|
|
return False
|
|
|
|
def _update_stats(self, access_time, is_hit, miss_bytes):
|
|
self.per_second_miss_ratio_stats.update_metrics(access_time, is_hit, miss_bytes)
|
|
self.miss_ratio_stats.update_metrics(access_time, is_hit, miss_bytes)
|
|
self.per_hour_miss_ratio_stats.update_metrics(access_time, is_hit, miss_bytes)
|
|
|
|
def access(self, trace_record):
|
|
"""
|
|
Access a trace record. The simulator calls this function to access a
|
|
trace record.
|
|
"""
|
|
assert self.used_size <= self.cache_size
|
|
if (
|
|
self.enable_cache_row_key > 0
|
|
and trace_record.caller == 1
|
|
and trace_record.key_id != 0
|
|
and trace_record.get_id != 0
|
|
):
|
|
# This is a get request.
|
|
self._access_row(trace_record)
|
|
return
|
|
is_hit = self._access_kv(
|
|
trace_record,
|
|
self.block_key(trace_record),
|
|
trace_record.block_id,
|
|
trace_record.block_size,
|
|
trace_record.no_insert,
|
|
)
|
|
self._update_stats(
|
|
trace_record.access_time, is_hit=is_hit, miss_bytes=trace_record.block_size
|
|
)
|
|
|
|
def _access_row(self, trace_record):
|
|
row_key = self.row_key(trace_record)
|
|
self.max_seen_get_id = max(self.max_seen_get_id, trace_record.get_id)
|
|
self.get_id_row_key_map.pop(
|
|
self.max_seen_get_id - self.retain_get_id_range, None
|
|
)
|
|
if trace_record.get_id not in self.get_id_row_key_map:
|
|
self.get_id_row_key_map[trace_record.get_id] = {}
|
|
self.get_id_row_key_map[trace_record.get_id]["h"] = False
|
|
if self.get_id_row_key_map[trace_record.get_id]["h"]:
|
|
# We treat future accesses as hits since this get request
|
|
# completes.
|
|
# print("row hit 1")
|
|
self._update_stats(trace_record.access_time, is_hit=True, miss_bytes=0)
|
|
return
|
|
if row_key not in self.get_id_row_key_map[trace_record.get_id]:
|
|
# First time seen this key.
|
|
is_hit = self._access_kv(
|
|
trace_record,
|
|
key=row_key,
|
|
hash=trace_record.key_id,
|
|
value_size=trace_record.kv_size,
|
|
no_insert=False,
|
|
)
|
|
inserted = False
|
|
if trace_record.kv_size > 0:
|
|
inserted = True
|
|
self.get_id_row_key_map[trace_record.get_id][row_key] = inserted
|
|
self.get_id_row_key_map[trace_record.get_id]["h"] = is_hit
|
|
if self.get_id_row_key_map[trace_record.get_id]["h"]:
|
|
# We treat future accesses as hits since this get request
|
|
# completes.
|
|
# print("row hit 2")
|
|
self._update_stats(trace_record.access_time, is_hit=True, miss_bytes=0)
|
|
return
|
|
# Access its blocks.
|
|
no_insert = trace_record.no_insert
|
|
if (
|
|
self.enable_cache_row_key == 2
|
|
and trace_record.kv_size > 0
|
|
and trace_record.block_type == 9
|
|
):
|
|
no_insert = True
|
|
is_hit = self._access_kv(
|
|
trace_record,
|
|
key=self.block_key(trace_record),
|
|
hash=trace_record.block_id,
|
|
value_size=trace_record.block_size,
|
|
no_insert=no_insert,
|
|
)
|
|
self._update_stats(
|
|
trace_record.access_time, is_hit, miss_bytes=trace_record.block_size
|
|
)
|
|
if (
|
|
trace_record.kv_size > 0
|
|
and not self.get_id_row_key_map[trace_record.get_id][row_key]
|
|
):
|
|
# Insert the row key-value pair.
|
|
self._access_kv(
|
|
trace_record,
|
|
key=row_key,
|
|
hash=trace_record.key_id,
|
|
value_size=trace_record.kv_size,
|
|
no_insert=False,
|
|
)
|
|
# Mark as inserted.
|
|
self.get_id_row_key_map[trace_record.get_id][row_key] = True
|
|
|
|
def _access_kv(self, trace_record, key, hash, value_size, no_insert):
|
|
# Sanity checks.
|
|
assert self.used_size <= self.cache_size
|
|
if self._lookup(trace_record, key, hash):
|
|
# A cache hit.
|
|
return True
|
|
if no_insert or value_size <= 0:
|
|
return False
|
|
# A cache miss.
|
|
if value_size > self.cache_size:
|
|
# The block is too large to fit into the cache.
|
|
return False
|
|
self._evict(trace_record, key, hash, value_size)
|
|
if self._should_admit(trace_record, key, hash, value_size):
|
|
self._insert(trace_record, key, hash, value_size)
|
|
self.used_size += value_size
|
|
return False
|
|
|
|
|
|
class CostClassEntry:
|
|
"""
|
|
A cost class maintains aggregated statistics of cached entries in a class.
