rocksdb/env/env_test.cc
Siying Dong d2dce5611a Move some files under util/ to separate dirs
Summary:
Move some files under util/ to new directories env/, monitoring/ options/ and cache/
Closes https://github.com/facebook/rocksdb/pull/2090

Differential Revision: D4833681

Pulled By: siying

fbshipit-source-id: 2fd8bef
2017-04-05 19:09:16 -07:00

1497 lines
46 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef OS_WIN
#include <sys/ioctl.h>
#endif
#ifdef ROCKSDB_MALLOC_USABLE_SIZE
#ifdef OS_FREEBSD
#include <malloc_np.h>
#else
#include <malloc.h>
#endif
#endif
#include <sys/types.h>
#include <iostream>
#include <unordered_set>
#include <atomic>
#include <list>
#ifdef OS_LINUX
#include <fcntl.h>
#include <linux/fs.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#ifdef ROCKSDB_FALLOCATE_PRESENT
#include <errno.h>
#endif
#include "env/env_chroot.h"
#include "port/port.h"
#include "rocksdb/env.h"
#include "util/coding.h"
#include "util/log_buffer.h"
#include "util/mutexlock.h"
#include "util/string_util.h"
#include "util/sync_point.h"
#include "util/testharness.h"
#include "util/testutil.h"
#ifdef OS_LINUX
static const size_t kPageSize = sysconf(_SC_PAGESIZE);
#else
static const size_t kPageSize = 4 * 1024;
#endif
namespace rocksdb {
static const int kDelayMicros = 100000;
struct Deleter {
explicit Deleter(void (*fn)(void*)) : fn_(fn) {}
void operator()(void* ptr) {
assert(fn_);
assert(ptr);
(*fn_)(ptr);
}
void (*fn_)(void*);
};
std::unique_ptr<char, Deleter> NewAligned(const size_t size, const char ch) {
char* ptr = nullptr;
#ifdef OS_WIN
if (!(ptr = reinterpret_cast<char*>(_aligned_malloc(size, kPageSize)))) {
return std::unique_ptr<char, Deleter>(nullptr, Deleter(_aligned_free));
}
std::unique_ptr<char, Deleter> uptr(ptr, Deleter(_aligned_free));
#else
if (posix_memalign(reinterpret_cast<void**>(&ptr), kPageSize, size) != 0) {
return std::unique_ptr<char, Deleter>(nullptr, Deleter(free));
}
std::unique_ptr<char, Deleter> uptr(ptr, Deleter(free));
#endif
memset(uptr.get(), ch, size);
return uptr;
}
class EnvPosixTest : public testing::Test {
private:
port::Mutex mu_;
std::string events_;
public:
Env* env_;
bool direct_io_;
EnvPosixTest() : env_(Env::Default()), direct_io_(false) {}
};
class EnvPosixTestWithParam
: public EnvPosixTest,
public ::testing::WithParamInterface<std::pair<Env*, bool>> {
public:
EnvPosixTestWithParam() {
std::pair<Env*, bool> param_pair = GetParam();
env_ = param_pair.first;
direct_io_ = param_pair.second;
}
void WaitThreadPoolsEmpty() {
// Wait until the thread pools are empty.
while (env_->GetThreadPoolQueueLen(Env::Priority::LOW) != 0) {
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
while (env_->GetThreadPoolQueueLen(Env::Priority::HIGH) != 0) {
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
}
~EnvPosixTestWithParam() { WaitThreadPoolsEmpty(); }
};
static void SetBool(void* ptr) {
reinterpret_cast<std::atomic<bool>*>(ptr)->store(true);
}
TEST_P(EnvPosixTestWithParam, RunImmediately) {
std::atomic<bool> called(false);
env_->Schedule(&SetBool, &called);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(called.load());
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, UnSchedule) {
std::atomic<bool> called(false);
env_->SetBackgroundThreads(1, Env::LOW);
/* Block the low priority queue */
test::SleepingBackgroundTask sleeping_task, sleeping_task1;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
Env::Priority::LOW);
/* Schedule another task */
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task1,
Env::Priority::LOW, &sleeping_task1);
/* Remove it with a different tag */
ASSERT_EQ(0, env_->UnSchedule(&called, Env::Priority::LOW));
/* Remove it from the queue with the right tag */
ASSERT_EQ(1, env_->UnSchedule(&sleeping_task1, Env::Priority::LOW));
// Unblock background thread
sleeping_task.WakeUp();
/* Schedule another task */
env_->Schedule(&SetBool, &called);
for (int i = 0; i < kDelayMicros; i++) {
if (called.load()) {
break;
}
Env::Default()->SleepForMicroseconds(1);
}
ASSERT_TRUE(called.load());
ASSERT_TRUE(!sleeping_task.IsSleeping() && !sleeping_task1.IsSleeping());
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, RunMany) {
std::atomic<int> last_id(0);
struct CB {
