rocksdb/util/coding.h
Peter Dillinger a8b3b9a20c Refine Ribbon configuration, improve testing, add Homogeneous (#7879)
Summary:
This change only affects non-schema-critical aspects of the production candidate Ribbon filter. Specifically, it refines choice of internal configuration parameters based on inputs. The changes are minor enough that the schema tests in bloom_test, some of which depend on this, are unaffected. There are also some minor optimizations and refactorings.

This would be a schema change for "smash" Ribbon, to fix some known issues with small filters, but "smash" Ribbon is not accessible in public APIs. Unit test CompactnessAndBacktrackAndFpRate updated to test small and medium-large filters. Run with --thoroughness=100 or so for much better detection power (not appropriate for continuous regression testing).

Homogenous Ribbon:
This change adds internally a Ribbon filter variant we call Homogeneous Ribbon, in collaboration with Stefan Walzer. The expected "result" value for every key is zero, instead of computed from a hash. Entropy for queries not to be false positives comes from free variables ("overhead") in the solution structure, which are populated pseudorandomly. Construction is slightly faster for not tracking result values, and never fails. Instead, FP rate can jump up whenever and whereever entries are packed too tightly. For small structures, we can choose overhead to make this FP rate jump unlikely, as seen in updated unit test CompactnessAndBacktrackAndFpRate.

Unlike standard Ribbon, Homogeneous Ribbon seems to scale to arbitrary number of keys when accepting an FP rate penalty for small pockets of high FP rate in the structure. For example, 64-bit ribbon with 8 solution columns and 10% allocated space overhead for slots seems to achieve about 10.5% space overhead vs. information-theoretic minimum based on its observed FP rate with expected pockets of degradation. (FP rate is close to 1/256.) If targeting a higher FP rate with fewer solution columns, Homogeneous Ribbon can be even more space efficient, because the penalty from degradation is relatively smaller. If targeting a lower FP rate, Homogeneous Ribbon is less space efficient, as more allocated overhead is needed to keep the FP rate impact of degradation relatively under control. The new OptimizeHomogAtScale tool in ribbon_test helps to find these optimal allocation overheads for different numbers of solution columns. And Ribbon widths, with 128-bit Ribbon apparently cutting space overheads in half vs. 64-bit.

Other misc item specifics:
* Ribbon APIs in util/ribbon_config.h now provide configuration data for not just 5% construction failure rate (95% success), but also 50% and 0.1%.
  * Note that the Ribbon structure does not exhibit "threshold" behavior as standard Xor filter does, so there is a roughly fixed space penalty to cut construction failure rate in half. Thus, there isn't really an "almost sure" setting.
  * Although we can extrapolate settings for large filters, we don't have a good formula for configuring smaller filters (< 2^17 slots or so), and efforts to summarize with a formula have failed. Thus, small data is hard-coded from updated FindOccupancy tool.
* Enhances ApproximateNumEntries for public API Ribbon using more precise data (new API GetNumToAdd), thus a more accurate but not perfect reversal of CalculateSpace. (bloom_test updated to expect the greater precision)
* Move EndianSwapValue from coding.h to coding_lean.h to keep Ribbon code easily transferable from RocksDB
* Add some missing 'const' to member functions
* Small optimization to 128-bit BitParity
* Small refactoring of BandingStorage in ribbon_alg.h to support Homogeneous Ribbon
* CompactnessAndBacktrackAndFpRate now has an "expand" test: on construction failure, a possible alternative to re-seeding hash functions is simply to increase the number of slots (allocated space overhead) and try again with essentially the same hash values. (Start locations will be different roundings of the same scaled hash values--because fastrange not mod.) This seems to be as effective or more effective than re-seeding, as long as we increase the number of slots (m) by roughly m += m/w where w is the Ribbon width. This way, there is effectively an expansion by one slot for each ribbon-width window in the banding. (This approach assumes that getting "bad data" from your hash function is as unlikely as it naturally should be, e.g. no adversary.)
* 32-bit and 16-bit Ribbon configurations are added to ribbon_test for understanding their behavior, e.g. with FindOccupancy. They are not considered useful at this time and not tested with CompactnessAndBacktrackAndFpRate.