|
|
For example, we may define block type as a class. Then, cached blocks of the
|
|
same type will share one cost class entry.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.hits = 0
|
|
self.num_entries_in_cache = 0
|
|
self.size_in_cache = 0
|
|
self.sum_insertion_times = 0
|
|
self.sum_last_access_time = 0
|
|
|
|
def insert(self, trace_record, key, value_size):
|
|
self.size_in_cache += value_size
|
|
self.num_entries_in_cache += 1
|
|
self.sum_insertion_times += trace_record.access_time / kMicrosInSecond
|
|
self.sum_last_access_time += trace_record.access_time / kMicrosInSecond
|
|
|
|
def remove(self, insertion_time, last_access_time, key, value_size, num_hits):
|
|
self.hits -= num_hits
|
|
self.num_entries_in_cache -= 1
|
|
self.sum_insertion_times -= insertion_time / kMicrosInSecond
|
|
self.size_in_cache -= value_size
|
|
self.sum_last_access_time -= last_access_time / kMicrosInSecond
|
|
|
|
def update_on_hit(self, trace_record, last_access_time):
|
|
self.hits += 1
|
|
self.sum_last_access_time -= last_access_time / kMicrosInSecond
|
|
self.sum_last_access_time += trace_record.access_time / kMicrosInSecond
|
|
|
|
def avg_lifetime_in_cache(self, now):
|
|
avg_insertion_time = self.sum_insertion_times / self.num_entries_in_cache
|
|
return now / kMicrosInSecond - avg_insertion_time
|
|
|
|
def avg_last_access_time(self):
|
|
if self.num_entries_in_cache == 0:
|
|
return 0
|
|
return float(self.sum_last_access_time) / float(self.num_entries_in_cache)
|
|
|
|
def avg_size(self):
|
|
if self.num_entries_in_cache == 0:
|
|
return 0
|
|
return float(self.sum_last_access_time) / float(self.num_entries_in_cache)
|
|
|
|
def density(self, now):
|
|
avg_insertion_time = self.sum_insertion_times / self.num_entries_in_cache
|
|
in_cache_duration = now / kMicrosInSecond - avg_insertion_time
|
|
return self.size_in_cache * in_cache_duration
|
|
|
|
|
|
class MLCache(Cache):
|
|
"""
|
|
MLCache is the base class for implementations of alternative replacement
|
|
policies using reinforcement learning.
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key, policies, cost_class_label):
|
|
super(MLCache, self).__init__(cache_size, enable_cache_row_key)
|
|
self.table = HashTable()
|
|
self.policy_stats = PolicyStats(kSecondsInMinute, policies)
|
|
self.per_hour_policy_stats = PolicyStats(kSecondsInHour, policies)
|
|
self.policies = policies
|
|
self.cost_classes = {}
|
|
self.cost_class_label = cost_class_label
|
|
|
|
def is_ml_cache(self):
|
|
return True
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
value = self.table.lookup(key, hash)
|
|
if value is not None:
|
|
# Update the entry's cost class statistics.
|
|
if self.cost_class_label is not None:
|
|
cost_class = value.cost_class(self.cost_class_label)
|
|
assert cost_class in self.cost_classes
|
|
self.cost_classes[cost_class].update_on_hit(
|
|
trace_record, value.last_access_time
|
|
)
|
|
# Update the entry's last access time.
|
|
self.table.insert(
|
|
key,
|
|
hash,
|
|
CacheEntry(
|
|
value_size=value.value_size,
|
|
cf_id=value.cf_id,
|
|
level=value.level,
|
|
block_type=value.block_type,
|
|
table_id=value.table_id,
|
|
access_number=self.miss_ratio_stats.num_accesses,
|
|
time_s=trace_record.access_time,
|
|
num_hits=value.num_hits + 1,
|
|
),
|
|
)
|
|
return True
|
|
return False
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
# Select a policy, random sample kSampleSize keys from the cache, then
|
|
# evict keys in the sample set until we have enough room for the new
|
|
# entry.
|
|
policy_index = self._select_policy(trace_record, key)
|
|
assert policy_index < len(self.policies) and policy_index >= 0
|
|
self.policies[policy_index].delete(key)
|
|
self.policy_stats.update_metrics(trace_record.access_time, policy_index)
|
|
self.per_hour_policy_stats.update_metrics(
|
|
trace_record.access_time, policy_index
|
|
)
|
|
while self.used_size + value_size > self.cache_size:
|
|
# Randomly sample n entries.
|
|
samples = self.table.random_sample(kSampleSize)
|
|
samples = self.policies[policy_index].prioritize_samples(
|
|
samples,
|
|
[trace_record.access_time, self.cost_classes, self.cost_class_label],
|
|
)
|
|
for hash_entry in samples:
|
|
assert self.table.delete(hash_entry.key, hash_entry.hash) is not None
|
|
self.used_size -= hash_entry.value.value_size
|
|
self.policies[policy_index].evict(
|
|
key=hash_entry.key, max_size=self.table.elements
|
|
)
|
|
# Update the entry's cost class statistics.
|
|
if self.cost_class_label is not None:
|
|
cost_class = hash_entry.value.cost_class(self.cost_class_label)
|
|
assert cost_class in self.cost_classes
|
|
self.cost_classes[cost_class].remove(
|
|
hash_entry.value.insertion_time,
|
|
hash_entry.value.last_access_time,
|
|
key,
|
|
hash_entry.value.value_size,
|
|
hash_entry.value.num_hits,
|
|
)
|
|
if self.used_size + value_size <= self.cache_size:
|
|
break
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
assert self.used_size + value_size <= self.cache_size
|
|
entry = CacheEntry(
|
|
value_size,
|
|
trace_record.cf_id,
|
|
trace_record.level,
|
|
trace_record.block_type,
|
|
trace_record.table_id,
|
|
self.miss_ratio_stats.num_accesses,
|
|
trace_record.access_time,
|
|
)
|
|
# Update the entry's cost class statistics.
|
|
if self.cost_class_label is not None:
|
|
cost_class = entry.cost_class(self.cost_class_label)
|
|
if cost_class not in self.cost_classes:
|
|
self.cost_classes[cost_class] = CostClassEntry()
|
|
self.cost_classes[cost_class].insert(trace_record, key, value_size)
|
|
self.table.insert(key, hash, entry)
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return True
|
|
|
|
def _select_policy(self, trace_record, key):
|
|
raise NotImplementedError
|
|
|
|
|
|
class ThompsonSamplingCache(MLCache):
|
|
"""
|
|
An implementation of Thompson Sampling for the Bernoulli Bandit.
|
|
|
|
Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband,
|
|
and Zheng Wen. 2018. A Tutorial on Thompson Sampling. Found.
|
|
Trends Mach. Learn. 11, 1 (July 2018), 1-96.