std::atomic<int>* last_id_ptr; // Pointer to shared slot
int id; // Order# for the execution of this callback
CB(std::atomic<int>* p, int i) : last_id_ptr(p), id(i) {}
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
int cur = cb->last_id_ptr->load();
ASSERT_EQ(cb->id - 1, cur);
cb->last_id_ptr->store(cb->id);
}
};
// Schedule in different order than start time
CB cb1(&last_id, 1);
CB cb2(&last_id, 2);
CB cb3(&last_id, 3);
CB cb4(&last_id, 4);
env_->Schedule(&CB::Run, &cb1);
env_->Schedule(&CB::Run, &cb2);
env_->Schedule(&CB::Run, &cb3);
env_->Schedule(&CB::Run, &cb4);
Env::Default()->SleepForMicroseconds(kDelayMicros);
int cur = last_id.load(std::memory_order_acquire);
ASSERT_EQ(4, cur);
WaitThreadPoolsEmpty();
}
struct State {
port::Mutex mu;
int val;
int num_running;
};
static void ThreadBody(void* arg) {
State* s = reinterpret_cast<State*>(arg);
s->mu.Lock();
s->val += 1;
s->num_running -= 1;
s->mu.Unlock();
}
TEST_P(EnvPosixTestWithParam, StartThread) {
State state;
state.val = 0;
state.num_running = 3;
for (int i = 0; i < 3; i++) {
env_->StartThread(&ThreadBody, &state);
}
while (true) {
state.mu.Lock();
int num = state.num_running;
state.mu.Unlock();
if (num == 0) {
break;
}
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(state.val, 3);
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, TwoPools) {
// Data structures to signal tasks to run.
port::Mutex mutex;
port::CondVar cv(&mutex);
bool should_start = false;
class CB {
public:
CB(const std::string& pool_name, int pool_size, port::Mutex* trigger_mu,
port::CondVar* trigger_cv, bool* _should_start)
: mu_(),
num_running_(0),
num_finished_(0),
pool_size_(pool_size),
pool_name_(pool_name),
trigger_mu_(trigger_mu),
trigger_cv_(trigger_cv),
should_start_(_should_start) {}
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
cb->Run();
}
void Run() {
{
MutexLock l(&mu_);
num_running_++;
// make sure we don't have more than pool_size_ jobs running.
ASSERT_LE(num_running_, pool_size_.load());
}
{
MutexLock l(trigger_mu_);
while (!(*should_start_)) {
trigger_cv_->Wait();
}
}
{
MutexLock l(&mu_);
num_running_--;
num_finished_++;
}
}
int NumFinished() {
MutexLock l(&mu_);
return num_finished_;
}
void Reset(int pool_size) {
pool_size_.store(pool_size);
num_finished_ = 0;
}
private:
port::Mutex mu_;
int num_running_;
int num_finished_;
std::atomic<int> pool_size_;
std::string pool_name_;
port::Mutex* trigger_mu_;
port::CondVar* trigger_cv_;
bool* should_start_;
};
const int kLowPoolSize = 2;
const int kHighPoolSize = 4;
const int kJobs = 8;
CB low_pool_job("low", kLowPoolSize, &mutex, &cv, &should_start);
CB high_pool_job("high", kHighPoolSize, &mutex, &cv, &should_start);
env_->SetBackgroundThreads(kLowPoolSize);
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
int sleep_count = 0;
while ((unsigned int)(kJobs - kLowPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::LOW) ||
(unsigned int)(kJobs - kHighPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) {
env_->SleepForMicroseconds(kDelayMicros);
if (++sleep_count > 100) {
break;
}
}
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Trigger jobs to run.
{
MutexLock l(&mutex);
should_start = true;
cv.SignalAll();
}
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Hold jobs to schedule;
should_start = false;
// call IncBackgroundThreadsIfNeeded to two pools. One increasing and
// the other decreasing
env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW);
env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH);
high_pool_job.Reset(kHighPoolSize + 1);
low_pool_job.Reset(kLowPoolSize);
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
sleep_count = 0;
while ((unsigned int)(kJobs - kLowPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::LOW) ||
(unsigned int)(kJobs - (kHighPoolSize + 1)) !=
env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) {
env_->SleepForMicroseconds(kDelayMicros);
if (++sleep_count > 100) {
break;
}
}
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Trigger jobs to run.
{
MutexLock l(&mutex);
should_start = true;
cv.SignalAll();
}
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, DecreaseNumBgThreads) {
std::vector<test::SleepingBackgroundTask> tasks(10);
// Set number of thread to 1 first.