Pull Request resolved: https://github.com/facebook/rocksdb/pull/7879

Test Plan: unit test updates included

Reviewed By: jay-zhuang

Differential Revision: D26371245

Pulled By: pdillinger

fbshipit-source-id: da6600d90a3785b99ad17a88b2a3027710b4ea3a
2021-02-26 08:50:42 -08:00

388 lines
13 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// Encoding independent of machine byte order:
// * Fixed-length numbers are encoded with least-significant byte first
// (little endian, native order on Intel and others)
// * In addition we support variable length "varint" encoding
// * Strings are encoded prefixed by their length in varint format
//
// Some related functions are provided in coding_lean.h
#pragma once
#include <algorithm>
#include <string>
#include "port/port.h"
#include "rocksdb/slice.h"
#include "util/coding_lean.h"
// Some processors does not allow unaligned access to memory
#if defined(__sparc)
#define PLATFORM_UNALIGNED_ACCESS_NOT_ALLOWED
#endif
namespace ROCKSDB_NAMESPACE {
// The maximum length of a varint in bytes for 64-bit.
const unsigned int kMaxVarint64Length = 10;
// Standard Put... routines append to a string
extern void PutFixed16(std::string* dst, uint16_t value);
extern void PutFixed32(std::string* dst, uint32_t value);
extern void PutFixed64(std::string* dst, uint64_t value);
extern void PutVarint32(std::string* dst, uint32_t value);
extern void PutVarint32Varint32(std::string* dst, uint32_t value1,
uint32_t value2);
extern void PutVarint32Varint32Varint32(std::string* dst, uint32_t value1,
uint32_t value2, uint32_t value3);
extern void PutVarint64(std::string* dst, uint64_t value);
extern void PutVarint64Varint64(std::string* dst, uint64_t value1,
uint64_t value2);
extern void PutVarint32Varint64(std::string* dst, uint32_t value1,
uint64_t value2);
extern void PutVarint32Varint32Varint64(std::string* dst, uint32_t value1,
uint32_t value2, uint64_t value3);
extern void PutLengthPrefixedSlice(std::string* dst, const Slice& value);
extern void PutLengthPrefixedSliceParts(std::string* dst,
const SliceParts& slice_parts);
extern void PutLengthPrefixedSlicePartsWithPadding(
std::string* dst, const SliceParts& slice_parts, size_t pad_sz);
// Standard Get... routines parse a value from the beginning of a Slice
// and advance the slice past the parsed value.
extern bool GetFixed64(Slice* input, uint64_t* value);
extern bool GetFixed32(Slice* input, uint32_t* value);
extern bool GetFixed16(Slice* input, uint16_t* value);
extern bool GetVarint32(Slice* input, uint32_t* value);
extern bool GetVarint64(Slice* input, uint64_t* value);
extern bool GetVarsignedint64(Slice* input, int64_t* value);
extern bool GetLengthPrefixedSlice(Slice* input, Slice* result);
// This function assumes data is well-formed.
extern Slice GetLengthPrefixedSlice(const char* data);
extern Slice GetSliceUntil(Slice* slice, char delimiter);
// Borrowed from
// https://github.com/facebook/fbthrift/blob/449a5f77f9f9bae72c9eb5e78093247eef185c04/thrift/lib/cpp/util/VarintUtils-inl.h#L202-L208
constexpr inline uint64_t i64ToZigzag(const int64_t l) {
return (static_cast<uint64_t>(l) << 1) ^ static_cast<uint64_t>(l >> 63);
}
inline int64_t zigzagToI64(uint64_t n) {
return (n >> 1) ^ -static_cast<int64_t>(n & 1);
}
// Pointer-based variants of GetVarint... These either store a value
// in *v and return a pointer just past the parsed value, or return
// nullptr on error. These routines only look at bytes in the range
// [p..limit-1]
extern const char* GetVarint32Ptr(const char* p,const char* limit, uint32_t* v);
extern const char* GetVarint64Ptr(const char* p,const char* limit, uint64_t* v);
inline const char* GetVarsignedint64Ptr(const char* p, const char* limit,
int64_t* value) {
uint64_t u = 0;
const char* ret = GetVarint64Ptr(p, limit, &u);
*value = zigzagToI64(u);
return ret;
}
// Returns the length of the varint32 or varint64 encoding of "v"