|
|
DOI: https://doi.org/10.1561/2200000070
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
policies,
|
|
cost_class_label,
|
|
init_a=1,
|
|
init_b=1,
|
|
):
|
|
super(ThompsonSamplingCache, self).__init__(
|
|
cache_size, enable_cache_row_key, policies, cost_class_label
|
|
)
|
|
self._as = {}
|
|
self._bs = {}
|
|
for _i in range(len(policies)):
|
|
self._as = [init_a] * len(self.policies)
|
|
self._bs = [init_b] * len(self.policies)
|
|
|
|
def _select_policy(self, trace_record, key):
|
|
if len(self.policies) == 1:
|
|
return 0
|
|
samples = [
|
|
np.random.beta(self._as[x], self._bs[x]) for x in range(len(self.policies))
|
|
]
|
|
selected_policy = max(range(len(self.policies)), key=lambda x: samples[x])
|
|
reward = self.policies[selected_policy].generate_reward(key)
|
|
assert reward <= 1 and reward >= 0
|
|
self._as[selected_policy] += reward
|
|
self._bs[selected_policy] += 1 - reward
|
|
return selected_policy
|
|
|
|
def cache_name(self):
|
|
if self.enable_cache_row_key:
|
|
return "Hybrid ThompsonSampling with cost class {} (ts_hybrid)".format(
|
|
self.cost_class_label
|
|
)
|
|
return "ThompsonSampling with cost class {} (ts)".format(self.cost_class_label)
|
|
|
|
|
|
class LinUCBCache(MLCache):
|
|
"""
|
|
An implementation of LinUCB with disjoint linear models.
|
|
|
|
Lihong Li, Wei Chu, John Langford, and Robert E. Schapire. 2010.
|
|
A contextual-bandit approach to personalized news article recommendation.
|
|
In Proceedings of the 19th international conference on World wide web
|
|
(WWW '10). ACM, New York, NY, USA, 661-670.
|
|
DOI=http://dx.doi.org/10.1145/1772690.1772758
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key, policies, cost_class_label):
|
|
super(LinUCBCache, self).__init__(
|
|
cache_size, enable_cache_row_key, policies, cost_class_label
|
|
)
|
|
self.nfeatures = 4 # Block type, level, cf.
|
|
self.th = np.zeros((len(self.policies), self.nfeatures))
|
|
self.eps = 0.2
|
|
self.b = np.zeros_like(self.th)
|
|
self.A = np.zeros((len(self.policies), self.nfeatures, self.nfeatures))
|
|
self.A_inv = np.zeros((len(self.policies), self.nfeatures, self.nfeatures))
|
|
for i in range(len(self.policies)):
|
|
self.A[i] = np.identity(self.nfeatures)
|
|
self.th_hat = np.zeros_like(self.th)
|
|
self.p = np.zeros(len(self.policies))
|
|
self.alph = 0.2
|
|
|
|
def _select_policy(self, trace_record, key):
|
|
if len(self.policies) == 1:
|
|
return 0
|
|
x_i = np.zeros(self.nfeatures) # The current context vector
|
|
x_i[0] = trace_record.block_type
|
|
x_i[1] = trace_record.level
|
|
x_i[2] = trace_record.cf_id
|
|
p = np.zeros(len(self.policies))
|
|
for a in range(len(self.policies)):
|
|
self.th_hat[a] = self.A_inv[a].dot(self.b[a])
|
|
ta = x_i.dot(self.A_inv[a]).dot(x_i)
|
|
a_upper_ci = self.alph * np.sqrt(ta)
|
|
a_mean = self.th_hat[a].dot(x_i)
|
|
p[a] = a_mean + a_upper_ci
|
|
p = p + (np.random.random(len(p)) * 0.000001)
|
|
selected_policy = p.argmax()
|
|
reward = self.policies[selected_policy].generate_reward(key)
|
|
assert reward <= 1 and reward >= 0
|
|
self.A[selected_policy] += np.outer(x_i, x_i)
|
|
self.b[selected_policy] += reward * x_i
|
|
self.A_inv[selected_policy] = np.linalg.inv(self.A[selected_policy])
|
|
del x_i
|
|
return selected_policy
|
|
|
|
def cache_name(self):
|
|
if self.enable_cache_row_key:
|
|
return "Hybrid LinUCB with cost class {} (linucb_hybrid)".format(
|
|
self.cost_class_label
|
|
)
|
|
return "LinUCB with cost class {} (linucb)".format(self.cost_class_label)
|
|
|
|
|
|
class OPTCacheEntry:
|
|
"""
|
|
A cache entry for the OPT algorithm. The entries are sorted based on its
|
|
next access sequence number in reverse order, i.e., the entry which next
|
|
access is the furthest in the future is ordered before other entries.
|
|
"""
|
|
|
|
def __init__(self, key, next_access_seq_no, value_size):
|
|
self.key = key
|
|
self.next_access_seq_no = next_access_seq_no
|
|
self.value_size = value_size
|
|
self.is_removed = False
|
|
|
|
def __cmp__(self, other):
|
|
if other.next_access_seq_no != self.next_access_seq_no:
|
|
return other.next_access_seq_no - self.next_access_seq_no
|
|
return self.value_size - other.value_size
|
|
|
|
def __repr__(self):
|
|
return "({} {} {} {})".format(
|
|
self.key, self.next_access_seq_no, self.value_size, self.is_removed
|
|
)
|
|
|
|
|
|
class PQTable:
|
|
"""
|
|
A hash table with a priority queue.