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
// Schedule 3 tasks. 0 running; Task 1, 2 waiting.
for (size_t i = 0; i < 3; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 2 threads. Task 0, 1 running; 2 waiting
env_->SetBackgroundThreads(2, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Shrink back to 1 thread. Still task 0, 1 running, 2 waiting
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// The last task finishes. Task 0 running, 2 waiting.
tasks[1].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 5 threads. Task 0 and 2 running.
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[2].IsSleeping());
// Change number of threads a couple of times while there is no sufficient
// tasks.
env_->SetBackgroundThreads(7, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
tasks[2].WakeUp();
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(3, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
Env::Default()->SleepForMicroseconds(kDelayMicros * 50);
// Enqueue 5 more tasks. Thread pool size now is 4.
// Task 0, 3, 4, 5 running;6, 7 waiting.
for (size_t i = 3; i < 8; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
}
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[3].IsSleeping());
ASSERT_TRUE(tasks[4].IsSleeping());
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(!tasks[7].IsSleeping());
// Wake up task 0, 3 and 4. Task 5, 6, 7 running.
tasks[0].WakeUp();
tasks[3].WakeUp();
tasks[4].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
for (size_t i = 5; i < 8; i++) {
ASSERT_TRUE(tasks[i].IsSleeping());
}
// Shrink back to 1 thread. Still task 5, 6, 7 running
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up task 6. Task 5, 7 running
tasks[6].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up threads 7. Task 5 running
tasks[7].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[7].IsSleeping());
// Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running.
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[8],
Env::Priority::HIGH);
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[9],
Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0);
ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping());
// Increase to 4 threads. Task 5, 8, 9 running.
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[8].IsSleeping());
ASSERT_TRUE(tasks[9].IsSleeping());
// Shrink to 1 thread
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
// Wake up thread 9.
tasks[9].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[9].IsSleeping());
ASSERT_TRUE(tasks[8].IsSleeping());
// Wake up thread 8
tasks[8].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[8].IsSleeping());
// Wake up the last thread
tasks[5].WakeUp();
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(!tasks[5].IsSleeping());
WaitThreadPoolsEmpty();
}
#if (defined OS_LINUX || defined OS_WIN)
// Travis doesn't support fallocate or getting unique ID from files for whatever
// reason.
#ifndef TRAVIS
namespace {
bool IsSingleVarint(const std::string& s) {
Slice slice(s);
uint64_t v;
if (!GetVarint64(&slice, &v)) {
return false;
}
return slice.size() == 0;
}
bool IsUniqueIDValid(const std::string& s) {
return !s.empty() && !IsSingleVarint(s);
}
const size_t MAX_ID_SIZE = 100;
char temp_id[MAX_ID_SIZE];
} // namespace
// Determine whether we can use the FS_IOC_GETVERSION ioctl
// on a file in directory DIR. Create a temporary file therein,
// try to apply the ioctl (save that result), cleanup and
// return the result. Return true if it is supported, and
// false if anything fails.
// Note that this function "knows" that dir has just been created
// and is empty, so we create a simply-named test file: "f".
bool ioctl_support__FS_IOC_GETVERSION(const std::string& dir) {
#ifdef OS_WIN
return true;
#else
const std::string file = dir + "/f";
int fd;
do {
fd = open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
long int version;
bool ok = (fd >= 0 && ioctl(fd, FS_IOC_GETVERSION, &version) >= 0);
close(fd);
unlink(file.c_str());
return ok;
#endif
}
// To ensure that Env::GetUniqueId-related tests work correctly, the files
// should be stored in regular storage like "hard disk" or "flash device",
// and not on a tmpfs file system (like /dev/shm and /tmp on some systems).
// Otherwise we cannot get the correct id.
//
// This function serves as the replacement for test::TmpDir(), which may be
// customized to be on a file system that doesn't work with GetUniqueId().
class IoctlFriendlyTmpdir {
public:
explicit IoctlFriendlyTmpdir() {
char dir_buf[100];
const char *fmt = "%s/rocksdb.XXXXXX";
const char *tmp = getenv("TEST_IOCTL_FRIENDLY_TMPDIR");
#ifdef OS_WIN
#define rmdir _rmdir
if(tmp == nullptr) {
tmp = getenv("TMP");
}
snprintf(dir_buf, sizeof dir_buf, fmt, tmp);
auto result = _mktemp(dir_buf);
assert(result != nullptr);
BOOL ret = CreateDirectory(dir_buf, NULL);
assert(ret == TRUE);
dir_ = dir_buf;
#else
std::list<std::string> candidate_dir_list = {"/var/tmp", "/tmp"};
// If $TEST_IOCTL_FRIENDLY_TMPDIR/rocksdb.XXXXXX fits, use
// $TEST_IOCTL_FRIENDLY_TMPDIR; subtract 2 for the "%s", and
// add 1 for the trailing NUL byte.
