rocksdb/db/perf_context_test.cc
2021-03-04 15:41:28 -08:00

994 lines
33 KiB
C++

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
#include <algorithm>
#include <iostream>
#include <thread>
#include <vector>
#include "monitoring/histogram.h"
#include "monitoring/instrumented_mutex.h"
#include "monitoring/perf_context_imp.h"
#include "monitoring/thread_status_util.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/memtablerep.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice_transform.h"
#include "test_util/testharness.h"
#include "util/stop_watch.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
bool FLAGS_random_key = false;
bool FLAGS_use_set_based_memetable = false;
int FLAGS_total_keys = 100;
int FLAGS_write_buffer_size = 1000000000;
int FLAGS_max_write_buffer_number = 8;
int FLAGS_min_write_buffer_number_to_merge = 7;
bool FLAGS_verbose = false;
// Path to the database on file system
const std::string kDbName =
ROCKSDB_NAMESPACE::test::PerThreadDBPath("perf_context_test");
namespace ROCKSDB_NAMESPACE {
std::shared_ptr<DB> OpenDb(bool read_only = false) {
DB* db;
Options options;
options.create_if_missing = true;
options.max_open_files = -1;
options.write_buffer_size = FLAGS_write_buffer_size;
options.max_write_buffer_number = FLAGS_max_write_buffer_number;
options.min_write_buffer_number_to_merge =
FLAGS_min_write_buffer_number_to_merge;
if (FLAGS_use_set_based_memetable) {
#ifndef ROCKSDB_LITE
options.prefix_extractor.reset(
ROCKSDB_NAMESPACE::NewFixedPrefixTransform(0));
options.memtable_factory.reset(NewHashSkipListRepFactory());
#endif // ROCKSDB_LITE
}
Status s;
if (!read_only) {
s = DB::Open(options, kDbName, &db);
} else {
s = DB::OpenForReadOnly(options, kDbName, &db);
}
EXPECT_OK(s);
return std::shared_ptr<DB>(db);
}
class PerfContextTest : public testing::Test {};
TEST_F(PerfContextTest, SeekIntoDeletion) {
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
for (int i = 0; i < FLAGS_total_keys; ++i) {
std::string key = "k" + ToString(i);
std::string value = "v" + ToString(i);
ASSERT_OK(db->Put(write_options, key, value));
}
for (int i = 0; i < FLAGS_total_keys -1 ; ++i) {
std::string key = "k" + ToString(i);
ASSERT_OK(db->Delete(write_options, key));
}
HistogramImpl hist_get;
HistogramImpl hist_get_time;
for (int i = 0; i < FLAGS_total_keys - 1; ++i) {
std::string key = "k" + ToString(i);
std::string value;
get_perf_context()->Reset();
StopWatchNano timer(Env::Default());
timer.Start();
auto status = db->Get(read_options, key, &value);
auto elapsed_nanos = timer.ElapsedNanos();
ASSERT_TRUE(status.IsNotFound());
hist_get.Add(get_perf_context()->user_key_comparison_count);
hist_get_time.Add(elapsed_nanos);
}
if (FLAGS_verbose) {
std::cout << "Get user key comparison: \n" << hist_get.ToString()
<< "Get time: \n" << hist_get_time.ToString();
}
{
HistogramImpl hist_seek_to_first;
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
get_perf_context()->Reset();
StopWatchNano timer(Env::Default(), true);
iter->SeekToFirst();
hist_seek_to_first.Add(get_perf_context()->user_key_comparison_count);
auto elapsed_nanos = timer.ElapsedNanos();
if (FLAGS_verbose) {
std::cout << "SeekToFirst user key comparison: \n"
<< hist_seek_to_first.ToString() << "ikey skipped: "
<< get_perf_context()->internal_key_skipped_count << "\n"
<< "idelete skipped: "
<< get_perf_context()->internal_delete_skipped_count << "\n"
<< "elapsed: " << elapsed_nanos << "\n";
}
}
HistogramImpl hist_seek;
for (int i = 0; i < FLAGS_total_keys; ++i) {
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
std::string key = "k" + ToString(i);
get_perf_context()->Reset();
StopWatchNano timer(Env::Default(), true);
iter->Seek(key);
auto elapsed_nanos = timer.ElapsedNanos();
hist_seek.Add(get_perf_context()->user_key_comparison_count);
if (FLAGS_verbose) {
std::cout << "seek cmp: " << get_perf_context()->user_key_comparison_count
<< " ikey skipped " << get_perf_context()->internal_key_skipped_count
<< " idelete skipped "
<< get_perf_context()->internal_delete_skipped_count
<< " elapsed: " << elapsed_nanos << "ns\n";
}
get_perf_context()->Reset();
ASSERT_TRUE(iter->Valid());
StopWatchNano timer2(Env::Default(), true);
iter->Next();
auto elapsed_nanos2 = timer2.ElapsedNanos();
if (FLAGS_verbose) {
std::cout << "next cmp: " << get_perf_context()->user_key_comparison_count
<< "elapsed: " << elapsed_nanos2 << "ns\n";
}
}
if (FLAGS_verbose) {
std::cout << "Seek user key comparison: \n" << hist_seek.ToString();
}
}
TEST_F(PerfContextTest, StopWatchNanoOverhead) {
// profile the timer cost by itself!