|
|
"""
|
|
|
|
def __init__(self):
|
|
# A list of entries arranged in a heap sorted based on the entry custom
|
|
# implementation of __cmp__
|
|
self.pq = []
|
|
self.table = {}
|
|
|
|
def pqinsert(self, entry):
|
|
"Add a new key or update the priority of an existing key"
|
|
# Remove the entry from the table first.
|
|
removed_entry = self.table.pop(entry.key, None)
|
|
if removed_entry:
|
|
# Mark as removed since there is no 'remove' API in heappq.
|
|
# Instead, an entry in pq is removed lazily when calling pop.
|
|
removed_entry.is_removed = True
|
|
self.table[entry.key] = entry
|
|
heapq.heappush(self.pq, entry)
|
|
return removed_entry
|
|
|
|
def pqpop(self):
|
|
while self.pq:
|
|
entry = heapq.heappop(self.pq)
|
|
if not entry.is_removed:
|
|
del self.table[entry.key]
|
|
return entry
|
|
return None
|
|
|
|
def pqpeek(self):
|
|
while self.pq:
|
|
entry = self.pq[0]
|
|
if not entry.is_removed:
|
|
return entry
|
|
heapq.heappop(self.pq)
|
|
return
|
|
|
|
def __contains__(self, k):
|
|
return k in self.table
|
|
|
|
def __getitem__(self, k):
|
|
return self.table[k]
|
|
|
|
def __len__(self):
|
|
return len(self.table)
|
|
|
|
def values(self):
|
|
return self.table.values()
|
|
|
|
|
|
class OPTCache(Cache):
|
|
"""
|
|
An implementation of the Belady MIN algorithm. OPTCache evicts an entry
|
|
in the cache whose next access occurs furthest in the future.
|
|
|
|
Note that Belady MIN algorithm is optimal assuming all blocks having the
|
|
same size and a missing entry will be inserted in the cache.
|
|
These are NOT true for the block cache trace since blocks have different
|
|
sizes and we may not insert a block into the cache upon a cache miss.
|
|
However, it is still useful to serve as a "theoretical upper bound" on the
|
|
lowest miss ratio we can achieve given a cache size.
|
|
|
|
L. A. Belady. 1966. A Study of Replacement Algorithms for a
|
|
Virtual-storage Computer. IBM Syst. J. 5, 2 (June 1966), 78-101.
|
|
DOI=http://dx.doi.org/10.1147/sj.52.0078
|
|
"""
|
|
|
|
def __init__(self, cache_size):
|
|
super(OPTCache, self).__init__(cache_size, enable_cache_row_key=0)
|
|
self.table = PQTable()
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
if key not in self.table:
|
|
return False
|
|
# A cache hit. Update its next access time.
|
|
assert (
|
|
self.table.pqinsert(
|
|
OPTCacheEntry(
|
|
key, trace_record.next_access_seq_no, self.table[key].value_size
|
|
)
|
|
)
|
|
is not None
|
|
)
|
|
return True
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
while self.used_size + value_size > self.cache_size:
|
|
evict_entry = self.table.pqpop()
|
|
assert evict_entry is not None
|
|
self.used_size -= evict_entry.value_size
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
assert (
|
|
self.table.pqinsert(
|
|
OPTCacheEntry(key, trace_record.next_access_seq_no, value_size)
|
|
)
|
|
is None
|
|
)
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return True
|
|
|
|
def cache_name(self):
|
|
return "Belady MIN (opt)"
|
|
|
|
|
|
class GDSizeEntry:
|
|
"""
|
|
A cache entry for the greedy dual size replacement policy.
|
|
"""
|
|
|
|
def __init__(self, key, value_size, priority):
|
|
self.key = key
|
|
self.value_size = value_size
|
|
self.priority = priority
|
|
self.is_removed = False
|
|
|
|
def __cmp__(self, other):
|
|
if other.priority != self.priority:
|
|
return self.priority - other.priority
|
|
return self.value_size - other.value_size
|
|
|
|
def __repr__(self):
|
|
return "({} {} {} {})".format(
|
|
self.key, self.next_access_seq_no, self.value_size, self.is_removed
|
|
)
|
|
|
|
|
|
class GDSizeCache(Cache):
|
|
"""
|
|
An implementation of the greedy dual size algorithm.
|
|
We define cost as an entry's size.
|
|
|
|
See https://www.usenix.org/legacy/publications/library/proceedings/usits97/full_papers/cao/cao_html/node8.html
|
|
and N. Young. The k-server dual and loose competitiveness for paging.
|
|
Algorithmica,June 1994, vol. 11,(no.6):525-41.
|
|
Rewritten version of ''On-line caching as cache size varies'',
|
|
in The 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, 241-250, 1991.
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key):
|
|
super(GDSizeCache, self).__init__(cache_size, enable_cache_row_key)
|
|
self.table = PQTable()
|
|
self.L = 0.0
|
|
|
|
def cache_name(self):
|
|
if self.enable_cache_row_key:
|
|
return "Hybrid GreedyDualSize (gdsize_hybrid)"
|
|
return "GreedyDualSize (gdsize)"
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
if key not in self.table:
|
|
return False
|
|
# A cache hit. Update its priority.
|
|
entry = self.table[key]
|
|
assert (
|
|
self.table.pqinsert(
|
|
GDSizeEntry(key, entry.value_size, self.L + entry.value_size)
|
|
)
|
|
is not None
|
|
)
|
|
return True
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
while self.used_size + value_size > self.cache_size:
|
|
evict_entry = self.table.pqpop()
|
|
assert evict_entry is not None
|
|
self.L = evict_entry.priority
|
|
self.used_size -= evict_entry.value_size
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
assert (
|
|
self.table.pqinsert(GDSizeEntry(key, value_size, self.L + value_size))
|
|
is None
|
|
)
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return True
|
|
|
|
|
|
class Deque(object):
|
|
"""A Deque class facilitates the implementation of LRU and ARC."""