if (tmp && strlen(tmp) + strlen(fmt) - 2 + 1 <= sizeof dir_buf) {
// use $TEST_IOCTL_FRIENDLY_TMPDIR value
candidate_dir_list.push_front(tmp);
}
for (const std::string& d : candidate_dir_list) {
snprintf(dir_buf, sizeof dir_buf, fmt, d.c_str());
if (mkdtemp(dir_buf)) {
if (ioctl_support__FS_IOC_GETVERSION(dir_buf)) {
dir_ = dir_buf;
return;
} else {
// Diagnose ioctl-related failure only if this is the
// directory specified via that envvar.
if (tmp && tmp == d) {
fprintf(stderr, "TEST_IOCTL_FRIENDLY_TMPDIR-specified directory is "
"not suitable: %s\n", d.c_str());
}
rmdir(dir_buf); // ignore failure
}
} else {
// mkdtemp failed: diagnose it, but don't give up.
fprintf(stderr, "mkdtemp(%s/...) failed: %s\n", d.c_str(),
strerror(errno));
}
}
fprintf(stderr, "failed to find an ioctl-friendly temporary directory;"
" specify one via the TEST_IOCTL_FRIENDLY_TMPDIR envvar\n");
std::abort();
#endif
}
~IoctlFriendlyTmpdir() {
rmdir(dir_.c_str());
}
const std::string& name() const {
return dir_;
}
private:
std::string dir_;
};
#ifndef ROCKSDB_LITE
TEST_F(EnvPosixTest, PositionedAppend) {
unique_ptr<WritableFile> writable_file;
EnvOptions options;
options.use_direct_writes = true;
options.use_mmap_writes = false;
IoctlFriendlyTmpdir ift;
ASSERT_OK(env_->NewWritableFile(ift.name() + "/f", &writable_file, options));
const size_t kBlockSize = 4096;
const size_t kPageSize = 4096;
const size_t kDataSize = kPageSize;
// Write a page worth of 'a'
auto data_ptr = NewAligned(kDataSize, 'a');
Slice data_a(data_ptr.get(), kDataSize);
ASSERT_OK(writable_file->PositionedAppend(data_a, 0U));
// Write a page worth of 'b' right after the first sector
data_ptr = NewAligned(kDataSize, 'b');
Slice data_b(data_ptr.get(), kDataSize);
ASSERT_OK(writable_file->PositionedAppend(data_b, kBlockSize));
ASSERT_OK(writable_file->Close());
// The file now has 1 sector worth of a followed by a page worth of b
// Verify the above
unique_ptr<SequentialFile> seq_file;
ASSERT_OK(env_->NewSequentialFile(ift.name() + "/f", &seq_file, options));
char scratch[kPageSize * 2];
Slice result;
ASSERT_OK(seq_file->Read(sizeof(scratch), &result, scratch));
ASSERT_EQ(kPageSize + kBlockSize, result.size());
ASSERT_EQ('a', result[kBlockSize - 1]);
ASSERT_EQ('b', result[kBlockSize]);
}
#endif // !ROCKSDB_LITE
// Only works in linux platforms
TEST_P(EnvPosixTestWithParam, RandomAccessUniqueID) {
// Create file.
if (env_ == Env::Default()) {
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
IoctlFriendlyTmpdir ift;
std::string fname = ift.name() + "/testfile";
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
unique_ptr<RandomAccessFile> file;
// Get Unique ID
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id1(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id1));
// Get Unique ID again
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id2(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id2));
// Get Unique ID again after waiting some time.
env_->SleepForMicroseconds(1000000);
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id3(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id3));
// Check IDs are the same.
ASSERT_EQ(unique_id1, unique_id2);
ASSERT_EQ(unique_id2, unique_id3);
// Delete the file
env_->DeleteFile(fname);
}
}
// only works in linux platforms
#ifdef ROCKSDB_FALLOCATE_PRESENT
TEST_P(EnvPosixTestWithParam, AllocateTest) {
if (env_ == Env::Default()) {
IoctlFriendlyTmpdir ift;
std::string fname = ift.name() + "/preallocate_testfile";
// Try fallocate in a file to see whether the target file system supports
// it.
