588bca2020
Summary: Introducing RocksDBLite! Removes all the non-essential features and reduces the binary size. This effort should help our adoption on mobile. Binary size when compiling for IOS (`TARGET_OS=IOS m static_lib`) is down to 9MB from 15MB (without stripping) Test Plan: compiles :) Reviewers: dhruba, haobo, ljin, sdong, yhchiang Reviewed By: yhchiang CC: leveldb Differential Revision: https://reviews.facebook.net/D17835
232 lines
9.0 KiB
C++
232 lines
9.0 KiB
C++
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
|
|
// This source code is licensed under the BSD-style license found in the
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
//
|
|
// This file contains the interface that must be implemented by any collection
|
|
// to be used as the backing store for a MemTable. Such a collection must
|
|
// satisfy the following properties:
|
|
// (1) It does not store duplicate items.
|
|
// (2) It uses MemTableRep::KeyComparator to compare items for iteration and
|
|
// equality.
|
|
// (3) It can be accessed concurrently by multiple readers and can support
|
|
// during reads. However, it needn't support multiple concurrent writes.
|
|
// (4) Items are never deleted.
|
|
// The liberal use of assertions is encouraged to enforce (1).
|
|
//
|
|
// The factory will be passed an Arena object when a new MemTableRep is
|
|
// requested. The API for this object is in rocksdb/arena.h.
|
|
//
|
|
// Users can implement their own memtable representations. We include three
|
|
// types built in:
|
|
// - SkipListRep: This is the default; it is backed by a skip list.
|
|
// - HashSkipListRep: The memtable rep that is best used for keys that are
|
|
// structured like "prefix:suffix" where iteration within a prefix is
|
|
// common and iteration across different prefixes is rare. It is backed by
|
|
// a hash map where each bucket is a skip list.
|
|
// - VectorRep: This is backed by an unordered std::vector. On iteration, the
|
|
// vector is sorted. It is intelligent about sorting; once the MarkReadOnly()
|
|
// has been called, the vector will only be sorted once. It is optimized for
|
|
// random-write-heavy workloads.
|
|
//
|
|
// The last four implementations are designed for situations in which
|
|
// iteration over the entire collection is rare since doing so requires all the
|
|
// keys to be copied into a sorted data structure.
|
|
|
|
#pragma once
|
|
|
|
#include <memory>
|
|
#include <stdint.h>
|
|
|
|
namespace rocksdb {
|
|
|
|
class Arena;
|
|
class LookupKey;
|
|
class Slice;
|
|
class SliceTransform;
|
|
|
|
typedef void* KeyHandle;
|
|
|
|
class MemTableRep {
|
|
public:
|
|
// KeyComparator provides a means to compare keys, which are internal keys
|
|
// concatenated with values.
|
|
class KeyComparator {
|
|
public:
|
|
// Compare a and b. Return a negative value if a is less than b, 0 if they
|
|
// are equal, and a positive value if a is greater than b
|
|
virtual int operator()(const char* prefix_len_key1,
|
|
const char* prefix_len_key2) const = 0;
|
|
|
|
virtual int operator()(const char* prefix_len_key,
|
|
const Slice& key) const = 0;
|
|
|
|
virtual ~KeyComparator() { }
|
|
};
|
|
|
|
explicit MemTableRep(Arena* arena) : arena_(arena) {}
|
|
|
|
// Allocate a buf of len size for storing key. The idea is that a specific
|
|
// memtable representation knows its underlying data structure better. By
|
|
// allowing it to allocate memory, it can possibly put correlated stuff
|
|
// in consecutive memory area to make processor prefetching more efficient.
|
|
virtual KeyHandle Allocate(const size_t len, char** buf);
|
|
|
|
// Insert key into the collection. (The caller will pack key and value into a
|
|
// single buffer and pass that in as the parameter to Insert).
|
|
// REQUIRES: nothing that compares equal to key is currently in the
|
|
// collection.
|
|
virtual void Insert(KeyHandle handle) = 0;
|
|
|
|
// Returns true iff an entry that compares equal to key is in the collection.
|
|
virtual bool Contains(const char* key) const = 0;
|
|
|
|
// Notify this table rep that it will no longer be added to. By default, does
|
|
// nothing.
|
|
virtual void MarkReadOnly() { }
|
|
|
|
// Look up key from the mem table, since the first key in the mem table whose
|
|
// user_key matches the one given k, call the function callback_func(), with
|
|
// callback_args directly forwarded as the first parameter, and the mem table
|
|
// key as the second parameter. If the return value is false, then terminates.
|
|
// Otherwise, go through the next key.
|
|
// It's safe for Get() to terminate after having finished all the potential
|
|
// key for the k.user_key(), or not.
|
|
//
|
|
// Default:
|
|
// Get() function with a default value of dynamically construct an iterator,
|
|
// seek and call the call back function.
|
|
virtual void Get(const LookupKey& k, void* callback_args,
|
|
bool (*callback_func)(void* arg, const char* entry));
|
|
|
|
// Report an approximation of how much memory has been used other than memory
|
|
// that was allocated through the arena.
