rocksdb/memtable/inlineskiplist_test.cc
Maysam Yabandeh 813719e952 WritePrepared Txn: Duplicate Keys, Memtable part
Summary:
Currently DB does not accept duplicate keys (keys with the same user key and the same sequence number). If Memtable returns false when receiving such keys, we can benefit from this signal to properly increase the sequence number in the rare cases when we have a duplicate key in the write batch written to DB under WritePrepared transactions.
Closes https://github.com/facebook/rocksdb/pull/3418

Differential Revision: D6822412

Pulled By: maysamyabandeh

fbshipit-source-id: adea3ce5073131cd38ed52b16bea0673b1a19e77
2018-01-31 18:57:07 -08:00

628 lines
17 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "memtable/inlineskiplist.h"
#include <set>
#include <unordered_set>
#include "rocksdb/env.h"
#include "util/concurrent_arena.h"
#include "util/hash.h"
#include "util/random.h"
#include "util/testharness.h"
namespace rocksdb {
// Our test skip list stores 8-byte unsigned integers
typedef uint64_t Key;
static const char* Encode(const uint64_t* key) {
return reinterpret_cast<const char*>(key);
}
static Key Decode(const char* key) {
Key rv;
memcpy(&rv, key, sizeof(Key));
return rv;
}
struct TestComparator {
int operator()(const char* a, const char* b) const {
if (Decode(a) < Decode(b)) {
return -1;
} else if (Decode(a) > Decode(b)) {
return +1;
} else {
return 0;
}
}
};
typedef InlineSkipList<TestComparator> TestInlineSkipList;
class InlineSkipTest : public testing::Test {
public:
void Insert(TestInlineSkipList* list, Key key) {
char* buf = list->AllocateKey(sizeof(Key));
memcpy(buf, &key, sizeof(Key));
list->Insert(buf);
keys_.insert(key);
}
bool InsertWithHint(TestInlineSkipList* list, Key key, void** hint) {
char* buf = list->AllocateKey(sizeof(Key));
memcpy(buf, &key, sizeof(Key));
bool res = list->InsertWithHint(buf, hint);
keys_.insert(key);
return res;
}
void Validate(TestInlineSkipList* list) {
// Check keys exist.
for (Key key : keys_) {
ASSERT_TRUE(list->Contains(Encode(&key)));
}
// Iterate over the list, make sure keys appears in order and no extra
// keys exist.
TestInlineSkipList::Iterator iter(list);
ASSERT_FALSE(iter.Valid());
Key zero = 0;
iter.Seek(Encode(&zero));
for (Key key : keys_) {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(key, Decode(iter.key()));
iter.Next();
}
ASSERT_FALSE(iter.Valid());
// Validate the list is well-formed.
list->TEST_Validate();
}
private:
std::set<Key> keys_;
};
TEST_F(InlineSkipTest, Empty) {
Arena arena;
TestComparator cmp;
InlineSkipList<TestComparator> list(cmp, &arena);
Key key = 10;
ASSERT_TRUE(!list.Contains(Encode(&key)));
InlineSkipList<TestComparator>::Iterator iter(&list);
ASSERT_TRUE(!iter.Valid());
iter.SeekToFirst();
ASSERT_TRUE(!iter.Valid());
key = 100;
iter.Seek(Encode(&key));
ASSERT_TRUE(!iter.Valid());
iter.SeekForPrev(Encode(&key));
ASSERT_TRUE(!iter.Valid());
iter.SeekToLast();
ASSERT_TRUE(!iter.Valid());
}
TEST_F(InlineSkipTest, InsertAndLookup) {
const int N = 2000;
const int R = 5000;
Random rnd(1000);
std::set<Key> keys;
ConcurrentArena arena;
TestComparator cmp;
InlineSkipList<TestComparator> list(cmp, &arena);
for (int i = 0; i < N; i++) {
Key key = rnd.Next() % R;
if (keys.insert(key).second) {
char* buf = list.AllocateKey(sizeof(Key));
memcpy(buf, &key, sizeof(Key));
list.Insert(buf);
}
}
for (Key i = 0; i < R; i++) {
if (list.Contains(Encode(&i))) {
ASSERT_EQ(keys.count(i), 1U);
} else {
ASSERT_EQ(keys.count(i), 0U);
}
}
// Simple iterator tests
{
InlineSkipList<TestComparator>::Iterator iter(&list);
ASSERT_TRUE(!iter.Valid());
uint64_t zero = 0;
iter.Seek(Encode(&zero));
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.begin()), Decode(iter.key()));
uint64_t max_key = R - 1;
iter.SeekForPrev(Encode(&max_key));