// Skip the test if fallocate is not supported.
std::string fname_test_fallocate = ift.name() + "/preallocate_testfile_2";
int fd = -1;
do {
fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
ASSERT_GT(fd, 0);
int alloc_status = fallocate(fd, 0, 0, 1);
int err_number = 0;
if (alloc_status != 0) {
err_number = errno;
fprintf(stderr, "Warning: fallocate() fails, %s\n", strerror(err_number));
}
close(fd);
ASSERT_OK(env_->DeleteFile(fname_test_fallocate));
if (alloc_status != 0 && err_number == EOPNOTSUPP) {
// The filesystem containing the file does not support fallocate
return;
}
EnvOptions soptions;
soptions.use_mmap_writes = false;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
// allocate 100 MB
size_t kPreallocateSize = 100 * 1024 * 1024;
size_t kBlockSize = 512;
size_t kPageSize = 4096;
size_t kDataSize = 1024 * 1024;
auto data_ptr = NewAligned(kDataSize, 'A');
Slice data(data_ptr.get(), kDataSize);
wfile->SetPreallocationBlockSize(kPreallocateSize);
wfile->PrepareWrite(wfile->GetFileSize(), kDataSize);
ASSERT_OK(wfile->Append(data));
ASSERT_OK(wfile->Flush());
struct stat f_stat;
ASSERT_EQ(stat(fname.c_str(), &f_stat), 0);
ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size);
// verify that blocks are preallocated
// Note here that we don't check the exact number of blocks preallocated --
// we only require that number of allocated blocks is at least what we
// expect.
// It looks like some FS give us more blocks that we asked for. That's fine.
// It might be worth investigating further.
ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks);
// close the file, should deallocate the blocks
wfile.reset();
stat(fname.c_str(), &f_stat);
ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size);
// verify that preallocated blocks were deallocated on file close
// Because the FS might give us more blocks, we add a full page to the size
// and expect the number of blocks to be less or equal to that.
ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize,
(unsigned int)f_stat.st_blocks);
}
}
#endif // ROCKSDB_FALLOCATE_PRESENT
// Returns true if any of the strings in ss are the prefix of another string.
bool HasPrefix(const std::unordered_set<std::string>& ss) {
for (const std::string& s: ss) {
if (s.empty()) {
return true;
}
for (size_t i = 1; i < s.size(); ++i) {
if (ss.count(s.substr(0, i)) != 0) {
return true;
}
}
}
return false;
}
// Only works in linux and WIN platforms
TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDConcurrent) {
if (env_ == Env::Default()) {
// Check whether a bunch of concurrently existing files have unique IDs.
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
// Create the files
IoctlFriendlyTmpdir ift;
std::vector<std::string> fnames;
for (int i = 0; i < 1000; ++i) {
fnames.push_back(ift.name() + "/" + "testfile" + ToString(i));
// Create file.
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions));
}
// Collect and check whether the IDs are unique.
std::unordered_set<std::string> ids;
for (const std::string fname : fnames) {
unique_ptr<RandomAccessFile> file;
std::string unique_id;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
}
// Delete the files
for (const std::string fname : fnames) {
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
}
// Only works in linux and WIN platforms
TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDDeletes) {
if (env_ == Env::Default()) {
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
IoctlFriendlyTmpdir ift;
std::string fname = ift.name() + "/" + "testfile";
// Check that after file is deleted we don't get same ID again in a new
// file.
std::unordered_set<std::string> ids;
for (int i = 0; i < 1000; ++i) {
// Create file.
{
unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
}
// Get Unique ID
std::string unique_id;
{
unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
}
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
}
// Only works in linux platforms
#ifdef OS_WIN
TEST_P(EnvPosixTestWithParam, DISABLED_InvalidateCache) {
#else
TEST_P(EnvPosixTestWithParam, InvalidateCache) {
#endif
rocksdb::SyncPoint::GetInstance()->EnableProcessing();
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
std::string fname = test::TmpDir(env_) + "/" + "testfile";
const size_t kSectorSize = 512;
auto data = NewAligned(kSectorSize, 0);
Slice slice(data.get(), kSectorSize);
// Create file.