extern int VarintLength(uint64_t v);
// Lower-level versions of Put... that write directly into a character buffer
// and return a pointer just past the last byte written.
// REQUIRES: dst has enough space for the value being written
extern char* EncodeVarint32(char* dst, uint32_t value);
extern char* EncodeVarint64(char* dst, uint64_t value);
// Internal routine for use by fallback path of GetVarint32Ptr
extern const char* GetVarint32PtrFallback(const char* p,
const char* limit,
uint32_t* value);
inline const char* GetVarint32Ptr(const char* p,
const char* limit,
uint32_t* value) {
if (p < limit) {
uint32_t result = *(reinterpret_cast<const unsigned char*>(p));
if ((result & 128) == 0) {
*value = result;
return p + 1;
}
}
return GetVarint32PtrFallback(p, limit, value);
}
// Pull the last 8 bits and cast it to a character
inline void PutFixed16(std::string* dst, uint16_t value) {
if (port::kLittleEndian) {
dst->append(const_cast<const char*>(reinterpret_cast<char*>(&value)),
sizeof(value));
} else {
char buf[sizeof(value)];
EncodeFixed16(buf, value);
dst->append(buf, sizeof(buf));
}
}
inline void PutFixed32(std::string* dst, uint32_t value) {
if (port::kLittleEndian) {
dst->append(const_cast<const char*>(reinterpret_cast<char*>(&value)),
sizeof(value));
} else {
char buf[sizeof(value)];
EncodeFixed32(buf, value);
dst->append(buf, sizeof(buf));
}
}
inline void PutFixed64(std::string* dst, uint64_t value) {
if (port::kLittleEndian) {
dst->append(const_cast<const char*>(reinterpret_cast<char*>(&value)),
sizeof(value));
} else {
char buf[sizeof(value)];
EncodeFixed64(buf, value);
dst->append(buf, sizeof(buf));
}
}
inline void PutVarint32(std::string* dst, uint32_t v) {
char buf[5];
char* ptr = EncodeVarint32(buf, v);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarint32Varint32(std::string* dst, uint32_t v1, uint32_t v2) {
char buf[10];
char* ptr = EncodeVarint32(buf, v1);
ptr = EncodeVarint32(ptr, v2);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarint32Varint32Varint32(std::string* dst, uint32_t v1,
uint32_t v2, uint32_t v3) {
char buf[15];
char* ptr = EncodeVarint32(buf, v1);
ptr = EncodeVarint32(ptr, v2);
ptr = EncodeVarint32(ptr, v3);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline char* EncodeVarint64(char* dst, uint64_t v) {
static const unsigned int B = 128;
unsigned char* ptr = reinterpret_cast<unsigned char*>(dst);
while (v >= B) {
*(ptr++) = (v & (B - 1)) | B;
v >>= 7;
}
*(ptr++) = static_cast<unsigned char>(v);
return reinterpret_cast<char*>(ptr);
}
inline void PutVarint64(std::string* dst, uint64_t v) {
char buf[kMaxVarint64Length];
char* ptr = EncodeVarint64(buf, v);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarsignedint64(std::string* dst, int64_t v) {
char buf[kMaxVarint64Length];
// Using Zigzag format to convert signed to unsigned
char* ptr = EncodeVarint64(buf, i64ToZigzag(v));
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarint64Varint64(std::string* dst, uint64_t v1, uint64_t v2) {
char buf[20];
char* ptr = EncodeVarint64(buf, v1);
ptr = EncodeVarint64(ptr, v2);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarint32Varint64(std::string* dst, uint32_t v1, uint64_t v2) {
char buf[15];
char* ptr = EncodeVarint32(buf, v1);
ptr = EncodeVarint64(ptr, v2);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutVarint32Varint32Varint64(std::string* dst, uint32_t v1,
uint32_t v2, uint64_t v3) {
char buf[20];
char* ptr = EncodeVarint32(buf, v1);
ptr = EncodeVarint32(ptr, v2);
ptr = EncodeVarint64(ptr, v3);
dst->append(buf, static_cast<size_t>(ptr - buf));
}
inline void PutLengthPrefixedSlice(std::string* dst, const Slice& value) {
PutVarint32(dst, static_cast<uint32_t>(value.size()));
dst->append(value.data(), value.size());
}
inline void PutLengthPrefixedSliceParts(std::string* dst, size_t total_bytes,
const SliceParts& slice_parts) {
for (int i = 0; i < slice_parts.num_parts; ++i) {
total_bytes += slice_parts.parts[i].size();