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.rbegin()), Decode(iter.key()));
iter.SeekToFirst();
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.begin()), Decode(iter.key()));
iter.SeekToLast();
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*(keys.rbegin()), Decode(iter.key()));
}
// Forward iteration test
for (Key i = 0; i < R; i++) {
InlineSkipList<TestComparator>::Iterator iter(&list);
iter.Seek(Encode(&i));
// Compare against model iterator
std::set<Key>::iterator model_iter = keys.lower_bound(i);
for (int j = 0; j < 3; j++) {
if (model_iter == keys.end()) {
ASSERT_TRUE(!iter.Valid());
break;
} else {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*model_iter, Decode(iter.key()));
++model_iter;
iter.Next();
}
}
}
// Backward iteration test
for (Key i = 0; i < R; i++) {
InlineSkipList<TestComparator>::Iterator iter(&list);
iter.SeekForPrev(Encode(&i));
// Compare against model iterator
std::set<Key>::iterator model_iter = keys.upper_bound(i);
for (int j = 0; j < 3; j++) {
if (model_iter == keys.begin()) {
ASSERT_TRUE(!iter.Valid());
break;
} else {
ASSERT_TRUE(iter.Valid());
ASSERT_EQ(*--model_iter, Decode(iter.key()));
iter.Prev();
}
}
}
}
TEST_F(InlineSkipTest, InsertWithHint_Sequential) {
const int N = 100000;
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
void* hint = nullptr;
for (int i = 0; i < N; i++) {
Key key = i;
InsertWithHint(&list, key, &hint);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_MultipleHints) {
const int N = 100000;
const int S = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
void* hints[S];
Key last_key[S];
for (int i = 0; i < S; i++) {
hints[i] = nullptr;
last_key[i] = 0;
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S);
Key key = (s << 32) + (++last_key[s]);
InsertWithHint(&list, key, &hints[s]);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_MultipleHintsRandom) {
const int N = 100000;
const int S = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
void* hints[S];
for (int i = 0; i < S; i++) {
hints[i] = nullptr;
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S);
Key key = (s << 32) + rnd.Next();
InsertWithHint(&list, key, &hints[s]);
}
Validate(&list);
}
TEST_F(InlineSkipTest, InsertWithHint_CompatibleWithInsertWithoutHint) {
const int N = 100000;
const int S1 = 100;
const int S2 = 100;
Random rnd(534);
Arena arena;
TestComparator cmp;
TestInlineSkipList list(cmp, &arena);
std::unordered_set<Key> used;
Key with_hint[S1];
Key without_hint[S2];
void* hints[S1];
for (int i = 0; i < S1; i++) {
hints[i] = nullptr;
while (true) {
Key s = rnd.Next();
if (used.insert(s).second) {
with_hint[i] = s;
break;
}
}
}
for (int i = 0; i < S2; i++) {
while (true) {
Key s = rnd.Next();
if (used.insert(s).second) {
without_hint[i] = s;
break;
}
}
}
for (int i = 0; i < N; i++) {
Key s = rnd.Uniform(S1 + S2);
if (s < S1) {
Key key = (with_hint[s] << 32) + rnd.Next();
InsertWithHint(&list, key, &hints[s]);
} else {
Key key = (without_hint[s - S1] << 32) + rnd.Next();
Insert(&list, key);
}
}
Validate(&list);
}
// We want to make sure that with a single writer and multiple
// concurrent readers (with no synchronization other than when a
// reader's iterator is created), the reader always observes all the
// data that was present in the skip list when the iterator was
// constructor. Because insertions are happening concurrently, we may
// also observe new values that were inserted since the iterator was
// constructed, but we should never miss any values that were present
// at iterator construction time.
//
// We generate multi-part keys:
// <key,gen,hash>
// where:
// key is in range [0..K-1]
// gen is a generation number for key
// hash is hash(key,gen)
//
// The insertion code picks a random key, sets gen to be 1 + the last
// generation number inserted for that key, and sets hash to Hash(key,gen).