{
unique_ptr<WritableFile> wfile;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
if (soptions.use_direct_writes) {
soptions.use_direct_writes = false;
}
#endif
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
ASSERT_OK(wfile->Append(slice));
ASSERT_OK(wfile->InvalidateCache(0, 0));
ASSERT_OK(wfile->Close());
}
// Random Read
{
unique_ptr<RandomAccessFile> file;
auto scratch = NewAligned(kSectorSize, 0);
Slice result;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
if (soptions.use_direct_reads) {
soptions.use_direct_reads = false;
}
#endif
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
ASSERT_OK(file->Read(0, kSectorSize, &result, scratch.get()));
ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0);
ASSERT_OK(file->InvalidateCache(0, 11));
ASSERT_OK(file->InvalidateCache(0, 0));
}
// Sequential Read
{
unique_ptr<SequentialFile> file;
auto scratch = NewAligned(kSectorSize, 0);
Slice result;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
if (soptions.use_direct_reads) {
soptions.use_direct_reads = false;
}
#endif
ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions));
if (file->use_direct_io()) {
ASSERT_OK(file->PositionedRead(0, kSectorSize, &result, scratch.get()));
} else {
ASSERT_OK(file->Read(kSectorSize, &result, scratch.get()));
}
ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0);
ASSERT_OK(file->InvalidateCache(0, 11));
ASSERT_OK(file->InvalidateCache(0, 0));
}
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
rocksdb::SyncPoint::GetInstance()->ClearTrace();
}
#endif // not TRAVIS
#endif // OS_LINUX || OS_WIN
class TestLogger : public Logger {
public:
using Logger::Logv;
virtual void Logv(const char* format, va_list ap) override {
log_count++;
char new_format[550];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
// When we have n == -1 there is not a terminating zero expected
#ifdef OS_WIN
if (n < 0) {
char_0_count++;
}
#endif
if (new_format[0] == '[') {
// "[DEBUG] "
ASSERT_TRUE(n <= 56 + (512 - static_cast<int>(sizeof(struct timeval))));
} else {
ASSERT_TRUE(n <= 48 + (512 - static_cast<int>(sizeof(struct timeval))));
}
va_end(backup_ap);
}
for (size_t i = 0; i < sizeof(new_format); i++) {
if (new_format[i] == 'x') {
char_x_count++;
} else if (new_format[i] == '\0') {
char_0_count++;
}
}
}
int log_count;
int char_x_count;
int char_0_count;
};
TEST_P(EnvPosixTestWithParam, LogBufferTest) {
TestLogger test_logger;
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
test_logger.log_count = 0;
test_logger.char_x_count = 0;
test_logger.char_0_count = 0;
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger);
char bytes200[200];
std::fill_n(bytes200, sizeof(bytes200), '1');
bytes200[sizeof(bytes200) - 1] = '\0';
char bytes600[600];
std::fill_n(bytes600, sizeof(bytes600), '1');
bytes600[sizeof(bytes600) - 1] = '\0';
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes200);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes600);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes200, bytes600);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes600, bytes9000);
ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx", bytes200);
test_logger.SetInfoLogLevel(DEBUG_LEVEL);
ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000,
bytes200);
ASSERT_EQ(0, test_logger.log_count);
log_buffer.FlushBufferToLog();
log_buffer_debug.FlushBufferToLog();
ASSERT_EQ(6, test_logger.log_count);
ASSERT_EQ(6, test_logger.char_0_count);
ASSERT_EQ(10, test_logger.char_x_count);
}
class TestLogger2 : public Logger {
public:
explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {}
using Logger::Logv;
virtual void Logv(const char* format, va_list ap) override {
char new_format[2000];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
ASSERT_TRUE(
n <= 48 + static_cast<int>(max_log_size_ - sizeof(struct timeval)));
ASSERT_TRUE(n > static_cast<int>(max_log_size_ - sizeof(struct timeval)));
va_end(backup_ap);
}
}
size_t max_log_size_;
};
TEST_P(EnvPosixTestWithParam, LogBufferMaxSizeTest) {
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
for (size_t max_log_size = 256; max_log_size <= 1024;
max_log_size += 1024 - 256) {
TestLogger2 test_logger(max_log_size);
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
ROCKS_LOG_BUFFER_MAX_SZ(&log_buffer, max_log_size, "%s", bytes9000);
log_buffer.FlushBufferToLog();
}
}
TEST_P(EnvPosixTestWithParam, Preallocation) {
rocksdb::SyncPoint::GetInstance()->EnableProcessing();
const std::string src = test::TmpDir(env_) + "/" + "testfile";
unique_ptr<WritableFile> srcfile;
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
if (soptions.use_direct_writes) {
rocksdb::SyncPoint::GetInstance()->SetCallBack(
"NewWritableFile:O_DIRECT", [&](void* arg) {
int* val = static_cast<int*>(arg);
*val &= ~O_DIRECT;
});
}
#endif
ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions));
srcfile->SetPreallocationBlockSize(1024 * 1024);
// No writes should mean no preallocation
size_t block_size, last_allocated_block;
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 0UL);
// Small write should preallocate one block
size_t kStrSize = 4096;
auto data = NewAligned(kStrSize, 'A');
Slice str(data.get(), kStrSize);
srcfile->PrepareWrite(srcfile->GetFileSize(), kStrSize);
srcfile->Append(str);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 1UL);
// Write an entire preallocation block, make sure we increased by two.
{
auto buf_ptr = NewAligned(block_size, ' ');
Slice buf(buf_ptr.get(), block_size);
srcfile->PrepareWrite(srcfile->GetFileSize(), block_size);
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 2UL);
}
// Write five more blocks at once, ensure we're where we need to be.