const int kTotalIterations = 1000000;
std::vector<uint64_t> timings(kTotalIterations);
StopWatchNano timer(Env::Default(), true);
for (auto& timing : timings) {
timing = timer.ElapsedNanos(true /* reset */);
}
HistogramImpl histogram;
for (const auto timing : timings) {
histogram.Add(timing);
}
if (FLAGS_verbose) {
std::cout << histogram.ToString();
}
}
TEST_F(PerfContextTest, StopWatchOverhead) {
// profile the timer cost by itself!
const int kTotalIterations = 1000000;
uint64_t elapsed = 0;
std::vector<uint64_t> timings(kTotalIterations);
StopWatch timer(Env::Default(), nullptr, 0, &elapsed);
for (auto& timing : timings) {
timing = elapsed;
}
HistogramImpl histogram;
uint64_t prev_timing = 0;
for (const auto timing : timings) {
histogram.Add(timing - prev_timing);
prev_timing = timing;
}
if (FLAGS_verbose) {
std::cout << histogram.ToString();
}
}
void ProfileQueries(bool enabled_time = false) {
DestroyDB(kDbName, Options()); // Start this test with a fresh DB
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
HistogramImpl hist_put;
HistogramImpl hist_get;
HistogramImpl hist_get_snapshot;
HistogramImpl hist_get_memtable;
HistogramImpl hist_get_files;
HistogramImpl hist_get_post_process;
HistogramImpl hist_num_memtable_checked;
HistogramImpl hist_mget;
HistogramImpl hist_mget_snapshot;
HistogramImpl hist_mget_memtable;
HistogramImpl hist_mget_files;
HistogramImpl hist_mget_post_process;
HistogramImpl hist_mget_num_memtable_checked;
HistogramImpl hist_write_pre_post;
HistogramImpl hist_write_wal_time;
HistogramImpl hist_write_memtable_time;
HistogramImpl hist_write_delay_time;
HistogramImpl hist_write_thread_wait_nanos;
HistogramImpl hist_write_scheduling_time;
uint64_t total_db_mutex_nanos = 0;
if (FLAGS_verbose) {
std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n";
}
std::vector<int> keys;
const int kFlushFlag = -1;
for (int i = 0; i < FLAGS_total_keys; ++i) {
keys.push_back(i);
if (i == FLAGS_total_keys / 2) {
// Issuing a flush in the middle.