|
|
|
|
def __init__(self):
|
|
self.od = OrderedDict()
|
|
|
|
def appendleft(self, k):
|
|
if k in self.od:
|
|
del self.od[k]
|
|
self.od[k] = None
|
|
|
|
def pop(self):
|
|
item = self.od.popitem(last=False) if self.od else None
|
|
if item is not None:
|
|
return item[0]
|
|
return None
|
|
|
|
def remove(self, k):
|
|
del self.od[k]
|
|
|
|
def __len__(self):
|
|
return len(self.od)
|
|
|
|
def __contains__(self, k):
|
|
return k in self.od
|
|
|
|
def __iter__(self):
|
|
return reversed(self.od)
|
|
|
|
def __repr__(self):
|
|
return "Deque(%r)" % (list(self),)
|
|
|
|
|
|
class ARCCache(Cache):
|
|
"""
|
|
An implementation of ARC. ARC assumes that all blocks are having the
|
|
same size. The size of index and filter blocks are variable. To accommodate
|
|
this, we modified ARC as follows:
|
|
1) We use 16 KB as the average block size and calculate the number of blocks
|
|
(c) in the cache.
|
|
2) When we insert an entry, the cache evicts entries in both t1 and t2
|
|
queues until it has enough space for the new entry. This also requires
|
|
modification of the algorithm to maintain a maximum of 2*c blocks.
|
|
|
|
Nimrod Megiddo and Dharmendra S. Modha. 2003. ARC: A Self-Tuning, Low
|
|
Overhead Replacement Cache. In Proceedings of the 2nd USENIX Conference on
|
|
File and Storage Technologies (FAST '03). USENIX Association, Berkeley, CA,
|
|
USA, 115-130.
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key):
|
|
super(ARCCache, self).__init__(cache_size, enable_cache_row_key)
|
|
self.table = {}
|
|
self.c = cache_size / 16 * 1024 # Number of elements in the cache.
|
|
self.p = 0 # Target size for the list T1
|
|
# L1: only once recently
|
|
self.t1 = Deque() # T1: recent cache entries
|
|
self.b1 = Deque() # B1: ghost entries recently evicted from the T1 cache
|
|
# L2: at least twice recently
|
|
self.t2 = Deque() # T2: frequent entries
|
|
self.b2 = Deque() # B2: ghost entries recently evicted from the T2 cache
|
|
|
|
def _replace(self, key, value_size):
|
|
while self.used_size + value_size > self.cache_size:
|
|
if self.t1 and ((key in self.b2) or (len(self.t1) > self.p)):
|
|
old = self.t1.pop()
|
|
self.b1.appendleft(old)
|
|
else:
|
|
if self.t2:
|
|
old = self.t2.pop()
|
|
self.b2.appendleft(old)
|
|
else:
|
|
old = self.t1.pop()
|
|
self.b1.appendleft(old)
|
|
self.used_size -= self.table[old].value_size
|
|
del self.table[old]
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
# Case I: key is in T1 or T2.
|
|
# Move key to MRU position in T2.
|
|
if key in self.t1:
|
|
self.t1.remove(key)
|
|
self.t2.appendleft(key)
|
|
return True
|
|
|
|
if key in self.t2:
|
|
self.t2.remove(key)
|
|
self.t2.appendleft(key)
|
|
return True
|
|
return False
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
# Case II: key is in B1
|
|
# Move x from B1 to the MRU position in T2 (also fetch x to the cache).
|
|
if key in self.b1:
|
|
self.p = min(self.c, self.p + max(len(self.b2) / len(self.b1), 1))
|
|
self._replace(key, value_size)
|
|
self.b1.remove(key)
|
|
self.t2.appendleft(key)
|
|
return
|
|
|
|
# Case III: key is in B2
|
|
# Move x from B2 to the MRU position in T2 (also fetch x to the cache).
|
|
if key in self.b2:
|
|
self.p = max(0, self.p - max(len(self.b1) / len(self.b2), 1))
|
|
self._replace(key, value_size)
|
|
self.b2.remove(key)
|
|
self.t2.appendleft(key)
|
|
return
|
|
|
|
# Case IV: key is not in (T1 u B1 u T2 u B2)
|
|
self._replace(key, value_size)
|
|
while len(self.t1) + len(self.b1) >= self.c and self.b1:
|
|
self.b1.pop()
|
|
|
|
total = len(self.t1) + len(self.b1) + len(self.t2) + len(self.b2)
|
|
while total >= (2 * self.c) and self.b2:
|
|
self.b2.pop()
|
|
total -= 1
|
|
# Finally, move it to MRU position in T1.
|
|
self.t1.appendleft(key)
|
|
return
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
self.table[key] = CacheEntry(
|
|
value_size,
|
|
trace_record.cf_id,
|
|
trace_record.level,
|
|
trace_record.block_type,
|
|
trace_record.table_id,
|
|
0,
|
|
trace_record.access_time,
|
|
)
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return True
|
|
|
|
def cache_name(self):
|
|
if self.enable_cache_row_key:
|
|
return "Hybrid Adaptive Replacement Cache (arc_hybrid)"
|
|
return "Adaptive Replacement Cache (arc)"
|
|
|
|
|
|
class LRUCache(Cache):
|
|
"""
|
|
A strict LRU queue.
|
|
"""
|
|
|
|
def __init__(self, cache_size, enable_cache_row_key):
|
|
super(LRUCache, self).__init__(cache_size, enable_cache_row_key)
|
|
self.table = {}
|
|
self.lru = Deque()
|
|
|
|
def cache_name(self):
|
|
if self.enable_cache_row_key:
|
|
return "Hybrid LRU (lru_hybrid)"
|
|
return "LRU (lru)"
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
if key not in self.table:
|
|
return False
|
|
# A cache hit. Update LRU queue.
|
|
self.lru.remove(key)
|
|
self.lru.appendleft(key)
|
|
return True
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
while self.used_size + value_size > self.cache_size:
|
|
evict_key = self.lru.pop()
|
|
self.used_size -= self.table[evict_key].value_size
|
|
del self.table[evict_key]
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
self.table[key] = CacheEntry(
|
|
value_size,
|
|
trace_record.cf_id,
|
|
trace_record.level,
|
|
trace_record.block_type,
|
|
trace_record.table_id,
|
|
0,
|
|
trace_record.access_time,
|
|
)
|
|
self.lru.appendleft(key)
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return True
|
|
|
|
|
|
class TraceCache(Cache):
|
|
"""
|
|
A trace cache. Lookup returns true if the trace observes a cache hit.