|
|
virtual size_t ApproximateMemoryUsage() = 0;
|
|
|
|
virtual ~MemTableRep() { }
|
|
|
|
// Iteration over the contents of a skip collection
|
|
class Iterator {
|
|
public:
|
|
// Initialize an iterator over the specified collection.
|
|
// The returned iterator is not valid.
|
|
// explicit Iterator(const MemTableRep* collection);
|
|
virtual ~Iterator() {}
|
|
|
|
// Returns true iff the iterator is positioned at a valid node.
|
|
virtual bool Valid() const = 0;
|
|
|
|
// Returns the key at the current position.
|
|
// REQUIRES: Valid()
|
|
virtual const char* key() const = 0;
|
|
|
|
// Advances to the next position.
|
|
// REQUIRES: Valid()
|
|
virtual void Next() = 0;
|
|
|
|
// Advances to the previous position.
|
|
// REQUIRES: Valid()
|
|
virtual void Prev() = 0;
|
|
|
|
// Advance to the first entry with a key >= target
|
|
virtual void Seek(const Slice& internal_key, const char* memtable_key) = 0;
|
|
|
|
// Position at the first entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToFirst() = 0;
|
|
|
|
// Position at the last entry in collection.
|
|
// Final state of iterator is Valid() iff collection is not empty.
|
|
virtual void SeekToLast() = 0;
|
|
};
|
|
|
|
// Return an iterator over the keys in this representation.
|
|
virtual Iterator* GetIterator() = 0;
|
|
|
|
// Return an iterator over at least the keys with the specified user key. The
|
|
// iterator may also allow access to other keys, but doesn't have to. Default:
|
|
// GetIterator().
|
|
virtual Iterator* GetIterator(const Slice& user_key) { return GetIterator(); }
|
|
|
|
// Return an iterator over at least the keys with the specified prefix. The
|
|
// iterator may also allow access to other keys, but doesn't have to. Default:
|
|
// GetIterator().
|
|
virtual Iterator* GetPrefixIterator(const Slice& prefix) {
|
|
return GetIterator();
|
|
}
|
|
|
|
// Return an iterator that has a special Seek semantics. The result of
|
|
// a Seek might only include keys with the same prefix as the target key.
|
|
virtual Iterator* GetDynamicPrefixIterator() { return GetIterator(); }
|
|
|
|
protected:
|
|
// When *key is an internal key concatenated with the value, returns the
|
|
// user key.
|
|
virtual Slice UserKey(const char* key) const;
|
|
|
|
Arena* arena_;
|
|
};
|
|
|
|
// This is the base class for all factories that are used by RocksDB to create
|
|
// new MemTableRep objects
|
|
class MemTableRepFactory {
|
|
public:
|
|
virtual ~MemTableRepFactory() {}
|
|
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
|
|
Arena*, const SliceTransform*) = 0;
|
|
virtual const char* Name() const = 0;
|
|
};
|
|
|
|
// This uses a skip list to store keys. It is the default.
|
|
class SkipListFactory : public MemTableRepFactory {
|
|
public:
|
|
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
|
|
Arena*,
|
|
const SliceTransform*) override;
|
|
virtual const char* Name() const override { return "SkipListFactory"; }
|
|
};
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
// This creates MemTableReps that are backed by an std::vector. On iteration,
|
|
// the vector is sorted. This is useful for workloads where iteration is very
|
|
// rare and writes are generally not issued after reads begin.
|
|
//
|
|
// Parameters:
|
|
// count: Passed to the constructor of the underlying std::vector of each
|
|
// VectorRep. On initialization, the underlying array will be at least count
|
|
// bytes reserved for usage.
|
|
class VectorRepFactory : public MemTableRepFactory {
|
|
const size_t count_;
|
|
|
|
public:
|
|
explicit VectorRepFactory(size_t count = 0) : count_(count) { }
|
|
virtual MemTableRep* CreateMemTableRep(
|
|
const MemTableRep::KeyComparator&, Arena*,
|
|
const SliceTransform*) override;
|
|
virtual const char* Name() const override {
|
|
return "VectorRepFactory";
|
|
}
|
|
};
|
|
|
|
// This class contains a fixed array of buckets, each
|
|
// pointing to a skiplist (null if the bucket is empty).
|
|
// bucket_count: number of fixed array buckets
|
|
// skiplist_height: the max height of the skiplist
|
|
// skiplist_branching_factor: probabilistic size ratio between adjacent
|
|
// link lists in the skiplist
|
|
extern MemTableRepFactory* NewHashSkipListRepFactory(
|
|
size_t bucket_count = 1000000, int32_t skiplist_height = 4,
|
|
int32_t skiplist_branching_factor = 4
|
|
);
|
|
|
|
// The factory is to create memtables with a hashed linked list:
|
|
// it contains a fixed array of buckets, each pointing to a sorted single
|
|
// linked list (null if the bucket is empty).
|
|
// bucket_count: number of fixed array buckets
|
|
extern MemTableRepFactory* NewHashLinkListRepFactory(
|
|
size_t bucket_count = 50000);
|
|
|
|
#endif // ROCKSDB_LITE
|
|
|
|
} // namespace rocksdb
|