keys.push_back(kFlushFlag);
}
}
if (FLAGS_random_key) {
RandomShuffle(std::begin(keys), std::end(keys));
}
#ifndef NDEBUG
ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 1U);
#endif
int num_mutex_waited = 0;
for (const int i : keys) {
if (i == kFlushFlag) {
FlushOptions fo;
db->Flush(fo);
continue;
}
std::string key = "k" + ToString(i);
std::string value = "v" + ToString(i);
std::vector<std::string> values;
get_perf_context()->Reset();
ASSERT_OK(db->Put(write_options, key, value));
if (++num_mutex_waited > 3) {
#ifndef NDEBUG
ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 0U);
#endif
}
hist_write_pre_post.Add(
get_perf_context()->write_pre_and_post_process_time);
hist_write_wal_time.Add(get_perf_context()->write_wal_time);
hist_write_memtable_time.Add(get_perf_context()->write_memtable_time);
hist_write_delay_time.Add(get_perf_context()->write_delay_time);
hist_write_thread_wait_nanos.Add(
get_perf_context()->write_thread_wait_nanos);
hist_write_scheduling_time.Add(
get_perf_context()->write_scheduling_flushes_compactions_time);
hist_put.Add(get_perf_context()->user_key_comparison_count);
total_db_mutex_nanos += get_perf_context()->db_mutex_lock_nanos;
}
#ifndef NDEBUG
ThreadStatusUtil::TEST_SetStateDelay(ThreadStatus::STATE_MUTEX_WAIT, 0U);
#endif
for (const int i : keys) {
if (i == kFlushFlag) {
continue;
}
std::string key = "k" + ToString(i);
std::string expected_value = "v" + ToString(i);
std::string value;
std::vector<Slice> multiget_keys = {Slice(key)};
std::vector<std::string> values;
get_perf_context()->Reset();
ASSERT_OK(db->Get(read_options, key, &value));
ASSERT_EQ(expected_value, value);
hist_get_snapshot.Add(get_perf_context()->get_snapshot_time);
hist_get_memtable.Add(get_perf_context()->get_from_memtable_time);
hist_get_files.Add(get_perf_context()->get_from_output_files_time);
hist_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count);
hist_get_post_process.Add(get_perf_context()->get_post_process_time);
hist_get.Add(get_perf_context()->user_key_comparison_count);
get_perf_context()->Reset();
auto statuses = db->MultiGet(read_options, multiget_keys, &values);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
hist_mget_snapshot.Add(get_perf_context()->get_snapshot_time);
hist_mget_memtable.Add(get_perf_context()->get_from_memtable_time);
hist_mget_files.Add(get_perf_context()->get_from_output_files_time);
hist_mget_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count);
hist_mget_post_process.Add(get_perf_context()->get_post_process_time);
hist_mget.Add(get_perf_context()->user_key_comparison_count);
}
if (FLAGS_verbose) {
std::cout << "Put user key comparison: \n"
<< hist_put.ToString() << "Get user key comparison: \n"
<< hist_get.ToString() << "MultiGet user key comparison: \n"
<< hist_get.ToString();
std::cout << "Put(): Pre and Post Process Time: \n"
<< hist_write_pre_post.ToString() << " Writing WAL time: \n"
<< hist_write_wal_time.ToString() << "\n"
<< " Writing Mem Table time: \n"
<< hist_write_memtable_time.ToString() << "\n"
<< " Write Delay: \n" << hist_write_delay_time.ToString() << "\n"
<< " Waiting for Batch time: \n"
<< hist_write_thread_wait_nanos.ToString() << "\n"
<< " Scheduling Flushes and Compactions Time: \n"
<< hist_write_scheduling_time.ToString() << "\n"
<< " Total DB mutex nanos: \n" << total_db_mutex_nanos << "\n";
std::cout << "Get(): Time to get snapshot: \n"
<< hist_get_snapshot.ToString()
<< " Time to get value from memtables: \n"
<< hist_get_memtable.ToString() << "\n"
<< " Time to get value from output files: \n"
<< hist_get_files.ToString() << "\n"
<< " Number of memtables checked: \n"
<< hist_num_memtable_checked.ToString() << "\n"
<< " Time to post process: \n" << hist_get_post_process.ToString()
<< "\n";
std::cout << "MultiGet(): Time to get snapshot: \n"
<< hist_mget_snapshot.ToString()