//
// At the beginning of a read, we snapshot the last inserted
// generation number for each key. We then iterate, including random
// calls to Next() and Seek(). For every key we encounter, we
// check that it is either expected given the initial snapshot or has
// been concurrently added since the iterator started.
class ConcurrentTest {
public:
static const uint32_t K = 8;
private:
static uint64_t key(Key key) { return (key >> 40); }
static uint64_t gen(Key key) { return (key >> 8) & 0xffffffffu; }
static uint64_t hash(Key key) { return key & 0xff; }
static uint64_t HashNumbers(uint64_t k, uint64_t g) {
uint64_t data[2] = {k, g};
return Hash(reinterpret_cast<char*>(data), sizeof(data), 0);
}
static Key MakeKey(uint64_t k, uint64_t g) {
assert(sizeof(Key) == sizeof(uint64_t));
assert(k <= K); // We sometimes pass K to seek to the end of the skiplist
assert(g <= 0xffffffffu);
return ((k << 40) | (g << 8) | (HashNumbers(k, g) & 0xff));
}
static bool IsValidKey(Key k) {
return hash(k) == (HashNumbers(key(k), gen(k)) & 0xff);
}
static Key RandomTarget(Random* rnd) {
switch (rnd->Next() % 10) {
case 0:
// Seek to beginning
return MakeKey(0, 0);
case 1:
// Seek to end
return MakeKey(K, 0);
default:
// Seek to middle
return MakeKey(rnd->Next() % K, 0);
}
}
// Per-key generation
struct State {
std::atomic<int> generation[K];
void Set(int k, int v) {
generation[k].store(v, std::memory_order_release);
}
int Get(int k) { return generation[k].load(std::memory_order_acquire); }
State() {
for (unsigned int k = 0; k < K; k++) {
Set(k, 0);
}
}
};
// Current state of the test
State current_;
ConcurrentArena arena_;
// InlineSkipList is not protected by mu_. We just use a single writer
// thread to modify it.
InlineSkipList<TestComparator> list_;
public:
ConcurrentTest() : list_(TestComparator(), &arena_) {}
// REQUIRES: No concurrent calls to WriteStep or ConcurrentWriteStep
void WriteStep(Random* rnd) {
const uint32_t k = rnd->Next() % K;
const int g = current_.Get(k) + 1;
const Key new_key = MakeKey(k, g);
char* buf = list_.AllocateKey(sizeof(Key));
memcpy(buf, &new_key, sizeof(Key));
list_.Insert(buf);
current_.Set(k, g);
}
// REQUIRES: No concurrent calls for the same k
void ConcurrentWriteStep(uint32_t k) {
const int g = current_.Get(k) + 1;
const Key new_key = MakeKey(k, g);
char* buf = list_.AllocateKey(sizeof(Key));
memcpy(buf, &new_key, sizeof(Key));
list_.InsertConcurrently(buf);
ASSERT_EQ(g, current_.Get(k) + 1);
current_.Set(k, g);
}
void ReadStep(Random* rnd) {
// Remember the initial committed state of the skiplist.
State initial_state;
for (unsigned int k = 0; k < K; k++) {
initial_state.Set(k, current_.Get(k));
}
Key pos = RandomTarget(rnd);
InlineSkipList<TestComparator>::Iterator iter(&list_);
iter.Seek(Encode(&pos));
while (true) {
Key current;
if (!iter.Valid()) {
current = MakeKey(K, 0);
} else {
current = Decode(iter.key());
ASSERT_TRUE(IsValidKey(current)) << current;
}
ASSERT_LE(pos, current) << "should not go backwards";
// Verify that everything in [pos,current) was not present in
// initial_state.
while (pos < current) {
ASSERT_LT(key(pos), K) << pos;
// Note that generation 0 is never inserted, so it is ok if
// <*,0,*> is missing.
ASSERT_TRUE((gen(pos) == 0U) ||
(gen(pos) > static_cast<uint64_t>(initial_state.Get(
static_cast<int>(key(pos))))))
<< "key: " << key(pos) << "; gen: " << gen(pos)
<< "; initgen: " << initial_state.Get(static_cast<int>(key(pos)));
// Advance to next key in the valid key space
if (key(pos) < key(current)) {
pos = MakeKey(key(pos) + 1, 0);
} else {
pos = MakeKey(key(pos), gen(pos) + 1);
}
}
if (!iter.Valid()) {
break;
}
if (rnd->Next() % 2) {
iter.Next();
pos = MakeKey(key(pos), gen(pos) + 1);
} else {
Key new_target = RandomTarget(rnd);
if (new_target > pos) {
pos = new_target;
iter.Seek(Encode(&new_target));
}
}
}
}
};
const uint32_t ConcurrentTest::K;
// Simple test that does single-threaded testing of the ConcurrentTest
// scaffolding.