|
|
It is used to maintain cache hits observed in the trace.
|
|
"""
|
|
|
|
def __init__(self, cache_size):
|
|
super(TraceCache, self).__init__(cache_size, enable_cache_row_key=0)
|
|
|
|
def _lookup(self, trace_record, key, hash):
|
|
return trace_record.is_hit
|
|
|
|
def _evict(self, trace_record, key, hash, value_size):
|
|
pass
|
|
|
|
def _insert(self, trace_record, key, hash, value_size):
|
|
pass
|
|
|
|
def _should_admit(self, trace_record, key, hash, value_size):
|
|
return False
|
|
|
|
def cache_name(self):
|
|
return "Trace"
|
|
|
|
|
|
def parse_cache_size(cs):
|
|
cs = cs.replace("\n", "")
|
|
if cs[-1] == "M":
|
|
return int(cs[: len(cs) - 1]) * 1024 * 1024
|
|
if cs[-1] == "G":
|
|
return int(cs[: len(cs) - 1]) * 1024 * 1024 * 1024
|
|
if cs[-1] == "T":
|
|
return int(cs[: len(cs) - 1]) * 1024 * 1024 * 1024 * 1024
|
|
return int(cs)
|
|
|
|
|
|
def create_cache(cache_type, cache_size, downsample_size):
|
|
cache_size = cache_size / downsample_size
|
|
enable_cache_row_key = 0
|
|
if "hybridn" in cache_type:
|
|
enable_cache_row_key = 2
|
|
cache_type = cache_type[:-8]
|
|
if "hybrid" in cache_type:
|
|
enable_cache_row_key = 1
|
|
cache_type = cache_type[:-7]
|
|
if cache_type == "ts":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[LRUPolicy(), LFUPolicy(), HyperbolicPolicy()],
|
|
cost_class_label=None,
|
|
)
|
|
elif cache_type == "linucb":
|
|
return LinUCBCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[LRUPolicy(), LFUPolicy(), HyperbolicPolicy()],
|
|
cost_class_label=None,
|
|
)
|
|
elif cache_type == "pylru":
|
|
return ThompsonSamplingCache(
|
|
cache_size, enable_cache_row_key, [LRUPolicy()], cost_class_label=None
|
|
)
|
|
elif cache_type == "pymru":
|
|
return ThompsonSamplingCache(
|
|
cache_size, enable_cache_row_key, [MRUPolicy()], cost_class_label=None
|
|
)
|
|
elif cache_type == "pylfu":
|
|
return ThompsonSamplingCache(
|
|
cache_size, enable_cache_row_key, [LFUPolicy()], cost_class_label=None
|
|
)
|
|
elif cache_type == "pyhb":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[HyperbolicPolicy()],
|
|
cost_class_label=None,
|
|
)
|
|
elif cache_type == "pycctbbt":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[CostClassPolicy()],
|
|
cost_class_label="table_bt",
|
|
)
|
|
elif cache_type == "pycccf":
|
|
return ThompsonSamplingCache(
|
|
cache_size, enable_cache_row_key, [CostClassPolicy()], cost_class_label="cf"
|
|
)
|
|
elif cache_type == "pycctblevelbt":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[CostClassPolicy()],
|
|
cost_class_label="table_level_bt",
|
|
)
|
|
elif cache_type == "pycccfbt":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[CostClassPolicy()],
|
|
cost_class_label="cf_bt",
|
|
)
|
|
elif cache_type == "pycctb":
|
|
return ThompsonSamplingCache(
|
|
cache_size,
|
|
enable_cache_row_key,
|
|
[CostClassPolicy()],
|
|
cost_class_label="table",
|
|
)
|
|
elif cache_type == "pyccbt":
|
|
return ThompsonSamplingCache(
|
|
cache_size, enable_cache_row_key, [CostClassPolicy()], cost_class_label="bt"
|
|
)
|
|
elif cache_type == "opt":
|
|
if enable_cache_row_key:
|
|
print("opt does not support hybrid mode.")
|
|
assert False
|
|
return OPTCache(cache_size)
|
|
elif cache_type == "trace":
|
|
if enable_cache_row_key:
|
|
print("trace does not support hybrid mode.")
|
|
assert False
|
|
return TraceCache(cache_size)
|
|
elif cache_type == "lru":
|
|
return LRUCache(cache_size, enable_cache_row_key)
|
|
elif cache_type == "arc":
|
|
return ARCCache(cache_size, enable_cache_row_key)
|
|
elif cache_type == "gdsize":
|
|
return GDSizeCache(cache_size, enable_cache_row_key)
|
|
else:
|
|
print("Unknown cache type {}".format(cache_type))
|
|
assert False
|
|
return None
|
|
|
|
|
|
class BlockAccessTimeline:
|
|
"""
|
|
BlockAccessTimeline stores all accesses of a block.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.accesses = []
|
|
self.current_access_index = 1
|
|
|
|
def get_next_access(self):
|
|
if self.current_access_index == len(self.accesses):
|
|
return sys.maxsize
|
|
next_access_seq_no = self.accesses[self.current_access_index]
|
|
self.current_access_index += 1
|
|
return next_access_seq_no
|
|
|
|
|
|
def percent(e1, e2):
|
|
if e2 == 0:
|
|
return -1
|
|
return float(e1) * 100.0 / float(e2)
|
|
|
|
|
|
def is_target_cf(access_cf, target_cf_name):
|
|
if target_cf_name == "all":
|
|
return True
|
|
return access_cf == target_cf_name
|
|
|
|
|
|
def run(
|
|
trace_file_path,
|
|
cache_type,
|
|
cache,
|
|
warmup_seconds,
|
|
max_accesses_to_process,
|
|
target_cf_name,
|
|
):
|
|
warmup_complete = False
|
|
trace_miss_ratio_stats = MissRatioStats(kSecondsInMinute)
|
|
access_seq_no = 0
|
|
time_interval = 1
|
|
start_time = time.time()
|
|
trace_start_time = 0
|
|
trace_duration = 0
|
|
is_opt_cache = False
|
|
if cache.cache_name() == "Belady MIN (opt)":
|
|
is_opt_cache = True
|
|
|
|
block_access_timelines = {}
|
|
num_no_inserts = 0
|
|
num_blocks_with_no_size = 0
|
|
num_inserts_block_with_no_size = 0
|
|
|
|
if is_opt_cache:
|
|
# Read all blocks in memory and stores their access times so that OPT
|
|
# can use this information to evict the cached key which next access is
|
|
# the furthest in the future.
|
|
print("Preprocessing block traces.")