<< " Time to get value from memtables: \n"
<< hist_mget_memtable.ToString() << "\n"
<< " Time to get value from output files: \n"
<< hist_mget_files.ToString() << "\n"
<< " Number of memtables checked: \n"
<< hist_mget_num_memtable_checked.ToString() << "\n"
<< " Time to post process: \n"
<< hist_mget_post_process.ToString() << "\n";
}
if (enabled_time) {
ASSERT_GT(hist_get.Average(), 0);
ASSERT_GT(hist_get_snapshot.Average(), 0);
ASSERT_GT(hist_get_memtable.Average(), 0);
ASSERT_GT(hist_get_files.Average(), 0);
ASSERT_GT(hist_get_post_process.Average(), 0);
ASSERT_GT(hist_num_memtable_checked.Average(), 0);
ASSERT_GT(hist_mget.Average(), 0);
ASSERT_GT(hist_mget_snapshot.Average(), 0);
ASSERT_GT(hist_mget_memtable.Average(), 0);
ASSERT_GT(hist_mget_files.Average(), 0);
ASSERT_GT(hist_mget_post_process.Average(), 0);
ASSERT_GT(hist_mget_num_memtable_checked.Average(), 0);
EXPECT_GT(hist_write_pre_post.Average(), 0);
EXPECT_GT(hist_write_wal_time.Average(), 0);
EXPECT_GT(hist_write_memtable_time.Average(), 0);
EXPECT_EQ(hist_write_delay_time.Average(), 0);
EXPECT_EQ(hist_write_thread_wait_nanos.Average(), 0);
EXPECT_GT(hist_write_scheduling_time.Average(), 0);
#ifndef NDEBUG
ASSERT_GT(total_db_mutex_nanos, 2000U);
#endif
}
db.reset();
db = OpenDb(true);
hist_get.Clear();
hist_get_snapshot.Clear();
hist_get_memtable.Clear();
hist_get_files.Clear();
hist_get_post_process.Clear();
hist_num_memtable_checked.Clear();
hist_mget.Clear();
hist_mget_snapshot.Clear();
hist_mget_memtable.Clear();
hist_mget_files.Clear();
hist_mget_post_process.Clear();
hist_mget_num_memtable_checked.Clear();
for (const int i : keys) {
if (i == kFlushFlag) {
continue;
}
std::string key = "k" + ToString(i);
std::string expected_value = "v" + ToString(i);
std::string value;
std::vector<Slice> multiget_keys = {Slice(key)};
std::vector<std::string> values;
get_perf_context()->Reset();
ASSERT_OK(db->Get(read_options, key, &value));
ASSERT_EQ(expected_value, value);
hist_get_snapshot.Add(get_perf_context()->get_snapshot_time);
hist_get_memtable.Add(get_perf_context()->get_from_memtable_time);
hist_get_files.Add(get_perf_context()->get_from_output_files_time);
hist_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count);
hist_get_post_process.Add(get_perf_context()->get_post_process_time);
hist_get.Add(get_perf_context()->user_key_comparison_count);
get_perf_context()->Reset();
auto statuses = db->MultiGet(read_options, multiget_keys, &values);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
hist_mget_snapshot.Add(get_perf_context()->get_snapshot_time);
hist_mget_memtable.Add(get_perf_context()->get_from_memtable_time);
hist_mget_files.Add(get_perf_context()->get_from_output_files_time);
hist_mget_num_memtable_checked.Add(get_perf_context()->get_from_memtable_count);
hist_mget_post_process.Add(get_perf_context()->get_post_process_time);
hist_mget.Add(get_perf_context()->user_key_comparison_count);
}
if (FLAGS_verbose) {
std::cout << "ReadOnly Get user key comparison: \n"
<< hist_get.ToString()
<< "ReadOnly MultiGet user key comparison: \n"
<< hist_mget.ToString();
std::cout << "ReadOnly Get(): Time to get snapshot: \n"
<< hist_get_snapshot.ToString()
<< " Time to get value from memtables: \n"
<< hist_get_memtable.ToString() << "\n"
<< " Time to get value from output files: \n"
<< hist_get_files.ToString() << "\n"
<< " Number of memtables checked: \n"
<< hist_num_memtable_checked.ToString() << "\n"
<< " Time to post process: \n" << hist_get_post_process.ToString()
<< "\n";
std::cout << "ReadOnly MultiGet(): Time to get snapshot: \n"
<< hist_mget_snapshot.ToString()
<< " Time to get value from memtables: \n"
<< hist_mget_memtable.ToString() << "\n"
<< " Time to get value from output files: \n"
<< hist_mget_files.ToString() << "\n"
<< " Number of memtables checked: \n"
<< hist_mget_num_memtable_checked.ToString() << "\n"