}
PutVarint32(dst, static_cast<uint32_t>(total_bytes));
for (int i = 0; i < slice_parts.num_parts; ++i) {
dst->append(slice_parts.parts[i].data(), slice_parts.parts[i].size());
}
}
inline void PutLengthPrefixedSliceParts(std::string* dst,
const SliceParts& slice_parts) {
PutLengthPrefixedSliceParts(dst, /*total_bytes=*/0, slice_parts);
}
inline void PutLengthPrefixedSlicePartsWithPadding(
std::string* dst, const SliceParts& slice_parts, size_t pad_sz) {
PutLengthPrefixedSliceParts(dst, /*total_bytes=*/pad_sz, slice_parts);
dst->append(pad_sz, '\0');
}
inline int VarintLength(uint64_t v) {
int len = 1;
while (v >= 128) {
v >>= 7;
len++;
}
return len;
}
inline bool GetFixed64(Slice* input, uint64_t* value) {
if (input->size() < sizeof(uint64_t)) {
return false;
}
*value = DecodeFixed64(input->data());
input->remove_prefix(sizeof(uint64_t));
return true;
}
inline bool GetFixed32(Slice* input, uint32_t* value) {
if (input->size() < sizeof(uint32_t)) {
return false;
}
*value = DecodeFixed32(input->data());
input->remove_prefix(sizeof(uint32_t));
return true;
}
inline bool GetFixed16(Slice* input, uint16_t* value) {
if (input->size() < sizeof(uint16_t)) {
return false;
}
*value = DecodeFixed16(input->data());
input->remove_prefix(sizeof(uint16_t));
return true;
}
inline bool GetVarint32(Slice* input, uint32_t* value) {
const char* p = input->data();
const char* limit = p + input->size();
const char* q = GetVarint32Ptr(p, limit, value);
if (q == nullptr) {
return false;
} else {
*input = Slice(q, static_cast<size_t>(limit - q));
return true;
}
}
inline bool GetVarint64(Slice* input, uint64_t* value) {
const char* p = input->data();
const char* limit = p + input->size();
const char* q = GetVarint64Ptr(p, limit, value);
if (q == nullptr) {
return false;
} else {
*input = Slice(q, static_cast<size_t>(limit - q));
return true;
}
}
inline bool GetVarsignedint64(Slice* input, int64_t* value) {
const char* p = input->data();
const char* limit = p + input->size();
const char* q = GetVarsignedint64Ptr(p, limit, value);
if (q == nullptr) {
return false;
} else {
*input = Slice(q, static_cast<size_t>(limit - q));
return true;
}
}
inline bool GetLengthPrefixedSlice(Slice* input, Slice* result) {
uint32_t len = 0;
if (GetVarint32(input, &len) && input->size() >= len) {
*result = Slice(input->data(), len);
input->remove_prefix(len);
return true;
} else {
return false;
}
}
inline Slice GetLengthPrefixedSlice(const char* data) {
uint32_t len = 0;
// +5: we assume "data" is not corrupted
// unsigned char is 7 bits, uint32_t is 32 bits, need 5 unsigned char
auto p = GetVarint32Ptr(data, data + 5 /* limit */, &len);
return Slice(p, len);
}
inline Slice GetSliceUntil(Slice* slice, char delimiter) {
uint32_t len = 0;
for (len = 0; len < slice->size() && slice->data()[len] != delimiter; ++len) {
// nothing
}
Slice ret(slice->data(), len);
slice->remove_prefix(len + ((len < slice->size()) ? 1 : 0));
return ret;
}
template<class T>
#ifdef ROCKSDB_UBSAN_RUN
#if defined(__clang__)
__attribute__((__no_sanitize__("alignment")))
#elif defined(__GNUC__)
__attribute__((__no_sanitize_undefined__))
#endif
#endif
inline void PutUnaligned(T *memory, const T &value) {
#if defined(PLATFORM_UNALIGNED_ACCESS_NOT_ALLOWED)
char *nonAlignedMemory = reinterpret_cast<char*>(memory);
memcpy(nonAlignedMemory, reinterpret_cast<const char*>(&value), sizeof(T));
#else
*memory = value;
#endif
}
template<class T>
#ifdef ROCKSDB_UBSAN_RUN
#if defined(__clang__)
__attribute__((__no_sanitize__("alignment")))
#elif defined(__GNUC__)
__attribute__((__no_sanitize_undefined__))
#endif
#endif
inline void GetUnaligned(const T *memory, T *value) {
#if defined(PLATFORM_UNALIGNED_ACCESS_NOT_ALLOWED)
char *nonAlignedMemory = reinterpret_cast<char*>(value);
memcpy(nonAlignedMemory, reinterpret_cast<const char*>(memory), sizeof(T));
#else
*value = *memory;
#endif
}
} // namespace ROCKSDB_NAMESPACE