|
|
with open(trace_file_path, "r") as trace_file:
|
|
for line in trace_file:
|
|
if (
|
|
max_accesses_to_process != -1
|
|
and access_seq_no > max_accesses_to_process
|
|
):
|
|
break
|
|
ts = line.split(",")
|
|
timestamp = int(ts[0])
|
|
cf_name = ts[5]
|
|
if not is_target_cf(cf_name, target_cf_name):
|
|
continue
|
|
if trace_start_time == 0:
|
|
trace_start_time = timestamp
|
|
trace_duration = timestamp - trace_start_time
|
|
block_id = int(ts[1])
|
|
block_size = int(ts[3])
|
|
no_insert = int(ts[9])
|
|
if block_id not in block_access_timelines:
|
|
block_access_timelines[block_id] = BlockAccessTimeline()
|
|
if block_size == 0:
|
|
num_blocks_with_no_size += 1
|
|
block_access_timelines[block_id].accesses.append(access_seq_no)
|
|
access_seq_no += 1
|
|
if no_insert == 1:
|
|
num_no_inserts += 1
|
|
if no_insert == 0 and block_size == 0:
|
|
num_inserts_block_with_no_size += 1
|
|
if access_seq_no % 100 != 0:
|
|
continue
|
|
now = time.time()
|
|
if now - start_time > time_interval * 10:
|
|
print(
|
|
"Take {} seconds to process {} trace records with trace "
|
|
"duration of {} seconds. Throughput: {} records/second.".format(
|
|
now - start_time,
|
|
access_seq_no,
|
|
trace_duration / 1000000,
|
|
access_seq_no / (now - start_time),
|
|
)
|
|
)
|
|
time_interval += 1
|
|
print(
|
|
"Trace contains {0} blocks, {1}({2:.2f}%) blocks with no size."
|
|
"{3} accesses, {4}({5:.2f}%) accesses with no_insert,"
|
|
"{6}({7:.2f}%) accesses that want to insert but block size is 0.".format(
|
|
len(block_access_timelines),
|
|
num_blocks_with_no_size,
|
|
percent(num_blocks_with_no_size, len(block_access_timelines)),
|
|
access_seq_no,
|
|
num_no_inserts,
|
|
percent(num_no_inserts, access_seq_no),
|
|
num_inserts_block_with_no_size,
|
|
percent(num_inserts_block_with_no_size, access_seq_no),
|
|
)
|
|
)
|
|
|
|
access_seq_no = 0
|
|
time_interval = 1
|
|
start_time = time.time()
|
|
trace_start_time = 0
|
|
trace_duration = 0
|
|
print("Running simulated {} cache on block traces.".format(cache.cache_name()))
|
|
with open(trace_file_path, "r") as trace_file:
|
|
for line in trace_file:
|
|
if (
|
|
max_accesses_to_process != -1
|
|
and access_seq_no > max_accesses_to_process
|
|
):
|
|
break
|
|
if access_seq_no % 1000000 == 0:
|
|
# Force a python gc periodically to reduce memory usage.
|
|
gc.collect()
|
|
ts = line.split(",")
|
|
timestamp = int(ts[0])
|
|
cf_name = ts[5]
|
|
if not is_target_cf(cf_name, target_cf_name):
|
|
continue
|
|
if trace_start_time == 0:
|
|
trace_start_time = timestamp
|
|
trace_duration = timestamp - trace_start_time
|
|
if (
|
|
not warmup_complete
|
|
and warmup_seconds > 0
|
|
and trace_duration > warmup_seconds * 1000000
|
|
):
|
|
cache.miss_ratio_stats.reset_counter()
|
|
warmup_complete = True
|
|
next_access_seq_no = 0
|
|
block_id = int(ts[1])
|
|
if is_opt_cache:
|
|
next_access_seq_no = block_access_timelines[block_id].get_next_access()
|
|
record = TraceRecord(
|
|
access_time=int(ts[0]),
|
|
block_id=int(ts[1]),
|
|
block_type=int(ts[2]),
|
|
block_size=int(ts[3]),
|
|
cf_id=int(ts[4]),
|
|
cf_name=ts[5],
|
|
level=int(ts[6]),
|
|
fd=int(ts[7]),
|
|
caller=int(ts[8]),
|
|
no_insert=int(ts[9]),
|
|
get_id=int(ts[10]),
|
|
key_id=int(ts[11]),
|
|
kv_size=int(ts[12]),
|
|
is_hit=int(ts[13]),
|
|
referenced_key_exist_in_block=int(ts[14]),
|
|
num_keys_in_block=int(ts[15]),
|
|
table_id=int(ts[16]),
|
|
seq_number=int(ts[17]),
|
|
block_key_size=int(ts[18]),
|
|
key_size=int(ts[19]),
|
|
block_offset_in_file=int(ts[20]),
|
|
next_access_seq_no=next_access_seq_no,
|
|
)
|
|
trace_miss_ratio_stats.update_metrics(
|
|
record.access_time, is_hit=record.is_hit, miss_bytes=record.block_size
|
|
)
|
|
cache.access(record)
|
|
access_seq_no += 1
|
|
del record
|
|
del ts
|
|
if access_seq_no % 100 != 0:
|
|
continue
|
|
# Report progress every 10 seconds.
|
|
now = time.time()
|
|
if now - start_time > time_interval * 10:
|
|
print(
|
|
"Take {} seconds to process {} trace records with trace "
|
|
"duration of {} seconds. Throughput: {} records/second. "
|
|
"Trace miss ratio {}".format(
|
|
now - start_time,
|
|
access_seq_no,
|
|
trace_duration / 1000000,
|
|
access_seq_no / (now - start_time),
|
|
trace_miss_ratio_stats.miss_ratio(),
|
|
)
|
|
)
|
|
time_interval += 1
|
|
print(
|
|
"{},0,0,{},{},{}".format(
|
|
cache_type,
|
|
cache.cache_size,
|
|
cache.miss_ratio_stats.miss_ratio(),
|
|
cache.miss_ratio_stats.num_accesses,
|
|
)
|
|
)
|
|
now = time.time()
|
|
print(
|
|
"Take {} seconds to process {} trace records with trace duration of {} "
|
|
"seconds. Throughput: {} records/second. Trace miss ratio {}".format(
|
|
now - start_time,
|
|
access_seq_no,
|
|
trace_duration / 1000000,
|
|
access_seq_no / (now - start_time),
|
|
trace_miss_ratio_stats.miss_ratio(),
|
|
)
|
|
)
|
|
print(
|
|
"{},0,0,{},{},{}".format(
|
|
cache_type,
|
|
cache.cache_size,
|
|
cache.miss_ratio_stats.miss_ratio(),
|
|
cache.miss_ratio_stats.num_accesses,
|
|
)
|
|
)
|
|
return trace_start_time, trace_duration
|
|
|
|
|
|
def report_stats(
|
|
cache,
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
):
|
|
cache_label = "{}-{}-{}".format(cache_type, cache_size, target_cf_name)
|
|
with open("{}/data-ml-mrc-{}".format(result_dir, cache_label), "w+") as mrc_file:
|
|
mrc_file.write(
|
|
"{},0,0,{},{},{}\n".format(
|
|
cache_type,
|
|
cache_size,
|
|
cache.miss_ratio_stats.miss_ratio(),
|
|
cache.miss_ratio_stats.num_accesses,
|
|
)
|
|
)
|
|
|
|
cache_stats = [
|
|
cache.per_second_miss_ratio_stats,
|
|
cache.miss_ratio_stats,
|
|
cache.per_hour_miss_ratio_stats,
|
|
]
|
|
for i in range(len(cache_stats)):
|
|
avg_miss_bytes, p95_miss_bytes = cache_stats[i].compute_miss_bytes()
|
|
|
|
with open(
|
|
"{}/data-ml-avgmb-{}-{}".format(
|
|
result_dir, cache_stats[i].time_unit, cache_label
|
|
),
|
|
"w+",
|
|
) as mb_file:
|
|
mb_file.write(
|
|
"{},0,0,{},{}\n".format(cache_type, cache_size, avg_miss_bytes)
|
|
)
|
|
|
|
with open(
|
|
"{}/data-ml-p95mb-{}-{}".format(
|
|
result_dir, cache_stats[i].time_unit, cache_label
|
|
),
|
|
"w+",
|
|
) as mb_file:
|
|
mb_file.write(
|
|
"{},0,0,{},{}\n".format(cache_type, cache_size, p95_miss_bytes)
|
|
)
|
|
|
|
cache_stats[i].write_miss_timeline(
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
)
|
|
cache_stats[i].write_miss_ratio_timeline(
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
)
|
|
|
|
if not cache.is_ml_cache():
|
|
return
|
|
|
|
policy_stats = [cache.policy_stats, cache.per_hour_policy_stats]
|
|
for i in range(len(policy_stats)):
|
|
policy_stats[i].write_policy_timeline(
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
)
|
|
policy_stats[i].write_policy_ratio_timeline(
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if len(sys.argv) <= 8:
|
|
print(
|
|
"Must provide 8 arguments.\n"
|
|
"1) Cache type (ts, linucb, arc, lru, opt, pylru, pymru, pylfu, "
|
|
"pyhb, gdsize, trace). One may evaluate the hybrid row_block cache "
|
|
"by appending '_hybrid' to a cache_type, e.g., ts_hybrid. "
|
|
"Note that hybrid is not supported with opt and trace. \n"
|
|
"2) Cache size (xM, xG, xT).\n"
|
|
"3) The sampling frequency used to collect the trace. (The "
|
|
"simulation scales down the cache size by the sampling frequency).\n"
|
|
"4) Warmup seconds (The number of seconds used for warmup).\n"
|
|
"5) Trace file path.\n"
|
|
"6) Result directory (A directory that saves generated results)\n"
|
|
"7) Max number of accesses to process\n"
|
|
"8) The target column family. (The simulation will only run "
|
|
"accesses on the target column family. If it is set to all, "
|
|
"it will run against all accesses.)"
|
|
)
|
|
exit(1)
|
|
print("Arguments: {}".format(sys.argv))
|
|
cache_type = sys.argv[1]
|
|
cache_size = parse_cache_size(sys.argv[2])
|
|
downsample_size = int(sys.argv[3])
|
|
warmup_seconds = int(sys.argv[4])
|
|
trace_file_path = sys.argv[5]
|
|
result_dir = sys.argv[6]
|
|
max_accesses_to_process = int(sys.argv[7])
|
|
target_cf_name = sys.argv[8]
|
|
cache = create_cache(cache_type, cache_size, downsample_size)
|
|
trace_start_time, trace_duration = run(
|
|
trace_file_path,
|
|
cache_type,
|
|
cache,
|
|
warmup_seconds,
|
|
max_accesses_to_process,
|
|
target_cf_name,
|
|
)
|
|
trace_end_time = trace_start_time + trace_duration
|
|
report_stats(
|
|
cache,
|
|
cache_type,
|
|
cache_size,
|
|
target_cf_name,
|
|
result_dir,
|
|
trace_start_time,
|
|
trace_end_time,
|
|
)
|