<< " Time to post process: \n"
<< hist_mget_post_process.ToString() << "\n";
}
if (enabled_time) {
ASSERT_GT(hist_get.Average(), 0);
ASSERT_GT(hist_get_memtable.Average(), 0);
ASSERT_GT(hist_get_files.Average(), 0);
ASSERT_GT(hist_num_memtable_checked.Average(), 0);
// In read-only mode Get(), no super version operation is needed
ASSERT_EQ(hist_get_post_process.Average(), 0);
ASSERT_GT(hist_get_snapshot.Average(), 0);
ASSERT_GT(hist_mget.Average(), 0);
ASSERT_GT(hist_mget_snapshot.Average(), 0);
ASSERT_GT(hist_mget_memtable.Average(), 0);
ASSERT_GT(hist_mget_files.Average(), 0);
ASSERT_GT(hist_mget_post_process.Average(), 0);
ASSERT_GT(hist_mget_num_memtable_checked.Average(), 0);
}
}
#ifndef ROCKSDB_LITE
TEST_F(PerfContextTest, KeyComparisonCount) {
SetPerfLevel(kEnableCount);
ProfileQueries();
SetPerfLevel(kDisable);
ProfileQueries();
SetPerfLevel(kEnableTime);
ProfileQueries(true);
}
#endif // ROCKSDB_LITE
// make perf_context_test
// export ROCKSDB_TESTS=PerfContextTest.SeekKeyComparison
// For one memtable:
// ./perf_context_test --write_buffer_size=500000 --total_keys=10000
// For two memtables:
// ./perf_context_test --write_buffer_size=250000 --total_keys=10000
// Specify --random_key=1 to shuffle the key before insertion
// Results show that, for sequential insertion, worst-case Seek Key comparison
// is close to the total number of keys (linear), when there is only one
// memtable. When there are two memtables, even the avg Seek Key comparison
// starts to become linear to the input size.
TEST_F(PerfContextTest, SeekKeyComparison) {
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
if (FLAGS_verbose) {
std::cout << "Inserting " << FLAGS_total_keys << " key/value pairs\n...\n";
}
std::vector<int> keys;
for (int i = 0; i < FLAGS_total_keys; ++i) {
keys.push_back(i);
}
if (FLAGS_random_key) {
RandomShuffle(std::begin(keys), std::end(keys));
}
HistogramImpl hist_put_time;
HistogramImpl hist_wal_time;
HistogramImpl hist_time_diff;
SetPerfLevel(kEnableTime);
StopWatchNano timer(Env::Default());
for (const int i : keys) {
std::string key = "k" + ToString(i);
std::string value = "v" + ToString(i);
get_perf_context()->Reset();
timer.Start();
ASSERT_OK(db->Put(write_options, key, value));
auto put_time = timer.ElapsedNanos();
hist_put_time.Add(put_time);
hist_wal_time.Add(get_perf_context()->write_wal_time);
hist_time_diff.Add(put_time - get_perf_context()->write_wal_time);
}
if (FLAGS_verbose) {
std::cout << "Put time:\n" << hist_put_time.ToString() << "WAL time:\n"
<< hist_wal_time.ToString() << "time diff:\n"
<< hist_time_diff.ToString();
}
HistogramImpl hist_seek;
HistogramImpl hist_next;
for (int i = 0; i < FLAGS_total_keys; ++i) {
std::string key = "k" + ToString(i);
std::string value = "v" + ToString(i);
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
get_perf_context()->Reset();
iter->Seek(key);
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->value().ToString(), value);
hist_seek.Add(get_perf_context()->user_key_comparison_count);
}
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
for (iter->SeekToFirst(); iter->Valid();) {
get_perf_context()->Reset();
iter->Next();
hist_next.Add(get_perf_context()->user_key_comparison_count);
}
ASSERT_OK(iter->status());
if (FLAGS_verbose) {
std::cout << "Seek:\n" << hist_seek.ToString() << "Next:\n"
<< hist_next.ToString();
}
}
TEST_F(PerfContextTest, DBMutexLockCounter) {
int stats_code[] = {0, static_cast<int>(DB_MUTEX_WAIT_MICROS)};
for (PerfLevel perf_level_test :
{PerfLevel::kEnableTimeExceptForMutex, PerfLevel::kEnableTime}) {
for (int c = 0; c < 2; ++c) {
InstrumentedMutex mutex(nullptr, Env::Default(), stats_code[c]);
mutex.Lock();
ROCKSDB_NAMESPACE::port::Thread child_thread([&] {
SetPerfLevel(perf_level_test);
get_perf_context()->Reset();
ASSERT_EQ(get_perf_context()->db_mutex_lock_nanos, 0);