{
auto buf_ptr = NewAligned(block_size * 5, ' ');
Slice buf = Slice(buf_ptr.get(), block_size * 5);
srcfile->PrepareWrite(srcfile->GetFileSize(), buf.size());
srcfile->Append(buf);
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 7UL);
}
rocksdb::SyncPoint::GetInstance()->ClearTrace();
}
// Test that the two ways to get children file attributes (in bulk or
// individually) behave consistently.
TEST_P(EnvPosixTestWithParam, ConsistentChildrenAttributes) {
rocksdb::SyncPoint::GetInstance()->EnableProcessing();
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
const int kNumChildren = 10;
std::string data;
for (int i = 0; i < kNumChildren; ++i) {
std::ostringstream oss;
oss << test::TmpDir(env_) << "/testfile_" << i;
const std::string path = oss.str();
unique_ptr<WritableFile> file;
#if !defined(OS_MACOSX) && !defined(OS_WIN)
if (soptions.use_direct_writes) {
rocksdb::SyncPoint::GetInstance()->SetCallBack(
"NewWritableFile:O_DIRECT", [&](void* arg) {
int* val = static_cast<int*>(arg);
*val &= ~O_DIRECT;
});
}
#endif
ASSERT_OK(env_->NewWritableFile(path, &file, soptions));
auto buf_ptr = NewAligned(data.size(), 'T');
Slice buf(buf_ptr.get(), data.size());
file->Append(buf);
data.append(std::string(4096, 'T'));
}
std::vector<Env::FileAttributes> file_attrs;
ASSERT_OK(env_->GetChildrenFileAttributes(test::TmpDir(env_), &file_attrs));
for (int i = 0; i < kNumChildren; ++i) {
std::ostringstream oss;
oss << "testfile_" << i;
const std::string name = oss.str();
const std::string path = test::TmpDir(env_) + "/" + name;
auto file_attrs_iter = std::find_if(
file_attrs.begin(), file_attrs.end(),
[&name](const Env::FileAttributes& fm) { return fm.name == name; });
ASSERT_TRUE(file_attrs_iter != file_attrs.end());
uint64_t size;
ASSERT_OK(env_->GetFileSize(path, &size));
ASSERT_EQ(size, 4096 * i);
ASSERT_EQ(size, file_attrs_iter->size_bytes);
}
rocksdb::SyncPoint::GetInstance()->ClearTrace();
}
// Test that all WritableFileWrapper forwards all calls to WritableFile.
TEST_P(EnvPosixTestWithParam, WritableFileWrapper) {
class Base : public WritableFile {
public:
mutable int *step_;
void inc(int x) const {
EXPECT_EQ(x, (*step_)++);
}
explicit Base(int* step) : step_(step) {
inc(0);
}
Status Append(const Slice& data) override { inc(1); return Status::OK(); }
Status Truncate(uint64_t size) override { return Status::OK(); }
Status Close() override { inc(2); return Status::OK(); }
Status Flush() override { inc(3); return Status::OK(); }
Status Sync() override { inc(4); return Status::OK(); }
Status Fsync() override { inc(5); return Status::OK(); }
void SetIOPriority(Env::IOPriority pri) override { inc(6); }
uint64_t GetFileSize() override { inc(7); return 0; }
void GetPreallocationStatus(size_t* block_size,
size_t* last_allocated_block) override {
inc(8);
}
size_t GetUniqueId(char* id, size_t max_size) const override {
inc(9);
return 0;
}
Status InvalidateCache(size_t offset, size_t length) override {
inc(10);
return Status::OK();
}
protected:
Status Allocate(uint64_t offset, uint64_t len) override {
inc(11);
return Status::OK();
}
Status RangeSync(uint64_t offset, uint64_t nbytes) override {
inc(12);
return Status::OK();
}
public:
~Base() {
inc(13);
}
};
class Wrapper : public WritableFileWrapper {
public:
explicit Wrapper(WritableFile* target) : WritableFileWrapper(target) {}
void CallProtectedMethods() {
Allocate(0, 0);
RangeSync(0, 0);
}
};
int step = 0;
{
Base b(&step);
Wrapper w(&b);
w.Append(Slice());
w.Close();
w.Flush();
w.Sync();
w.Fsync();
w.SetIOPriority(Env::IOPriority::IO_HIGH);
w.GetFileSize();
w.GetPreallocationStatus(nullptr, nullptr);
w.GetUniqueId(nullptr, 0);
w.InvalidateCache(0, 0);
w.CallProtectedMethods();
}
EXPECT_EQ(14, step);
}
TEST_P(EnvPosixTestWithParam, PosixRandomRWFile) {
const std::string path = test::TmpDir(env_) + "/random_rw_file";
env_->DeleteFile(path);
std::unique_ptr<RandomRWFile> file;
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
char buf[10000];
Slice read_res;
ASSERT_OK(file->Write(0, "ABCD"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABCD");
ASSERT_OK(file->Write(2, "XXXX"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXX");