TEST_F(InlineSkipTest, ConcurrentReadWithoutThreads) {
ConcurrentTest test;
Random rnd(test::RandomSeed());
for (int i = 0; i < 10000; i++) {
test.ReadStep(&rnd);
test.WriteStep(&rnd);
}
}
TEST_F(InlineSkipTest, ConcurrentInsertWithoutThreads) {
ConcurrentTest test;
Random rnd(test::RandomSeed());
for (int i = 0; i < 10000; i++) {
test.ReadStep(&rnd);
uint32_t base = rnd.Next();
for (int j = 0; j < 4; ++j) {
test.ConcurrentWriteStep((base + j) % ConcurrentTest::K);
}
}
}
class TestState {
public:
ConcurrentTest t_;
int seed_;
std::atomic<bool> quit_flag_;
std::atomic<uint32_t> next_writer_;
enum ReaderState { STARTING, RUNNING, DONE };
explicit TestState(int s)
: seed_(s),
quit_flag_(false),
state_(STARTING),
pending_writers_(0),
state_cv_(&mu_) {}
void Wait(ReaderState s) {
mu_.Lock();
while (state_ != s) {
state_cv_.Wait();
}
mu_.Unlock();
}
void Change(ReaderState s) {
mu_.Lock();
state_ = s;
state_cv_.Signal();
mu_.Unlock();
}
void AdjustPendingWriters(int delta) {
mu_.Lock();
pending_writers_ += delta;
if (pending_writers_ == 0) {
state_cv_.Signal();
}
mu_.Unlock();
}
void WaitForPendingWriters() {
mu_.Lock();
while (pending_writers_ != 0) {
state_cv_.Wait();
}
mu_.Unlock();
}
private:
port::Mutex mu_;
ReaderState state_;
int pending_writers_;
port::CondVar state_cv_;
};
static void ConcurrentReader(void* arg) {
TestState* state = reinterpret_cast<TestState*>(arg);
Random rnd(state->seed_);
int64_t reads = 0;
state->Change(TestState::RUNNING);
while (!state->quit_flag_.load(std::memory_order_acquire)) {
state->t_.ReadStep(&rnd);
++reads;
}
state->Change(TestState::DONE);
}
static void ConcurrentWriter(void* arg) {
TestState* state = reinterpret_cast<TestState*>(arg);
uint32_t k = state->next_writer_++ % ConcurrentTest::K;
state->t_.ConcurrentWriteStep(k);
state->AdjustPendingWriters(-1);
}
static void RunConcurrentRead(int run) {
const int seed = test::RandomSeed() + (run * 100);
Random rnd(seed);
const int N = 1000;
const int kSize = 1000;
for (int i = 0; i < N; i++) {
if ((i % 100) == 0) {
fprintf(stderr, "Run %d of %d\n", i, N);
}
TestState state(seed + 1);
Env::Default()->SetBackgroundThreads(1);
Env::Default()->Schedule(ConcurrentReader, &state);
state.Wait(TestState::RUNNING);
for (int k = 0; k < kSize; ++k) {
state.t_.WriteStep(&rnd);
}
state.quit_flag_.store(true, std::memory_order_release);
state.Wait(TestState::DONE);
}
}
static void RunConcurrentInsert(int run, int write_parallelism = 4) {
Env::Default()->SetBackgroundThreads(1 + write_parallelism,
Env::Priority::LOW);
const int seed = test::RandomSeed() + (run * 100);
Random rnd(seed);
const int N = 1000;
const int kSize = 1000;
for (int i = 0; i < N; i++) {
if ((i % 100) == 0) {
fprintf(stderr, "Run %d of %d\n", i, N);
}
TestState state(seed + 1);
Env::Default()->Schedule(ConcurrentReader, &state);
state.Wait(TestState::RUNNING);
for (int k = 0; k < kSize; k += write_parallelism) {
state.next_writer_ = rnd.Next();
state.AdjustPendingWriters(write_parallelism);
for (int p = 0; p < write_parallelism; ++p) {
Env::Default()->Schedule(ConcurrentWriter, &state);
}
state.WaitForPendingWriters();
}
state.quit_flag_.store(true, std::memory_order_release);
state.Wait(TestState::DONE);
}
}
TEST_F(InlineSkipTest, ConcurrentRead1) { RunConcurrentRead(1); }
TEST_F(InlineSkipTest, ConcurrentRead2) { RunConcurrentRead(2); }
TEST_F(InlineSkipTest, ConcurrentRead3) { RunConcurrentRead(3); }
TEST_F(InlineSkipTest, ConcurrentRead4) { RunConcurrentRead(4); }
TEST_F(InlineSkipTest, ConcurrentRead5) { RunConcurrentRead(5); }
TEST_F(InlineSkipTest, ConcurrentInsert1) { RunConcurrentInsert(1); }
TEST_F(InlineSkipTest, ConcurrentInsert2) { RunConcurrentInsert(2); }
TEST_F(InlineSkipTest, ConcurrentInsert3) { RunConcurrentInsert(3); }
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}