mutex.Lock();
mutex.Unlock();
if (perf_level_test == PerfLevel::kEnableTimeExceptForMutex ||
stats_code[c] != DB_MUTEX_WAIT_MICROS) {
ASSERT_EQ(get_perf_context()->db_mutex_lock_nanos, 0);
} else {
// increment the counter only when it's a DB Mutex
ASSERT_GT(get_perf_context()->db_mutex_lock_nanos, 0);
}
});
Env::Default()->SleepForMicroseconds(100);
mutex.Unlock();
child_thread.join();
}
}
}
TEST_F(PerfContextTest, FalseDBMutexWait) {
SetPerfLevel(kEnableTime);
int stats_code[] = {0, static_cast<int>(DB_MUTEX_WAIT_MICROS)};
for (int c = 0; c < 2; ++c) {
InstrumentedMutex mutex(nullptr, Env::Default(), stats_code[c]);
InstrumentedCondVar lock(&mutex);
get_perf_context()->Reset();
mutex.Lock();
lock.TimedWait(100);
mutex.Unlock();
if (stats_code[c] == static_cast<int>(DB_MUTEX_WAIT_MICROS)) {
// increment the counter only when it's a DB Mutex
ASSERT_GT(get_perf_context()->db_condition_wait_nanos, 0);
} else {
ASSERT_EQ(get_perf_context()->db_condition_wait_nanos, 0);
}
}
}
TEST_F(PerfContextTest, ToString) {
get_perf_context()->Reset();
get_perf_context()->block_read_count = 12345;
std::string zero_included = get_perf_context()->ToString();
ASSERT_NE(std::string::npos, zero_included.find("= 0"));
ASSERT_NE(std::string::npos, zero_included.find("= 12345"));
std::string zero_excluded = get_perf_context()->ToString(true);
ASSERT_EQ(std::string::npos, zero_excluded.find("= 0"));
ASSERT_NE(std::string::npos, zero_excluded.find("= 12345"));
}
TEST_F(PerfContextTest, MergeOperatorTime) {
DestroyDB(kDbName, Options());
DB* db;
Options options;
options.create_if_missing = true;
options.merge_operator = MergeOperators::CreateStringAppendOperator();
Status s = DB::Open(options, kDbName, &db);
EXPECT_OK(s);
std::string val;
ASSERT_OK(db->Merge(WriteOptions(), "k1", "val1"));
ASSERT_OK(db->Merge(WriteOptions(), "k1", "val2"));
ASSERT_OK(db->Merge(WriteOptions(), "k1", "val3"));
ASSERT_OK(db->Merge(WriteOptions(), "k1", "val4"));
SetPerfLevel(kEnableTime);
get_perf_context()->Reset();
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
#ifdef OS_SOLARIS
for (int i = 0; i < 100; i++) {
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
}
#endif
EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0);
ASSERT_OK(db->Flush(FlushOptions()));
get_perf_context()->Reset();
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
#ifdef OS_SOLARIS
for (int i = 0; i < 100; i++) {
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
}
#endif
EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0);
ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr));
get_perf_context()->Reset();
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
#ifdef OS_SOLARIS
for (int i = 0; i < 100; i++) {
ASSERT_OK(db->Get(ReadOptions(), "k1", &val));
}
#endif
EXPECT_GT(get_perf_context()->merge_operator_time_nanos, 0);
delete db;
}
TEST_F(PerfContextTest, CopyAndMove) {
// Assignment operator
{
get_perf_context()->Reset();
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5);
ASSERT_EQ(
1,
(*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful);
PerfContext perf_context_assign;
perf_context_assign = *get_perf_context();
ASSERT_EQ(
1,
(*(perf_context_assign.level_to_perf_context))[5].bloom_filter_useful);
get_perf_context()->ClearPerLevelPerfContext();
get_perf_context()->Reset();
ASSERT_EQ(
1,
(*(perf_context_assign.level_to_perf_context))[5].bloom_filter_useful);
perf_context_assign.ClearPerLevelPerfContext();
perf_context_assign.Reset();
}
// Copy constructor
{
get_perf_context()->Reset();
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5);
ASSERT_EQ(
1,
(*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful);
PerfContext perf_context_copy(*get_perf_context());
ASSERT_EQ(
1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful);
get_perf_context()->ClearPerLevelPerfContext();
