Summary: Fixes the following scenario: 1. Set prefix extractor. Enable bloom filters, with `whole_key_filtering = false`. Use compaction filter that sometimes returns `kRemoveAndSkipUntil`. 2. Do a compaction. 3. Compaction creates an iterator with `total_order_seek = false`, calls `SeekToFirst()` on it, then repeatedly calls `Next()`. 4. At some point compaction filter returns `kRemoveAndSkipUntil`. 5. Compaction calls `Seek(skip_until)` on the iterator. The key that it seeks to happens to have prefix that doesn't match the bloom filter. Since `total_order_seek = false`, iterator becomes invalid, and compaction thinks that it has reached the end. The rest of the compaction input is silently discarded. The fix is to make compaction iterator use `total_order_seek = true`. The implementation for PlainTable is quite awkward. I've made `kRemoveAndSkipUntil` officially incompatible with PlainTable. If you try to use them together, compaction will fail, and DB will enter read-only mode (`bg_error_`). That's not a very graceful way to communicate a misconfiguration, but the alternatives don't seem worth the implementation time and complexity. To be able to check in advance that `kRemoveAndSkipUntil` is not going to be used with PlainTable, we'd need to extend the interface of either `CompactionFilter` or `InternalIterator`. It seems unlikely that anyone will ever want to use `kRemoveAndSkipUntil` with PlainTable: PlainTable probably has very few users, and `kRemoveAndSkipUntil` has only one user so far: us (logdevice). Closes https://github.com/facebook/rocksdb/pull/2349 Differential Revision: D5110388 Pulled By: lightmark fbshipit-source-id: ec29101a99d9dcd97db33923b87f72bce56cc17a
RocksDB: A Persistent Key-Value Store for Flash and RAM Storage
RocksDB is developed and maintained by Facebook Database Engineering Team. It is built on earlier work on LevelDB by Sanjay Ghemawat (sanjay@google.com) and Jeff Dean (jeff@google.com)
This code is a library that forms the core building block for a fast key value server, especially suited for storing data on flash drives. It has a Log-Structured-Merge-Database (LSM) design with flexible tradeoffs between Write-Amplification-Factor (WAF), Read-Amplification-Factor (RAF) and Space-Amplification-Factor (SAF). It has multi-threaded compactions, making it specially suitable for storing multiple terabytes of data in a single database.
Start with example usage here: https://github.com/facebook/rocksdb/tree/master/examples
See the github wiki for more explanation.
The public interface is in include/
. Callers should not include or
rely on the details of any other header files in this package. Those
internal APIs may be changed without warning.
Design discussions are conducted in https://www.facebook.com/groups/rocksdb.dev/