ASSERT_OK(file->Write(10, "ZZZ"));
ASSERT_OK(file->Read(10, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZZZ");
ASSERT_OK(file->Write(11, "Y"));
ASSERT_OK(file->Read(10, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZYZ");
ASSERT_OK(file->Write(200, "FFFFF"));
ASSERT_OK(file->Read(200, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFF");
ASSERT_OK(file->Write(205, "XXXX"));
ASSERT_OK(file->Read(200, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFFXXXX");
ASSERT_OK(file->Write(5, "QQQQ"));
ASSERT_OK(file->Read(0, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ");
ASSERT_OK(file->Read(2, 4, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "XXXQ");
// Close file and reopen it
file->Close();
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
ASSERT_OK(file->Read(0, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ");
ASSERT_OK(file->Read(10, 3, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZYZ");
ASSERT_OK(file->Read(200, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFFXXXX");
ASSERT_OK(file->Write(4, "TTTTTTTTTTTTTTTT"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXTTTTTT");
// Clean up
env_->DeleteFile(path);
}
class RandomRWFileWithMirrorString {
public:
explicit RandomRWFileWithMirrorString(RandomRWFile* _file) : file_(_file) {}
void Write(size_t offset, const std::string& data) {
// Write to mirror string
StringWrite(offset, data);
// Write to file
Status s = file_->Write(offset, data);
ASSERT_OK(s) << s.ToString();
}
void Read(size_t offset = 0, size_t n = 1000000) {
Slice str_res(nullptr, 0);
if (offset < file_mirror_.size()) {
size_t str_res_sz = std::min(file_mirror_.size() - offset, n);
str_res = Slice(file_mirror_.data() + offset, str_res_sz);
StopSliceAtNull(&str_res);
}
Slice file_res;
Status s = file_->Read(offset, n, &file_res, buf_);
ASSERT_OK(s) << s.ToString();
StopSliceAtNull(&file_res);
ASSERT_EQ(str_res.ToString(), file_res.ToString()) << offset << " " << n;
}
void SetFile(RandomRWFile* _file) { file_ = _file; }
private:
void StringWrite(size_t offset, const std::string& src) {
if (offset + src.size() > file_mirror_.size()) {
file_mirror_.resize(offset + src.size(), '\0');
}
char* pos = const_cast<char*>(file_mirror_.data() + offset);
memcpy(pos, src.data(), src.size());
}
void StopSliceAtNull(Slice* slc) {
for (size_t i = 0; i < slc->size(); i++) {
if ((*slc)[i] == '\0') {
*slc = Slice(slc->data(), i);
break;
}
}
}
char buf_[10000];
RandomRWFile* file_;
std::string file_mirror_;
};
TEST_P(EnvPosixTestWithParam, PosixRandomRWFileRandomized) {
const std::string path = test::TmpDir(env_) + "/random_rw_file_rand";
env_->DeleteFile(path);
unique_ptr<RandomRWFile> file;
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
RandomRWFileWithMirrorString file_with_mirror(file.get());
Random rnd(301);
std::string buf;
for (int i = 0; i < 10000; i++) {
// Genrate random data
test::RandomString(&rnd, 10, &buf);
// Pick random offset for write
size_t write_off = rnd.Next() % 1000;
file_with_mirror.Write(write_off, buf);
// Pick random offset for read
size_t read_off = rnd.Next() % 1000;
size_t read_sz = rnd.Next() % 20;
file_with_mirror.Read(read_off, read_sz);
if (i % 500 == 0) {
// Reopen the file every 500 iters
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
file_with_mirror.SetFile(file.get());
}
}
// clean up
env_->DeleteFile(path);
}
INSTANTIATE_TEST_CASE_P(DefaultEnvWithoutDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(Env::Default(),
false)));
#if !defined(ROCKSDB_LITE)
INSTANTIATE_TEST_CASE_P(DefaultEnvWithDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(Env::Default(),
true)));
#endif // !defined(ROCKSDB_LITE)
#if !defined(ROCKSDB_LITE) && !defined(OS_WIN)
static unique_ptr<Env> chroot_env(NewChrootEnv(Env::Default(),
test::TmpDir(Env::Default())));
INSTANTIATE_TEST_CASE_P(
ChrootEnvWithoutDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(chroot_env.get(), false)));
INSTANTIATE_TEST_CASE_P(
ChrootEnvWithDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(chroot_env.get(), true)));
#endif // !defined(ROCKSDB_LITE) && !defined(OS_WIN)
} // namespace rocksdb
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}