get_perf_context()->Reset();
ASSERT_EQ(
1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful);
perf_context_copy.ClearPerLevelPerfContext();
perf_context_copy.Reset();
}
// Move constructor
{
get_perf_context()->Reset();
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5);
ASSERT_EQ(
1,
(*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful);
PerfContext perf_context_move = std::move(*get_perf_context());
ASSERT_EQ(
1, (*(perf_context_move.level_to_perf_context))[5].bloom_filter_useful);
get_perf_context()->ClearPerLevelPerfContext();
get_perf_context()->Reset();
ASSERT_EQ(
1, (*(perf_context_move.level_to_perf_context))[5].bloom_filter_useful);
perf_context_move.ClearPerLevelPerfContext();
perf_context_move.Reset();
}
}
TEST_F(PerfContextTest, PerfContextDisableEnable) {
get_perf_context()->Reset();
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, 0);
get_perf_context()->DisablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5);
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, 0);
get_perf_context()->DisablePerLevelPerfContext();
PerfContext perf_context_copy(*get_perf_context());
ASSERT_EQ(1, (*(perf_context_copy.level_to_perf_context))[0]
.bloom_filter_full_positive);
// this was set when per level perf context is disabled, should not be copied
ASSERT_NE(
1, (*(perf_context_copy.level_to_perf_context))[5].bloom_filter_useful);
ASSERT_EQ(
1, (*(perf_context_copy.level_to_perf_context))[0].block_cache_hit_count);
perf_context_copy.ClearPerLevelPerfContext();
perf_context_copy.Reset();
get_perf_context()->ClearPerLevelPerfContext();
get_perf_context()->Reset();
}
TEST_F(PerfContextTest, PerfContextByLevelGetSet) {
get_perf_context()->Reset();
get_perf_context()->EnablePerLevelPerfContext();
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_positive, 1, 0);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 5);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 7);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_useful, 1, 7);
PERF_COUNTER_BY_LEVEL_ADD(bloom_filter_full_true_positive, 1, 2);
PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 1, 0);
PERF_COUNTER_BY_LEVEL_ADD(block_cache_hit_count, 5, 2);
PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 2, 3);
PERF_COUNTER_BY_LEVEL_ADD(block_cache_miss_count, 4, 1);
ASSERT_EQ(
0, (*(get_perf_context()->level_to_perf_context))[0].bloom_filter_useful);
ASSERT_EQ(
1, (*(get_perf_context()->level_to_perf_context))[5].bloom_filter_useful);
ASSERT_EQ(
2, (*(get_perf_context()->level_to_perf_context))[7].bloom_filter_useful);
ASSERT_EQ(1, (*(get_perf_context()->level_to_perf_context))[0]
.bloom_filter_full_positive);
ASSERT_EQ(1, (*(get_perf_context()->level_to_perf_context))[2]
.bloom_filter_full_true_positive);
ASSERT_EQ(1, (*(get_perf_context()->level_to_perf_context))[0]
.block_cache_hit_count);
ASSERT_EQ(5, (*(get_perf_context()->level_to_perf_context))[2]
.block_cache_hit_count);
ASSERT_EQ(2, (*(get_perf_context()->level_to_perf_context))[3]
.block_cache_miss_count);
ASSERT_EQ(4, (*(get_perf_context()->level_to_perf_context))[1]
.block_cache_miss_count);
std::string zero_excluded = get_perf_context()->ToString(true);
ASSERT_NE(std::string::npos,
zero_excluded.find("bloom_filter_useful = 1@level5, 2@level7"));
ASSERT_NE(std::string::npos,
zero_excluded.find("bloom_filter_full_positive = 1@level0"));
ASSERT_NE(std::string::npos,
zero_excluded.find("bloom_filter_full_true_positive = 1@level2"));
ASSERT_NE(std::string::npos,
zero_excluded.find("block_cache_hit_count = 1@level0, 5@level2"));
ASSERT_NE(std::string::npos,
zero_excluded.find("block_cache_miss_count = 4@level1, 2@level3"));
}
TEST_F(PerfContextTest, CPUTimer) {
if (Env::Default()->NowCPUNanos() == 0) {
ROCKSDB_GTEST_SKIP("Target without NowCPUNanos support");
return;
}
DestroyDB(kDbName, Options());
auto db = OpenDb();
WriteOptions write_options;
ReadOptions read_options;
SetPerfLevel(PerfLevel::kEnableTimeAndCPUTimeExceptForMutex);
std::string max_str = "0";
for (int i = 0; i < FLAGS_total_keys; ++i) {
std::string i_str = ToString(i);
std::string key = "k" + i_str;
std::string value = "v" + i_str;
max_str = max_str > i_str ? max_str : i_str;
ASSERT_OK(db->Put(write_options, key, value));
}
std::string last_key = "k" + max_str;
std::string last_value = "v" + max_str;
{
// Get
get_perf_context()->Reset();
std::string value;
ASSERT_OK(db->Get(read_options, "k0", &value));
ASSERT_EQ(value, "v0");
if (FLAGS_verbose) {
std::cout << "Get CPU time nanos: " << get_perf_context()->get_cpu_nanos
<< "ns\n";
}
// Iter
std::unique_ptr<Iterator> iter(db->NewIterator(read_options));
// Seek
get_perf_context()->Reset();
iter->Seek(last_key);
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(last_value, iter->value().ToString());
if (FLAGS_verbose) {
std::cout << "Iter Seek CPU time nanos: "
<< get_perf_context()->iter_seek_cpu_nanos << "ns\n";
}
// SeekForPrev
get_perf_context()->Reset();
iter->SeekForPrev(last_key);
ASSERT_TRUE(iter->Valid());
if (FLAGS_verbose) {
std::cout << "Iter SeekForPrev CPU time nanos: "
<< get_perf_context()->iter_seek_cpu_nanos << "ns\n";
}
// SeekToLast
get_perf_context()->Reset();
iter->SeekToLast();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(last_value, iter->value().ToString());
if (FLAGS_verbose) {
std::cout << "Iter SeekToLast CPU time nanos: "
<< get_perf_context()->iter_seek_cpu_nanos << "ns\n";
}
// SeekToFirst
get_perf_context()->Reset();
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
if (FLAGS_verbose) {
std::cout << "Iter SeekToFirst CPU time nanos: "
<< get_perf_context()->iter_seek_cpu_nanos << "ns\n";
}
// Next
get_perf_context()->Reset();
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v1", iter->value().ToString());
if (FLAGS_verbose) {
std::cout << "Iter Next CPU time nanos: "
<< get_perf_context()->iter_next_cpu_nanos << "ns\n";
}
// Prev
get_perf_context()->Reset();
iter->Prev();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v0", iter->value().ToString());
if (FLAGS_verbose) {
std::cout << "Iter Prev CPU time nanos: "
<< get_perf_context()->iter_prev_cpu_nanos << "ns\n";
}
// monotonically increasing
get_perf_context()->Reset();
auto count = get_perf_context()->iter_seek_cpu_nanos;
for (int i = 0; i < FLAGS_total_keys; ++i) {
iter->Seek("k" + ToString(i));
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("v" + ToString(i), iter->value().ToString());
auto next_count = get_perf_context()->iter_seek_cpu_nanos;
ASSERT_GT(next_count, count);
count = next_count;
}
// iterator creation/destruction; multiple iterators
{
std::unique_ptr<Iterator> iter2(db->NewIterator(read_options));
ASSERT_EQ(count, get_perf_context()->iter_seek_cpu_nanos);
iter2->Seek(last_key);
ASSERT_TRUE(iter2->Valid());
ASSERT_EQ(last_value, iter2->value().ToString());
ASSERT_GT(get_perf_context()->iter_seek_cpu_nanos, count);
count = get_perf_context()->iter_seek_cpu_nanos;
}
ASSERT_EQ(count, get_perf_context()->iter_seek_cpu_nanos);
}
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
for (int i = 1; i < argc; i++) {
int n;
char junk;
if (sscanf(argv[i], "--write_buffer_size=%d%c", &n, &junk) == 1) {
FLAGS_write_buffer_size = n;
}
if (sscanf(argv[i], "--total_keys=%d%c", &n, &junk) == 1) {
FLAGS_total_keys = n;
}
if (sscanf(argv[i], "--random_key=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_random_key = n;
}
if (sscanf(argv[i], "--use_set_based_memetable=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_use_set_based_memetable = n;
}
if (sscanf(argv[i], "--verbose=%d%c", &n, &junk) == 1 &&
(n == 0 || n == 1)) {
FLAGS_verbose = n;
}
}
if (FLAGS_verbose) {
std::cout << kDbName << "\n";
}
return RUN_ALL_TESTS();
}